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Abstract

The isomorphic subgraph problem is finding two disjoint subgraphs
of a graph which coincide on at least k edges. The graph is partitioned
into a subgraph, its copy, and a remainder. The problem resembles the
NP-hard largest common subgraph problem, which searches copies of a
graph in a pair of graphs. In this paper we show that the isomorphic sub-
graph problem is NP-hard, even for restricted instances such as connected
outerplanar graphs. Then we present two different heuristics for the com-
putation of maximal connected isomorphic subgraphs. Both heuristics use
weighting functions and have been tested on four independent test suites.
Finally, we introduce a spring algorithm which preserves isomorphic sub-
graphs and displays them as copies of each other. The drawing algorithm
yields nice drawings and emphasizes the isomorphic subgraphs.
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1 Introduction

Graph drawing is concerned with the problem of displaying graphs nicely. There
is a wide spectrum of approaches and algorithms [10]. Nice drawings help in
understanding the structural relation modeled by the graph. Bad drawings are
misleading. This has been evaluated by HCI experiments [31, 32], which have
shown that symmetry is an important factor in the understanding of graph
drawings and the underlying relational structure. There is an information the-
oretic foundation and explanation for this observation: symmetry increases the
redundancy of the drawing and saves bits for the information theoretic repre-
sentation of a graph. Drawings of graphs in textbooks [33] and also the winning
entries of the annual Graph Drawing Competitions and the logos of the sym-
posia on Graph Drawing are often symmetric. In [3] symmetry is used for nice
drawings without defining nice.

Another application area for isomorphic subgraphs comes from theoretical
biology. It is of great interest to compare proteins, which are complex structures
consisting of several 10000 of atoms. Proteins are considered at different ab-
straction levels. This helps reducing the computational complexity and detect-
ing hidden structural similarities, which are represented as repetitive structural
subunits. Proteins can be modeled as undirected labeled graphs, and a pair
of repetitive structural subunits corresponds to a subgraph and its isomorphic
copy.

Symmetry has two directions: geometric and graph theoretic. A graph theo-
retic symmetry means a non-trivial graph automorphism. The graph automor-
phism problem has been investigated in depth by Lubiw [27]. She proved the
NP-hardness of many versions. However, the general graph automorphism and
graph isomorphism problems are famous open problems between polynomial
time and NP-hardness [19, 27]. A graph has a geometric symmetry if it has
a drawing with a rotational or a reflectional invariant. Geometric symmetries
of graphs correspond to special automorphisms, which has been elaborated in
[14]. Geometric symmetries have first been studied by Manning [28, 29], who
has shown that the detection of such symmetries is NP-hard for general graphs.
However, for planar graphs there are polynomial time solutions [23, 22, 24, 29].
Furthermore, there is a relaxed approach by Chen et al. [8] which reduces a
given graph to a subgraph with a geometric symmetry by node and edge dele-
tions and by edge contractions. Again this leads to NP-hard problems.

Most graphs from applications have only a trivial automorphism. And small
changes at a graph may destroy an automorphism and the isomorphism of a
pair of graphs. Thus graph isomorphism and graph automorphism are very
restrictive. More flexibility is needed, relaxing and generalizing the notions of
geometric symmetry and graph automorphism. This goal is achieved by the
restriction to subgraphs. Our approach is the notion of isomorphic subgraphs,
which has been introduced in [5] and has first been investigated in [1, 2]. The
isomorphic subgraph problem is finding two large disjoint subgraphs of a given
graph, such that one subgraph is a copy of the other. Thus a graph G partitions
into G = H1 +H2 +R, where H1 and H2 are isomorphic subgraphs and R is the
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remainder. From another viewpoint one may create graphs using the cut&copy
operation of a graph editor in the following way: select a portion of a graph,
create a new copy thereof, and connect the copy to the original graph.

The generalization from graph automorphism to isomorphic subgraphs is
related to the generalization from graph isomorphism to largest common sub-
graph. The difference lies in the number of input graphs. The coincidence or
similarity of the subgraphs is measured in the number of edges of the com-
mon subgraphs, which must be 100% for the automorphism and isomorphism
problems, and which may be less for the more flexible generalizations.

The isomorphic subgraph problem and the largest common subgraph prob-
lem are NP-hard, even when restricted to connected outerplanar graphs and to
2-connected planar graphs [1, 2, 19]. For 3-connected planar graphs the largest
common subgraph problem remains NP-hard as a generalization of Hamiltonian
circuit, whereas the complexity of the isomorphic subgraph problem is open in
this case. Both problems are tractable, if the graphs have tree-width k and the
graphs and the isomorphic subgraphs are k-connected [6], where k is some con-
stant. In particular, isomorphic subtrees [1, 2] and the largest common subtree
of two rooted trees can be computed in linear time. For arbitrary graphs the
isomorphic subgraph problem seems harder than the largest common subgraph
problem. An instance of the largest common subgraph problem consists of a pair
of graphs. The objective is a matching between pairs of nodes inducing an iso-
morphism, such that the matched subgraphs are maximal. For the isomorphic
subgraph problem there is a single graph. Now the task is finding a partition
into three components, H1,H2, and a remainder R, and an isomorphism pre-
serving matching between the subgraphs H1 and H2. This is a hard problem,
since both graph partition and graph isomorphism are NP-hard problems.

We approach the computation of maximal connected isomorphic subgraphs
in two ways: First, the matching approach uses different weighting parameters
for a local bipartite matching that determines the local extension of a pair of
isomorphic subgraphs by pairs of nodes from the neighborhood of two isomor-
phic nodes. The computation is repeated with different seeds. This approach
captures both the partition and the isomorphism problems. Our experiments
are directed towards the appropriateness of the approach and the effectiveness
of the chosen parameters. The measurements are based on more than 100.000
computations conducted by Bachl for her dissertation [2]. Second, the square
graph approach uses Levi’s transformation [26] of common adjacencies into a
comparability graph. We transform a graph into its square graph, which is then
searched for large edge weighted cliques by a heuristic. Both approaches are
evaluated and compared on four test suites. These tests reveal versions with
best weighting functions for each of the two approaches. To stabilize the results
both algorithms must be applied repeatedly with different seeds. However, the
computed common subgraphs are sparse, and are often trees with just a few
additional edges. Between the two approaches there is no clear winner by our
measurements. Concerning the size of the computed connected isomorphic sub-
graphs the matching outperforms the product graph method on sparse graphs
and conversely on dense graphs. A major advantage of the matching approach
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over the product graph approach is that it operates directly on the given graph.
The product graph approach operates on square graphs, whose size is quadratic
in the size of the input graphs.

As an application in graph drawing we present a spring algorithm which
preserves isomorphic subgraphs and displays them as copies of each other. The
algorithm is an extension of the Fruchterman and Reingold approach [18]. Each
node and its copy are treated identically by averaging forces and moves. An
additional force is used to separate the two copies of the subgraphs. With a
proper setting of the parameters of the forces this gives rather pleasing pictures,
which cannot be obtained by standard spring algorithms.

The paper is organized as follows: First we define the isomorphic subgraph
problem. In Section 3 we show its NP-hardness, even for very restrictive cases,
and address the problem of computing large isomorphic subgraphs. In Section 4
we introduce two different algorithms which have been evaluated and compared
in several versions and on different test suites. Finally, in Section 5 we present
a graph drawing algorithm for isomorphic subgraphs.

2 Isomorphic Subgraphs

We consider undirected graphs G = (V,E) with a set of nodes V and a set
of edges E. Edges are denoted by pairs e = (u, v). For convenience, self-
loops and multiple edges are excluded. The set of neighbors of a node v is
N(v) = {u ∈ V | (u, v) ∈ E}. Observe that a node is not its own neighbor. If v
is a node from a distinguished subgraph H, then the new neighbors of v are its
neighbors not in H.

In many applications there are node and edge labels and the labels have to be
respected by an isomorphism. This is discarded here, although the labels are a
great help in the selection and association of nodes and edges for the isomorphic
subgraph problem. Often additional information is used for an initial seed before
starting the comparison of two graphs. A good seed is an important factor, as
our results shall confirm.

Definition 1 Let G = (V,E) be a graph and let V ′ ⊆ V and E′′ ⊆ E be subsets
of nodes and edges. The node-induced subgraph G[V ′] = (V ′, E′) consists of
the nodes of V ′ and the edges E′ = E ∩ V ′ × V ′. The edge-induced subgraph
G[E′′] = (V ′′, E′′) consists of the edges of E′′ and their incident nodes V ′′ =
{u, v ∈ V | (u, v) ∈ E′′}.

An isomorphism between two graphs is a bijection φ : G → G′ on the sets of
nodes that preserves adjacency. If G = G′, φ is a graph automorphism, which is
a permutation of the set of nodes that preserves adjacency. If v′ = φ(v), then v
and v′ are called a pair of isomorphic copies, and similarly for a pair of edges.

A common subgraph of two graphs G and G′ is a graph H that is isomorphic
to G[E] and G′[E′] for some subsets of the sets of edges of G and G′. More
precisely, H is an edge-induced common subgraph of size k, where k is the number
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of edges of H. Accordingly, H is a node-induced common subgraph if G[E] and
G′[E′] are node-induced subgraphs.

Our notions of isomorphic subgraphs use only single graphs.

Definition 2
The isomorphic node-induced subgraph problem, INS:
Instance: A graph G = (V,E) and an integer k.
Question: Does G contain two disjoint node-induced common subgraphs H1 and
H2 with at least k edges?

Definition 3
The isomorphic edge-induced subgraph problem, IES:
Instance: A graph G = (V,E) and an integer k.
Question: Does G contain two disjoint edge-induced common subgraphs H1 and
H2 with at least k edges?

For INS and IES the graph G partitions into two isomorphic subgraphs H1

and H2 and a remainder R such that G = H1 + H2 + R. When computing iso-
morphic subgraphs the subgraphs H1 and H2 are supposed to be connected and
maximal. IES is our most flexible version, whereas INS seems more appropriate
for graph drawings. Notice that also in the node-induced case the size of the
common subgraphs must be measured in terms of the common edges. Other-
wise, the problem may become meaningless. As an example consider an n × m
grid graph with n,m even. If V1 consists of all even nodes in the odd rows and
of all odd nodes in the even rows, and V2 = V \V1, then V1 and V2 have maximal
size. However, their induced subgraphs are discrete with the empty set of edges.

Common subgraphs can be represented as cliques in so-called comparability
or product graphs. This has been proposed by Levi [26] for the computation
of maximal common induced subgraphs of a pair of graphs. Then a common
subgraph one-to-one corresponds to a clique in the comparability graph. We
adapt this concept to isomorphic subgraphs of a single graph.

Definition 4 The square of a graph G = (V,E) is an undirected graph G2 =
(V 2, E2), whose nodes are the pairs of distinct nodes of G with V 2 = {(u, v) | u �=
v and u, v ∈ V }. The edges of G2 are generating or stabilizing edges between
pairwise distinct nodes u1, v1, u2, v2. ((u1, u2), (v1, v2)) is a generating edge, if
both (u1, v1) and (u2, v2) are edges of E. ((u1, u2), (v1, v2)) is a stabilizing edge,
if there are no such edges in E. There is no edge in G2, if there is exactly one
edge between the respective nodes in G.

Each pair of edges in G with pairwise distinct endnodes induces four gen-
erating edges in G2, and accordingly there are four stabilizing edges resulting
from two pairs of non-adjacent nodes. Hence, square graphs are dense and have
an axial symmetry. In the later clique searching algorithm generating edges will
receive a high weight of size |V |2, and stabilizing edges are assigned the weight
one.
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Lemma 1 The square graph of an undirected graph has an axial symmetry.

Proof: Let G = (V,E) and G2 be the graph and its square. Use the Y -axis for
the axial symmetry of G2. For each pair of nodes u, v ∈ V with u �= v there is a
pair of symmetric nodes of G2 such that (u, v) is placed at (−x, y) and (v, u) is
placed at (+x, y) for some x, y, such that distinct nodes are placed at distinct
positions. If v1, v2, v3, v4 are distinct nodes of V , then the edges induced by these
nodes in G2 are symmetric, mapping ((v1, v2), (v3, v4)) to ((v2, v1), (v4, v3)). �

The usability of square graphs for the computation of isomorphic subgraphs
is based on the following fact.

Theorem 1 Let V1 and V2 be subsets of the set of nodes V of a graph G.
H1 = G[V1] and H2 = G[V2] are isomorphic disjoint node-induced subgraphs with
an isomorphism φ : V1 → V2 if and only if the set of nodes {(v, φ(v)) | v ∈ V1}
induces a clique in the square graph G2. The isomorphism φ can be retrieved
from the clique.

Proof: If φ is an isomorphism from H1 into H2, then for nodes u, v ∈ V1 with
u �= v the nodes (u, φ(u)) and (v, φ(v)) are connected in G2 by a generating edge
or by a stabilizing edge. Hence, the set of nodes {(v, φ(v)) | v ∈ V1} induces a
clique in G2. Conversely, suppose that a set of nodes W of G2 defines a clique.
Let V1 = {v1 | (v1, v2) ∈ W} and V2 = {v2 | (v1, v2) ∈ W} be the projections
onto the first and second components. If (u1, u2) and (v1, v2) are nodes of W ,
then the nodes u1, v1, u2, v2 are pairwise distinct. Hence V1 ∩ V2 = ∅. Define
φ : V1 → V2 by φ(v1) = v2 if (v1, v2) ∈ W . From the distinctness φ is a bijection.
Moreover, for nodes u1, v1 ∈ V1 and their images u2, v2 ∈ V2 either there are
two edges (u1, v1) and (u2, v2) in G or these pairs of nodes are not adjacent.
Hence, G[V1] and G[V2] are isomorphic disjoint node-induced subgraphs. �

Consequently, a maximal clique in the node square graph G2 corresponds
to a pair of maximal node-induced subgraphs in G. However, the isomorphic
subgraphs of G are not necessarily connected. Connectivity can be established
by the requirement that the clique nodes in G2 are connected by generating
edges.

Accordingly, we use so-called edge-square graphs for the edge-induced iso-
morphic subgraph problem.

Definition 5 The edge-square graph of a graph G = (V,E) consists of the pairs
of edges of G with distinct endnodes {(e, e′) | e, e′ ∈ E and u, v, u′, v′ are pairwise
distinct for e = (u, v) and e′ = (u′, v′)} as its nodes. Two such nodes (e, e′) and
(f, f ′) are connected by an undirected edge if and only if the endnodes of e, e′

and of f, f ′ are pairwise distinct and either e, e′ and f, f ′ are adjacent in G or
e, e′ and f, f ′ are not adjacent in G. In the first case, the edge between (e, e′)
and (f, f ′) is a generating edge, in the latter case a stabilizing edge.

Notice that the edge-square graph of G = (V,E) is the node square graph
of its edge graph Ge = (E,F ) with (e, e′) ∈ F if and only if the edges e and e′

are adjacent in G. Its size is quadratic in the number of edges of G.
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3 Isomorphic Subgraph Problems

The largest common subgraph problem [19] generalizes many other NP-hard
graph problems such as the clique, Hamiltonian circuit, and subgraph isomor-
phism problems. The isomorphic subgraph problem is similar; however, it uses
only a single graph. The analogy between the largest common subgraph prob-
lem and the isomorphic subgraph problem is not universal, since graph isomor-
phism is a special case of the largest common subgraph problem, whereas graph
automorphism is not a special case of the isomorphic subgraph problem. Nev-
ertheless, the isomorphic subgraph problems are NP-hard, too, even for related
specializations. However, at present we have no direct reductions between the
isomorphic subgraph and the largest common subgraph problems.

When restricted to trees the isomorphic subtree problem is solvable in linear
time. This has been established in [1, 2] for free and rooted, ordered and un-
ordered trees by a transformation of trees into strings of pairs of parentheses and
a reduction of the largest common subtree problem to a longest non-overlapping
well-nested substring and subsequence problems. However, the isomorphic sub-
tree problem requires trees as common subgraphs of a tree. This is not the
restriction of the isomorphic subgraph problem to a tree, where the isomor-
phic subgraphs may be disconnected. In [8] there are quite similar results for a
related problem.

Theorem 2 The isomorphic subgraph problems INS and IES are NP-hard.
These problems remain NP-hard if the graph G is

• 1-connected outerplanar and the subgraphs are or are not connected.
• 2-connected planar and the subgraphs are 2-connected.

Proof: We reduce from the strongly NP-hard 3-partition problem [19]. First
consider IES.

Let A = {a1, . . . , a3m} and B ∈ N be an instance of 3-partition with a size
s(a) for each a ∈ A and B/4 < s(a) < B/2. The elements of A must be grouped
into m triples whose sizes sum up to B.

We construct a graph G as shown in Figure 1. The left subgraph L consists
of 3m fans, where the i-th fan is a chain of s(ai) nodes which are all connected to
v1. It is called the s(ai)-fan. The right subgraph R has m fans each consisting
of a chain of B nodes which are all connected to v2. The fans of R are called
B-fans. Let k = 2Bm − 3m. Then G has 2k + 2m + 1 edges.

Now G has an IES solution of size k if and only if there is a solution of
3-partition.

First, let A1, . . . , Am be a solution of 3-partition with each Ai containing
three elements of A. Define H1 = L and H2 = R and a bijection φ : H1 → H2,
such that v1 is mapped to v2 and for each a ∈ Aj (1 ≤ j ≤ m) the s(a)-fans are
mapped to the j-th B-fan. This cuts two edges of each B-fan. Then H1 and H2

have
∑

a∈A

(2s(a) − 1) = 2Bm − 3m = k common edges and IES has a solution.

Conversely, let H1 and H2 be a solution of IES with k = 2Bm − 3m. Then
one of the graphs must be L and the other is R, and they must be mapped
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v1 v2

L R

B

B
s(a1)

s(a2)

s(a3m)

Figure 1: Reduction to IES for connected outerplanar graphs

to each other by φ, such that only 2m + 1 edges go lost by the mapping. In
particular, φ(v1) = v2, since the degree of v1 and v2 is Bm + 1, whereas all
other nodes have a degree of at most three. Hence, if φ(v1) �= v2, then at least
2 · (Bm+1− 3) edges go lost and at most |E| − 2(Bm− 2) edges are left for H1

and H2. Since |E| = 4Bm − 4m + 1 and B > 1, less than k − 3 edges are left
for each of H1 and H2, contradicting the assumption φ(v1) = v2. Let v1 be in
H1 and v2 in H2. If the subgraphs must be connected, then H1 is a subgraph
of L and H1 = L to achieve the bound k, and similarly H2 is a subgraph of R.
This is also true, if H1 and H2 may be disconnected. To see this suppose the
contrary. If j > 0 edges of R are in H1, then at least j + 1 nodes of R are in
H1. Each such node decreases the number of edges for the isomorphic copies at
least by one, since the edges to v2 go lost. And for every three s(ai)-fans from
L at least two edges from R go lost. Since R has k + 2m edges, j = 0, H1 = L
and H2 is a subgraph of R with k edges. Now every s(ai)-fan must be mapped
to a B-fan, such that all edges of the s(ai)-fan are kept. Since B

4 < s(a) < B
2 ,

exactly three s(ai)-fans must be mapped to one B-fan, and each B-fan looses
exactly two edges. Hence, there is a solution of 3-partition.

The reduction from 3-partition to INS is similar. Consider the graph G from
Figure 2 and let k = 3Bm − 6m.

The left subgraph L consists of 3m fans, where the i-th fan is a chain of
s(ai) + (s(ai) − 1) nodes and the nodes at odd positions are connected to v1.
The right subgraph R has m fans where each fan has exactly B +(B− 1) nodes
and the nodes at odd positions are connected to v2. The nodes v1 and v2 are
adjacent.

By the same reasoning as above it can be shown that G has two isomorphic
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v1 v2

L R

B

B

s(a1)

s(a2)

s(a3m)

Figure 2: Reduction to INS for connected outerplanar graphs

node-induced subgraphs H1 and H2, with k edges each, and which may be
connected or not if and only if H1 = L if and only if there is a solution of
3-partition.

Accordingly, we can proceed if we increase the connectivity and consider
2-connected planar graphs. For IES consider the graph G from Figure 3 and
let k = 3Bm − 3m. Again it can be shown that L and R are the edge-induced
isomorphic subgraphs. The construction of the graph for INS is left to the
reader. However, the isomorphic subgraph problem is polynomially solvable for
2-connected outerplanar graphs [6]. �

4 Computing Isomorphic Subgraphs

In this section we introduce two different heuristics for the computation of max-
imal connected isomorphic subgraphs. The isomorphic subgraph problem is
different from the isomorphism, subgraph isomorphism and largest common
subgraph problems. There is only a single graph, and it is a major task to
locate and separate the two isomorphic subgraphs. Moreover, graph properties
such as the degree and adjacencies of isomorphic nodes are not necessarily pre-
served, since an edge from a node in one of the isomorphic subgraphs may end
in the remainder or in the other subgraph. The size of the largest isomorphic
subgraphs can be regarded as a measure for the self-similarity of a graph in the
same way as the size of the largest common subgraph is regarded as a measure
for the similarity of two graphs.
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v1 v2v3 v4

L R

B

B

s(a1)

s(a3m)

Figure 3: Reduction to IES for 2-connected planar graphs

4.1 The Matching Approach

Our first approach is a greedy algorithm, whose core is a bipartite matching for
the local search. The generic algorithm has two main features: the initialization
and a weighting function for the nodes. Several versions have been tested in [2].
The algorithm proceeds step by step and attempts to enlarge the intermediate
pair of isomorphic subgraphs by a pair of new nodes, which are taken from
the neighbors of a pair of isomorphic nodes. The correspondence between the
neighbors is computed by a weighted bipartite matching. Let G = (V,E) be the
given graph, and suppose that the subgraphs H1 and H2 have been computed
as copies of each other. For each pair of new nodes (v1, v2) not in H1 and H2

the following graph parameters are taken into account:

• w1 = degree(v1)+degree(v2)
• w2 = −|degree(v1)−degree(v2)|
• w3 = −(the number of common neighbors)
• w4 = the number of new neighbors of v1 and v2 which are not in H1 ∪H2

• w5 = the graph theoretical distance between v1 and v2

• w6 = the number of new isomorphic edges in (H1 ∪ v1,H2 ∪ v2).

These parameters can be combined arbitrarily to a weight W =
∑

λiwi with
0 ≤ λi ≤ 1. Observe that w2 and w3 are taken negative. Let w0 =

∑
wi.

The greedy algorithm proceeds as follows: Suppose that H1 and H2 are
disjoint connected isomorphic subgraphs which have been computed so far and
are identified by the mapping φ : V1 → V2 on their sets of nodes. The algorithm
selects the next pair of nodes (u1, u2) ∈ V1 × V2 with u2 = φ(u1) from the
queue of such pairs. It constructs a bipartite graph whose nodes are the new
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neighbors of u1 and u2. For each such pair (v1, v2) of neighbors of (u1, u2) with
v1, v2 �∈ V1 ∪V2 and v1 �= v2 there is an edge with weight W (v1, v2) = wi, where
wi is any of the above weighting functions. For example, W (v1, v2) is the sum
of the degrees of v1 and v2 for w1. There is no edge if v1 = v2. Then compute
an optimal weighted bipartite matching. For the matching we have used the
Kuhn-Munkres algorithm (Hungarian method) [9] with a runtime of O(n2m).
In decreasing order by the weight of the matching edges the pairs of matched
nodes (v1, v2) are taken for an extension of H1 and H2, provided that (v1, v2)
passes the isomorphism test and neither of them has been matched in preceding
steps. The isomorphism test is only local, since each time only one new node
is added to each subgraph. Since the added nodes are from the neighborhood,
the isomorphic subgraphs are connected, and they are disjoint since each node
is taken at most once.

In the node-induced case, a matched pair of neighbors (v1, v2) is added to the
pair of isomorphic subgraphs if the isomorphism can be extended by v1 and v2.
Otherwise v1 and v2 are skipped and the algorithm proceeds with the endnodes
of the next matched edge. In the case of edge-induced isomorphic subgraphs the
algorithm successively adds pairs of matched nodes and all edges between pairs
of isomorphic nodes. Each node can be taken at most once, which is checked if
u1 and u2 have common neighbors.

For each pair of starting nodes the algorithm runs in linear time except
for the Kuhn-Munkres algorithm, which is used as a subroutine on bipartite
graphs, whose nodes are the neighbors of two nodes. The overall runtime of our
algorithm is O(n3m). However, it performs much better in practice, since the
expensive Kuhn-Munkres algorithm often operates on small sets. The greedy
algorithm terminates if there are no further pairs of nodes which can extend the
computed isomorphic subgraphs, which therefore are maximal.

For an illustration consider the graph in Figure 4 with (1, 1′) as the initial
pair of isomorphic nodes. The complete bipartite graph from the neighbors has
the nodes 2, 3, 4 and 6, 7. Consider the sum of degrees as weighting function.
Then w1(3, 6) + w1(2, 7) = 15 is a weight maximal matching; the edges (2, 6)
and (3, 7) have the same weight. First, node 3 is added to 1 and 6 is added to
1′. In the node-induced case, the pair (2, 7) fails the isomorphism test and is
discarded. In the next step, the new neighbors of the pair (3, 6) are considered,
which are 2, 4, 5 and 2, 5. In the matching graph there is no edge between the
two occurrences of 2 and 5. A weight maximal matching is (2, 5) and (4, 2)
with weight 14. Again the isomorphism test fails, first for (2, 5) and then for
(4, 2). If it had succeeded with (2, 5) the nodes 2 and 5 were blocked and the
edge (4, 2) were discarded. Hence, the approach finds only a pair of isomorphic
subgraphs whereas the optimal solution for INS are the subgraphs induced by
{1, 3, 4, 7} and by {2, 5, 6, 1′} which are computed from the seed (7, 1′). In the
edge-induced case there are the copies (3, 6) and (2, 7) from the neighbors of
(1, 1′) discarding the edge (2, 3) of G. Finally, (4, 5) is taken as neighbors of
(3, 6). The edges of the edge-induced isomorphic subgraphs are drawn bold.

Figure 5 shows the algorithm for the computation of node-induced sub-
graphs. P consists of the pairs of nodes which have already been identified by
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1

2

3

4

5

6

1’

7

Figure 4: The matching approach

initialize(P );
while (P �= ∅) do

(u1, u2) = next(P); delete (u1, u2) from P ;
N1 = new neighbors of u1;
N2 = new neighbors of u2;
M = optimal weighted bipartite matching over N1 and N2;
forall edges(v1, v2) of M decreasingly by their weight do

if G[V1 ∪ {v1}] is isomorphic to G[V2 ∪ {v2}] then
P = P ∪ {(v1, v2)};
V1 = V1 ∪ {v1}; V2 = V2 ∪ {v2};

Figure 5: The matching approach for isomorphic node-induced subgraphs.

the isomorphism.
In our experiments a single parameter wi or the sum w0 is taken as a weight

of a node. The unnormalized sum worked out because the parameters had
similar values.

The initialization of the algorithm is a critical point. What is the best pair
of distinct nodes as a seed? We ran our experiments

• repeatedly for all O(n2) pairs of distinct nodes
• with the best pair of distinct nodes according to the weighting function

and
• repeatedly for all pairs of distinct nodes, whose weight is at least 90% of

the weight of the best pair.

If the algorithm runs repeatedly it keeps the largest subgraphs. Clearly, the
all pairs version has a O(n2) higher running time than the single pair version.
The 90% best weighted pairs is a good compromise between the elapsed time
and the size of the computed subgraphs.

4.2 The Square Graph Approach

In 1972 Levi [26] has proposed a transformation of the node-induced common
subgraph problem of two graphs into the clique problem of the so-called node-
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product or comparability graph. For two graphs the product graph consists of all
pairs of nodes from the two graphs and the edges represent common adjacencies.
Accordingly, the edge-induced common subgraph problem is transformed into
the clique problem of the edge-product graph with the pairs of edges of the
two graphs as nodes. Then a maximal clique problem must be solved. This
can be done by the Bron-Kerbosch algorithm [7] or approximately by a greedy
heuristic [4]. The Bron-Kerbosch algorithm works recursively and is widely
used as an enumeration algorithm for maximal cliques. However, the runtime
is exponential, and becomes impractical for large graphs. A recent study by
Koch [25] introduces several variants and adaptations for the computation of
maximal cliques in comparability graphs representing connected edge-induced
subgraphs.

We adapt Levi’s transformation to the isomorphic subgraph problem. In the
node-induced case, the graph G is transformed into the (node) square graph,
whose nodes are pairs of nodes of G. In the edge-induced case, the edge-square
graph consists of all pairs of edges with distinct endnodes. The edges of the
square graphs express a common adjacency. They are classified and labeled as
generating and as stabilizing edges, representing the existence or the absence of
common adjacencies, and are assigned high and low weights, respectively.

Due to the high runtime of the Bron-Kerbosch algorithm we have developed
a local search heuristic for a faster computation of large cliques. Again we use
weighting functions and several runs with different seeds. Several versions of
local search strategies have been tested in [20]. The best results concerning
quality and speed were achieved by the algorithm from Figure 6, using the
following weights. The algorithm computes a clique C and selects a new node
u with maximal weight from the set of neighbors U of the nodes in C. Each
edge e of the square graph G2 is a generating edge with weight w(e) = |V |2 or a
stabilizing edge of weight w(e) = 1. For a set of nodes X define the weight of a
node v by wX(v) =

∑
x∈X w(v, x). The weight of a set of nodes is the sum of the

weights of its elements. In the post-processing phase the algorithm exchanges a
node in the clique with neighboring nodes, and tests for an improvement.

Construct the square graph G2 = (X,E) of G;
Select two adjacent nodes v1 and v2 such that wX({v1, v2}) is maximal;

C = {v1, v2}; U = N(v1) ∩ N(v2);
while U �= ∅ do

select u ∈ U such that wC(u) + wC∪U (u) is maximal;
U = U ∩ N(u);

forall nodes v ∈ C do
forall nodes u �∈ C do

if C − {v} ∪ {u} is a clique
then C = C − {v} ∪ {u};

Figure 6: The square graph approach.

In our experiments the algorithm is run five times with different pairs of
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nodes in the initialization, and it keeps the clique with maximal weight found
so far. The repetitions stabilize the outcome of the heuristic. The algorithm
runs in linear time in the size of G2 provided that the weight of each node can
be determined in O(1) time.

4.3 Experimental Evaluation

The experiments were performed on four independent test suites [30].

• 2215 random graphs with a maximum of 10 nodes and 14 edges
• 243 graphs generated by hand
• 1464 graphs selected from the Roma graph library [35], and
• 740 dense graphs.

These graphs where chosen by the following reasoning. For each graph from
the first test suite the optimal result has been computed by an exhaustive search
algorithm.

The graphs from the second test suite were constructed by taking a single
graph from the Roma library, making a copy and adding a few nodes and edges
at random. The threshold is the size of the original graph. It is a good bound
for the size of the edge-induced isomorphic subgraphs. The goal is to detect
and reconstruct the original graph. For INS, the threshold is a weaker estimate
because the few added edges may destroy node-induced subgraph isomorphism.

Next all connected graphs from the Roma graph library with 10, 15, . . . , 60
nodes are selected and inspected for isomorphic subgraphs. These graphs have
been used at several places for experiments with graph drawing algorithms.
However, these 1464 graphs are sparse with |E| ∼ 1.3|V |. This specialty has
not been stated at other places and results in very sparse isomorphic subgraphs.
It is reflected by the numbers of nodes and edges in the isomorphic subgraphs
as Figure 8 displays.

Finally, we randomly generated 740 dense graphs with 10, 15, . . . , 50 nodes
and 25, 50, . . . , 0.4 · n2 edges, with five graphs for each number of nodes and
edges, see Table 1.

nodes edges (average) number of graphs
10 25 5
15 50.0 15
20 87.7 30
25 125.4 45
30 188.1 70
35 250.7 95
40 325.7 125
45 413.3 160
50 500.9 195

Table 1: The dense graphs
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First, consider the performance of the matching approach. It performs quite
well, particularly on sparse graphs. The experiments on the first three test
suites give a uniform picture. It finds the optimal subgraphs in the first test
suite. In the second test suite the original graphs and their copies are detected
almost completely when starting from the 90% best weighted pairs of nodes, see
Figure 7.
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Figure 7: The matching approach computing isomorphic edge-induced sub-
graphs of the second test suite for the 90% best weighted pairs of starting
nodes.

The weights w2, w3 and w6 produce the best results. The total running
time is in proportion to the number of pairs of starting nodes. For the 90% best
weighted pairs of nodes it is less than two seconds for the largest graphs with
100 nodes and the weights w0, w1, w4 and w5 on a 750 MHz PC with 256 MB
RAM, 30 seconds for w2 and 100 seconds for w3 and w6, since in the latter cases
the algorithm iterates over almost all pairs of starting nodes. In summary, the
difference of degree weight w2 gives the best performance.

For the third test suite the matching heuristic detects large isomorphic sub-
graphs. Almost all nodes are contained in one of the node- or edge-induced
isomorphic subgraphs, which are almost trees. This can be seen from the small
gap between the curves for the nodes and edges in Figure 8. There are only one
or two more edges than nodes in each subgraph. This is due to the sparsity of
the test graphs and shows that the Roma graphs are special. Again weight w2

performs best, as has been discovered by tests in [2].
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Figure 8: Comparison of the approaches on the Roma graphs
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Finally, on the dense graphs the matching heuristic with the 90% best
weighted pairs of starting nodes and weight w2 finds isomorphic edge-induced
subgraphs which together contain almost all nodes and more than 1/3 of the
edges. In the node-induced case each subgraph contains about 1/4 of the nodes
and decreases from 1/5-th to 1/17-th for the edges, see Figure 10. For INS
the isomorphic subgraphs turn out to be sparse, although the average density
of the graphs increases with their size. The runtime of the matching approach
increases due to the higher runtime of the Kuhn-Munkres matching algorithm
on larger subgraphs, as Figure 11 shows.

The product graph approach has been tested on the same test suites for
connected node-induced isomorphic subgraphs. The runtime is above that of
the matching approach on the graphs from the Roma library, and takes about
25 seconds for graphs with 50 nodes. It is about the same for sparse and for
dense graphs and grows quadratically with the size of the input graph due to the
quadratic growth of the square graph. In contrast, the runtime of the matching
approach heavily depends on the density and seems to grow cubic with the
number of neighbors due to the Bron-Kerbosch matching algorithm. It takes
350 seconds on dense graphs with 50 nodes and 500 edges on the average. It
should be noted that the absolute runtimes on a 650 MHz PC are due to the
programming styles and are slowed down by the general-purpose data structure
for graphs from Graphlet.

On the first three test suites the product graph algorithm is inferior to the
matching approach, both in the size of the detected isomorphic subgraphs and in
the run time, as Figures 8 and 9 show. The picture changes for our test suite of
dense graphs. Here the product graph algorithm finds node-induced subgraphs
with about 10% more nodes and edges for each subgraph than the matching
heuristic, and the product graph algorithm is significantly faster, see Figures 10
and 11. Notice that the largest graphs from this suite have 50 nodes and 500
edges on the average from which 86 appear in the two isomorphic copies. The
comparisons in Figures 8 and 10 show the numbers of nodes and edges of the
computed isomorphic node-induced subgraphs, from which we can estimate the
density resp. sparsity of the isomorphic subgraphs.

5 Drawing Isomorphic Subgraphs

In this section we consider graphs with a pair of isomorphic subgraphs and their
drawings. Sometimes classical graph drawing algorithms preserve isomorphic
subgraphs and display them symmetrically. The Reingold and Tilford algorithm
[10, 34] computes the tree drawing bottom-up, and so preserves isomorphic
subtrees rooted at distinct nodes. It is readily seen that this is no more true
for arbitrary subtrees. To stress this point, Supowit and Reingold [36] have
introduced the notion of eumorphous tree drawings. However, eumorphous tree
drawings of minimal width and integral coordinates are NP-hard. The radial
tree algorithm of Eades [13] squeezes a subtree into a sector with a wedge
in proportion to the number of the leaves of the subtree. Hence, isomorphic
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Figure 10: Comparison of the approaches on the dense graphs
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subtrees get the same wedge and are drawn identically up to translation and
rotation.

It is well-known that spring algorithms tend to display symmetric struc-
tures. This comes from the nature of spring methods, and has been emphasized
by Eades and Lin [14]. For planar graphs there are efficient algorithms for the
detection and display of symmetries of the whole graphs [23, 22, 24]. Hierar-
chical graphs (DAGs) can be drawn with a symmetry by a modified barycenter
algorithm [15] and by using a dominance drawing [11] if the graphs are planar
and planar and reduced. For arbitrary hierarchical graphs symmetry preserving
drawing algorithms are yet unknown.

The problem of drawing symmetric structures can be solved by a three-
phase method, which is generally applicable in this framework. If a graph G
is partitioned into two isomorphic subgraphs H1 and H2 and a remainder R,
first construct a drawing of H1 and take a copy as a drawing of H2. Then H1

and H2 are replaced by two large nodes and the remainder together with the
two large nodes is drawn by some algorithm in phase two. This algorithm must
take the area of the large nodes into account. And it should take care of the
edges entering the graphs H1 and H2. Finally, the drawings of H1 and H2 are
inserted at the large nodes and the remaining edges to the nodes of H1 and H2

are locally routed on the area of the large nodes.
The drawback of this approach is the third phase. The difficulties lie in the

routing of the edges to the nodes of H1 and H2. This may lead to bad drawings
with many node-edge crossings and parallel edges.

The alternative to the three-phase method is an integrated approach. Here
the preservation of isomorphic subgraphs is built into the drawing algorithms.
As said before, this is achieved automatically by some tree drawing algorithms,
and is solved here for a spring embedder. Spring algorithms have been intro-
duced to graph drawing by Eades [12]. Fruchterman and Reingold [18] have
simplified the forces to improve the running time, which is a critical factor for
spring algorithms. Our algorithm is based on the advanced USE algorithm [16],
which is included in the Graphlet system and is an extension of GEM [17]. In
particular, USE supports individual distance parameters between any pair of
nodes. Other spring algorithms allow only a uniform distance.

Our goal is identical drawings of isomorphic subgraphs. The input is an
undirected graph G and two isomorphic subgraphs H1 and H2 of G together
with the isomorphism φ from the nodes of H1 to the nodes of H2. If v2 = φ(v1)
then v2 is the copy of v1.

In the initial phase, the nodes of H1 and H2 are placed identically on grid
points (up to a translation). Thereafter the spring algorithm averages the forces
imposed on each node and its copy and moves both simultaneously by the same
vector. This guarantees that H1 and H2 are drawn identically, if they are
isomorphic subgraphs. The placement of pairs of nodes (v, φ(v)) remains the
same, even if H1 and H2 are not isomorphic and are disconnected.

Large isomorphic subgraphs should be emphasized. They should be sepa-
rated from each other and distinguished from the remainder. The distinction
can be achieved by a node coloring. This does not help if there is no geometric
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separation between H1 and H2, which can be enforced by imposing a stronger
repelling force between the nodes of H1 and H2. We use three distance pa-
rameters, k1 for the inner subgraph distance, k2 between H1 and H2, and k3

otherwise, with k1 < k3 < k2. Additionally, H1 and H2 are moved in opposite
directions by move subgraph(H1, f

′′) and move subgraph(H2,−f ′′). The force
f ′′ is the sum of the forces acting on the subgraph H1 and an extra repelling
force between the barycenters of the placements of H1 and H2.

In a round, all nodes of G are selected in random order and are moved
according to the emanating forces. The algorithm stops if a certain termination
criterion is accomplished. This is a complex formula with a cooling schedule
given by the USE algorithm, see [16, 17]. The extra effort for the computation of
forces between nodes and their copies leads to a slow down of the USE algorithm
by a factor of about 1.5, if the symmetry of isomorphic subgraphs is enforced.

Input: a graph G and its partition into two isomorphic subgraphs H1

and H2, and a remainder R, and the isomorphism φ : H1 → H2

Initial placement(H1,H2)
while (termination is not yet accomplished) do

forall nodes at random (v, V (G)) do
f = force(v);
if (v ∈ V (H1) ∪ V (H2)) then

f ′ = force(φ(v));
f = f+f ′

2 ;
move node(φ(v), f);

move node(v, f);
move subgraph(H1, f

′′); move subgraph(H2,−f ′′);

Figure 12: Isomorphism preserving spring embedder.

Figure 12 describes the main steps of the isomorphism preserving spring
algorithm. For each node v, force(v) is the sum of the forces acting on v and
move node(v,f) applies the computed forces f to a single node v.

The examples shown below are computed by the heuristic and drawn by the
spring algorithm. Nice drawings of graphs come from the second and third test
suites, see Figures 13 and 14. More drawings can be found in [2] or by using
the algorithm in Graphlet.
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Figure 13: A graph of test suite 2. The original graph with 50 vertices and 76
edges was copied and then 2 edges were added. Our algorithm has re-computed
the isomorphic edge-induced subgraphs.

Figure 14: Graph (number 06549 in [35]) from test suite 3 with 45 nodes, and
the computed isomorphic edge-induced subgraphs.
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