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Abstract

We present and analyze the off-line star algorithm for clustering static
information systems and the on-line star algorithm for clustering dynamic
information systems. These algorithms organize a document collection
into a number of clusters that is naturally induced by the collection via
a computationally efficient cover by dense subgraphs. We further show a
lower bound on the quality of the clusters produced by these algorithms
as well as demonstrate that these algorithms are efficient (running times
roughly linear in the size of the problem). Finally, we provide data from
a number of experiments.
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1 Introduction

We wish to create more versatile information capture and access systems for
digital libraries by using information organization: thousands of electronic doc-
uments will be organized automatically as a hierarchy of topics and subtopics,
using algorithms grounded in geometry, probability, and statistics. Off-line in-
formation organization algorithms will be useful for organizing static collections
(for example, large-scale legacy data). Incremental, on-line information organi-
zation algorithms will be useful to keep dynamic corpora, such as news feeds,
organized. Current information systems such as Inquery [32], Smart [31], or
Alta Vista provide some simple automation by computing ranked (sorted) lists
of documents, but it is ineffective for users to scan a list of hundreds of doc-
ument titles. To cull the relevant information out of a large set of potentially
useful dynamic sources, we need methods for organizing and reorganizing dy-
namic information as accurate clusters, and ways of presenting users with the
topic summaries at various levels of detail.

There has been extensive research on clustering and its applications to many
domains [18, 2]. For a good overview see [19]. For a good overview of using
clustering in Information Retrieval (IR) see [34]. The use of clustering in IR was
mostly driven by the cluster hypothesis [28] which states that “closely associated
documents tend to be related to the same requests”. Jardine and van Rijsbergen
[20] show some evidence that search results could be improved by clustering.
Hearst and Pedersen [17] re-examine the cluster hypothesis by focusing on the
Scatter/Gather system [14] and conclude that it holds for browsing tasks.

Systems like Scatter/Gather [14] provide a mechanism for user-driven or-
ganization of data in a fixed number of clusters, but the users need to be in
the loop and the computed clusters do not have accuracy guarantees. Scat-
ter/Gather uses fractionation to compute nearest-neighbor clusters. Charika,
et al. [10] consider a dynamic clustering algorithm to partition a collection of
text documents into a fixed number of clusters. Since in dynamic information
systems the number of topics is not known a priori, a fixed number of clusters
cannot generate a natural partition of the information.

Our work on clustering presented in this paper and in [4] provides positive
evidence for the cluster hypothesis. We propose an off-line algorithm for clus-
tering static information and an on-line version of this algorithm for clustering
dynamic information. These two algorithms compute clusters induced by the
natural topic structure of the space. Thus, this work is different than [14, 10]
in that we do not impose the constraint to use a fixed number of clusters. As
a result, we can guarantee a lower bound on the topic similarity between the
documents in each cluster. The model for topic similarity is the standard vector
space model used in the information retrieval community [30] which is explained
in more detail in Section 2 of this paper.

To compute accurate clusters, we formalize clustering as covering graphs
by cliques [21] (where the cover is a vertex cover). Covering by cliques is NP-
complete, and thus intractable for large document collections. Unfortunately,
it has also been shown that the problem cannot even be approximated in poly-
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nomial time [25, 36]. We instead use a cover by dense subgraphs that are star-
shaped and that can be computed off-line for static data and on-line for dynamic
data. We show that the off-line and on-line algorithms produce correct clusters
efficiently. Asymptotically, the running time of both algorithms is roughly linear
in the size of the similarity graph that defines the information space (explained
in detail in Section 2). We also show lower bounds on the topic similarity within
the computed clusters (a measure of the accuracy of our clustering algorithm)
as well as provide experimental data.

Finally, we compare the performance of the star algorithm to two widely
used algorithms for clustering in IR and other settings: the single link method1

[13] and the average link algorithm2 [33]. Neither algorithm provides guarantees
for the topic similarity within a cluster. The single link algorithm can be used
in off-line and on-line mode, and it is faster than the average link algorithm, but
it produces poorer clusters than the average link algorithm. The average link
algorithm can only be used off-line to process static data. The star clustering
algorithm, on the other hand, computes topic clusters that are naturally in-
duced by the collection, provides guarantees on cluster quality, computes more
accurate clusters than either the single link or average link methods, is efficient,
admits an efficient and simple on-line version, and can perform hierarchical data
organization. We describe experiments in this paper with the TREC3 collection
demonstrating these abilities.

Our algorithms for organizing information systems can be used in several
ways. The off-line algorithm can be used as a pre-processing step in a static
information system or as a post-processing step on the specific documents re-
trieved by a query. As a pre-processor, this system assists users with deciding
how to browse a database of free text documents by highlighting relevant and
irrelevant topics. Such clustered data is useful for narrowing down the database
over which detailed queries can be formulated. As a post-processor, this sys-
tem classifies the retrieved data into clusters that capture topic categories. The
on-line algorithm can be used as a basis for constructing self-organizing infor-
mation systems. As the content of a dynamic information system changes, the
on-line algorithm can efficiently automate the process of organization and re-
organization to compute accurate topic summaries at various level of similarity.

1In the single link clustering algorithm a document is part of a cluster if it is “related” to
at least one document in the cluster.

2In the average link clustering algorithm a document is part of a cluster if it is “related”
to an average number of documents in the cluster.

3TREC is the annual text retrieval conference. Each participant is given on the order of
5 gigabytes of data and a standard set of queries on which to test their systems. The results
and the system descriptions are presented as papers at the TREC conference.
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2 Clustering Static Data with Star-shaped Sub-
graphs

In this section we motivate and present an off-line algorithm for organizing
information systems. The algorithm is very simple and efficient, and it computes
high-density clusters.

We formulate our problem by representing an information system by its sim-
ilarity graph. A similarity graph is an undirected, weighted graph G = (V,E,w)
where vertices in the graph correspond to documents and each weighted edge in
the graph corresponds to a measure of similarity between two documents. We
measure the similarity between two documents by using a standard metric from
the IR community—the cosine metric in the vector space model of the Smart
information retrieval system [31, 30].

The vector space model for textual information aggregates statistics on the
occurrence of words in documents. The premise of the vector space model
is that two documents are similar if they use similar words. A vector space
can be created for a collection (or corpus) of documents by associating each
important word in the corpus with one dimension in the space. The result is a
high dimensional vector space. Documents are mapped to vectors in this space
according to their word frequencies. Similar documents map to nearby vectors.
In the vector space model, document similarity is measured by the angle between
the corresponding document vectors. The standard in the information retrieval
community is to map the angles to the interval [0, 1] by taking the cosine of the
vector angles.

G is a complete graph with edges of varying weight. An organization of the
graph that produces reliable clusters of similarity σ (i.e., clusters where docu-
ments have pairwise similarities of at least σ) can be obtained by (1) threshold-
ing the graph at σ and (2) performing a minimum clique cover with maximal
cliques on the resulting graph Gσ. The thresholded graph Gσ is an undirected
graph obtained from G by eliminating all the edges whose weights are lower
that σ. The minimum clique cover has two features. First, by using cliques
to cover the similarity graph, we are guaranteed that all the documents in a
cluster have the desired degree of similarity. Second, minimal clique covers with
maximal cliques allow vertices to belong to several clusters. In our information
retrieval application this is a desirable feature as documents can have multiple
subthemes.

Unfortunately, this approach is computationally intractable. For real cor-
pora, similarity graphs can be very large. The clique cover problem is NP-
complete, and it does not admit polynomial-time approximation algorithms [25,
36]. While we cannot perform a clique cover nor even approximate such a cover,
we can instead cover our graph by dense subgraphs. What we lose in intra-cluster
similarity guarantees, we gain in computational efficiency. In the sections that
follow, we describe off-line and on-line covering algorithms and analyze their
performance and efficiency.
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Figure 1: An example of a star-shaped subgraph with a center vertex C and
satellite vertices s1 through s7. The edges are denoted by solid and dashed lines.
Note that there is an edge between each satellite and a center, and that edges
may also exist between satellite vertices.

2.1 Dense star-shaped covers

We approximate a clique cover by covering the associated thresholded similarity
graph with star-shaped subgraphs. A star-shaped subgraph on m + 1 vertices
consists of a single star center and m satellite vertices, where there exist edges
between the star center and each of the satellite vertices (see Figure 1). While
finding cliques in the thresholded similarity graph Gσ guarantees a pairwise
similarity between documents of at least σ, it would appear at first glance
that finding star-shaped subgraphs in Gσ would provide similarity guarantees
between the star center and each of the satellite vertices, but no such similarity
guarantees between satellite vertices. However, by investigating the geometry
of our problem in the vector space model, we can derive a lower bound on
the similarity between satellite vertices as well as provide a formula for the
expected similarity between satellite vertices. The latter formula predicts that
the pairwise similarity between satellite vertices in a star-shaped subgraph is
high, and together with empirical evidence supporting this formula, we shall
conclude that covering Gσ with star-shaped subgraphs is an accurate method
for clustering a set of documents.

Consider three documents C, S1 and S2 which are vertices in a star-shaped
subgraph of Gσ, where S1 and S2 are satellite vertices and C is the star center.
By the definition of a star-shaped subgraph of Gσ, we must have that the
similarity between C and S1 is at least σ and that the similarity between C
and S2 is also at least σ. In the vector space model, these similarities are
obtained by taking the cosine of the angle between the vectors associated with
each document. Let α1 be the angle between C and S1, and let α2 be the
angle between C and S2. We then have that cos α1 ≥ σ and cos α2 ≥ σ. Note
that the angle between S1 and S2 can be at most α1 + α2; we therefore have
the following lower bound on the similarity between satellite vertices in a star-
shaped subgraph of Gσ.

Fact 2.1 Let Gσ be a similarity graph and let S1 and S2 be two satellites in the
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same star in Gσ. Then the similarity between S1 and S2 must be at least

cos(α1 + α2) = cos α1 cos α2 − sin α1 sin α2.

If σ = 0.7, cos α1 = 0.75 and cos α2 = 0.85, for instance, we can conclude
that the similarity between the two satellite vertices must be at least4

(0.75) · (0.85) −
√

1 − (0.75)2
√

1 − (0.85)2 ≈ 0.29.

Note that while this may not seem very encouraging, the above analysis is based
on absolute worst-case assumptions, and in practice, the similarities between
satellite vertices are much higher. We further determined the expected similarity
between two satellite vertices.

2.2 Expected satellite similarity in the vector space model

In this section, we derive a formula for the expected similarity between two
satellite vertices given the geometric constraints of the vector space model, and
we give empirical evidence that this formula is accurate in practice.

Theorem 2.2 Let C be a star center, and let S1 and S2 be satellite vertices of
C. Then the similarity between S1 and S2 is given by

cos α1 cos α2 + cos θ sin α1 sin α2

where θ is the dihedral angle5 between the planes formed by S1C and S2C.

Proof: Let C be a unit vector corresponding to a star center, and let S1 and
S2 be unit vectors corresponding to satellites in the same star. Let α1 = � S1C,
α2 = � S2C and γ = � S1S2 be the pairwise angles between vectors. Let θ,
0 ≤ θ ≤ π, be the dihedral angle between the planes formed by S1C and S2C.
We seek a formula for cos γ.

First, we observe that θ is related to the angle between the vectors normal
to the planes formed by S1C and S2C.

π − θ = � (S1 × C)(C × S2)

Consider the dot product of these normal vectors.

(S1 × C) · (C × S2) = ‖S1 × C‖ ‖C × S2‖ cos(π − θ) = − cos θ sin α1 sin α2

On the other hand, standard results from geometry dictate the following.

(S1 × C) · (C × S2) = (S1 · C)(C · S2) − (S1 · S2)(C · C) = cos α1 cos α2 − cos γ

Combining these two equalities, we obtain the result in question. �

4Note that sin θ =
√

1 − cos2 θ.
5The dihedral angle is the angle between two planes on a third plane normal to the inter-

section of the two planes.
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How might we eliminate the dependence on cos θ in this formula? Consider
three vertices from a cluster of similarity σ. Randomly chosen, the pairwise
similarities among these vertices should be cos ω for some ω satisfying cos ω ≥ σ.
We then have

cos ω = cos ω cos ω + cos θ sin ω sin ω

from which it follows that

cos θ =
cos ω − cos2 ω

sin2 ω
=

cos ω(1 − cos ω)
1 − cos2 ω

=
cos ω

1 + cos ω
.

Substituting for cos θ and noting that cosω ≥ σ, we obtain

cos γ ≥ cos α1 cos α2 +
σ

1 + σ
sin α1 sin α2. (1)

Equation 1 provides an accurate estimate of the similarity between two satellite
vertices, as we shall demonstrate empirically.

Note that for the example given in the previous section, Equation 1 would
predict a similarity between satellite vertices of approximately 0.78. We have
tested this formula against real data, and the results of the test with the TREC
FBIS data set6 are shown in Figure 2. In this plot, the x- and y-axes are
similarities between cluster centers and satellite vertices, and the z-axis is the
root mean squared prediction error (RMS) of the formula in Theorem 2.2 for
the similarity between satellite vertices. We observe the maximum root mean
squared error is quite small (approximately 0.16 in the worst case), and for
reasonably high similarities, the error is negligible. From our tests with real
data, we have concluded that Equation 1 is quite accurate. We may further
conclude that star-shaped subgraphs are reasonably “dense” in the sense that
they imply relatively high pairwise similarities between all documents in the
star.

3 The Off-line Star Algorithm

Motivated by the discussion of the previous section, we now present the star
algorithm which can be used to organize documents in an information system.
The star algorithm is based on a greedy cover of the thresholded similarity graph
by star-shaped subgraphs; the algorithm itself is summarized in Figure 3 below.

Theorem 3.1 The running time of the off-line star algorithm on a similarity
graph Gσ is Θ(V + Eσ).

Proof: The following implementation of this algorithm has a running time
linear in the size of the graph. Each vertex v has a data structure associate
with it that contains v.degree, the degree of the vertex, v.adj, the list of adjacent
vertices, v.marked, which is a bit denoting whether the vertex belongs to a star

6FBIS is a large collection of text documents used in TREC.
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Figure 2: The RMS prediction error of our expected satellite similarity formula
over the TREC FBIS collection containing 21,694 documents.

or not, and v.center, which is a bit denoting whether the vertex is a star center.
(Computing v.degree for each vertex can easily be performed in Θ(V + Eσ)
time.) The implementation starts by sorting the vertices in V by degree (Θ(V )
time since degrees are integers in the range {0, |V |}). The program then scans
the sorted vertices from the highest degree to the lowest as a greedy search for
star centers. Only vertices that do not belong to a star already (that is, they
are unmarked) can become star centers. Upon selecting a new star center v, its
v.center and v.marked bits are set and for all w ∈ v.adj, w.marked is set. Only
one scan of V is needed to determine all the star centers. Upon termination,
the star centers and only the star centers have the center field set. We call the
set of star centers the star cover of the graph. Each star is fully determined by
the star center, as the satellites are contained in the adjacency list of the center
vertex. �

This algorithm has two features of interest. The first feature is that the
star cover is not unique. A similarity graph may have several different star
covers because when there are several vertices of the same highest degree, the
algorithm arbitrarily chooses one of them as a star center (whichever shows up
first in the sorted list of vertices). The second feature of this algorithm is that
it provides a simple encoding of a star cover by assigning the types “center”
and “satellite” (which is the same as “not center” in our implementation) to
vertices. We define a correct star cover as a star cover that assigns the types
“center” and “satellite” in such a way that (1) a star center is not adjacent to
any other star center and (2) every satellite vertex is adjacent to at least one
center vertex of equal or higher degree.
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For any threshold σ:

1. Let Gσ = (V,Eσ) where Eσ = {e ∈ E : w(e) ≥ σ}.
2. Let each vertex in Gσ initially be unmarked.

3. Calculate the degree of each vertex v ∈ V .

4. Let the highest degree unmarked vertex be a star center, and construct
a cluster from the star center and its associated satellite vertices. Mark
each node in the newly constructed star.

5. Repeat Step 4 until all nodes are marked.

6. Represent each cluster by the document corresponding to its associ-
ated star center.

Figure 3: The star algorithm

Figure 4 shows two examples of star covers. The left graph consists of a clique
subgraph (first subgraph) and a set of nodes connected to only to the nodes in
the clique subgraph (second subgraph). The star cover of the left graph includes
one vertex from the 4-clique subgraph (which covers the entire clique and the
one non-clique vertex it is connected to), and single-node stars for each of the
non-covered vertices in the second set. The addition of a node connected to
all the nodes in the second set changes the clique cover dramatically. In this
case, the new node becomes a star center. It thus covers all the nodes in the
second set. Note that since star centers can not be adjacent, no vertex from the
second set is a star center in this case. One node from the first set (the clique)
remains the center of a star that covers that subgraph. This example illustrates
the connection between a star cover and other important graph sets, such as set
covers and induced dominating sets, which have been studies extensively in the
literature [16, 1]. The star cover is related but not identical to a dominating
set [16]. Every star cover is a dominating set, but there are dominating sets
that are not star covers. Star covers are useful approximations of clique covers
because star graphs are dense subgraphs for which we can infer something about
the missing edges as we showed above.

Given this definition for the star cover, it immediately follows that:

Theorem 3.2 The off-line star algorithm produces a correct star cover.

We will use the two features of the off-line algorithm mentioned above in
the analysis of the on-line version of the star algorithm, in the next section.
In a subsequent section, we will show that the clusters produced by the star
algorithm are quite accurate, exceeding the accuracy produced by widely used
clustering algorithms in information retrieval.
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N

Figure 4: An example of a star-shaped covers before and after the insertion of
the node N in the graph. The dark circles denote satellite vertices. The shaded
circles denote star centers.

4 The On-line Star Algorithm

In this section we consider algorithms for computing the organization of a dy-
namic information system. We consider a document collection where new doc-
uments arrive incrementally over time, and they need to be inserted in the col-
lection. Existing documents can become obsolete and thus need to be removed.
We derive an on-line version of the star algorithm for information organiza-
tion that can incrementally compute clusters of similar documents, supporting
both insertion and deletion. We continue assuming the vector space model and
its associated cosine metric for capturing the pairwise similarity between the
documents of the corpus as well as the random graph model for analyzing the
expected behavior of the new algorithm.

We assume that documents are inserted or deleted from the collection one
at a time. We begin by examining insert. The intuition behind the incremental
computation of the star cover of a graph after a new vertex is inserted is depicted
in Figure 5. The top figure denotes a similarity graph and a correct star cover
for this graph. Suppose a new vertex is inserted in the graph, as in the middle
figure. The original star cover is no longer correct for the new graph. The
bottom figure shows the correct star cover for the new graph. How does the
addition of this new vertex affect the correctness of the star cover? In general,
the answer depends on the degree of the new vertex and on its adjacency list.
If the adjacency list of the new vertex does not contain any star centers, the
new vertex can be added in the star cover as a star center. If the adjacency list
of the new vertex contains any center vertex c whose degree is equal or higher,
the new vertex becomes a satellite vertex of c. The difficult cases that destroy
the correctness of the star cover are (1) when the new vertex is adjacent to a
collection of star centers, each of whose degree is lower than that of the new
vertex; and (2) when the new vertex increases the degree of an adjacent satellite
vertex beyond the degree of its associated star center. In these situations, the
star structure already in place has to be modified; existing stars must be broken.
The satellite vertices of these broken stars must be re-evaluated.
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Similarly, deleting a vertex from a graph may destroy the correctness of a
star cover. An initial change affects a star if (1) its center is removed, or (2) the
degree of the center has decreased because of a deleted satellite. The satellites
in these stars may no longer be adjacent to a center of equal or higher degree,
and their status must be reconsidered.

Figure 5: The star cover change after the insertion of a new vertex. The larger-
radius disks denote star centers, the other disks denote satellite vertices. The
star edges are denoted by solid lines. The inter-satellite edges are denoted by
dotted lines. The top figure shows an initial graph and its star cover. The
middle figure shows the graph after the insertion of a new document. The
bottom figure shows the star cover of the new graph.

4.1 The on-line algorithm

Motivated by the intuition in the previous section, we now describe a simple
on-line algorithm for incrementally computing star covers of dynamic graphs; a
more optimized version of this algorithm is given in Appendix A. The algorithm
uses a data structure to efficiently maintain the star covers of an undirected
graph G = (V,E). For each vertex v ∈ V we maintain the following data.
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Insert(α,L,Gσ)
1 α.type ← satellite
2 α.degree ← 0
3 α.adj ← ∅
4 α.centers ← ∅
5 forall β in L
6 α.degree ← α.degree + 1
7 β.degree ← β.degree + 1
8 Insert(β, α.adj)
9 Insert(α, β.adj)

10 if (β.type = center)
11 Insert(β, α.centers)
12 else
13 β.inQ ← true
14 Enqueue(β,Q)
15 endif
16 endfor
17 α.inQ ← true
18 Enqueue(α,Q)
19 Update(Gσ)

Figure 6: Pseudocode for Insert.

Delete(α,Gσ)
1 forall β in α.adj
2 β.degree ← β.degree − 1
3 Delete(α, β.adj)
4 endfor
5 if (α.type = satellite)
6 forall β in α.centers
7 forall µ in β.adj
8 if (µ.inQ = false)
9 µ.inQ ← true

10 Enqueue(µ,Q)
11 endif
12 endfor
13 endfor
14 else
15 forall β in α.adj
16 Delete(α, β.centers)
17 β.inQ ← true
18 Enqueue(β,Q)
19 endfor
20 endif
21 Update(Gσ)

Figure 7: Pseudocode for Delete.

v.type satellite or center
v.degree degree of v
v.adj list of adjacent vertices
v.centers list of adjacent centers
v.inQ flag specifying if v being processed

Note that while v.type can be inferred from v.centers and v.degree can be
inferred from v.adj, it will be convenient to maintain all five pieces of data in
the algorithm.

The basic idea behind the on-line star algorithm is as follows. When a vertex
is inserted into (or deleted from) a thresholded similarity graph Gσ, new stars
may need to be created and existing stars may need to be destroyed. An existing
star is never destroyed unless a satellite is “promoted” to center status. The on-
line star algorithm functions by maintaining a priority queue (indexed by vertex
degree) which contains all satellite vertices that have the possibility of being
promoted. So long as these enqueued vertices are indeed properly satellites,
the existing star cover is correct. The enqueued satellite vertices are processed
in order by degree (highest to lowest), with satellite promotion occurring as
necessary. Promoting a satellite vertex may destroy one or more existing stars,
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creating new satellite vertices that have the possibility of being promoted. These
satellites are enqueued, and the process repeats. We next describe in some detail
the three routines which comprise the on-line star algorithm.

Update(Gσ)
1 while (Q �= ∅)
2 φ ← ExtractMax(Q)
3 if (φ.centers = ∅)
4 φ.type ← center
5 forall β in φ.adj
6 Insert(φ, β.centers)
7 endfor
8 else
9 if (∀δ ∈ φ.centers, δ.degree < φ.degree)

10 φ.type ← center
11 forall β in φ.adj
12 Insert(φ, β.centers)
13 endfor
14 forall δ in φ.centers
15 δ.type ← satellite
16 forall µ in δ.adj
17 Delete(δ, µ.centers)
18 if (µ.degree ≤ δ.degree ∧ µ.inQ = false)
19 µ.inQ ← true
20 Enqueue(µ,Q)
21 endif
22 endfor
23 endfor
24 φ.centers ← ∅
25 endif
26 endif
27 φ.inQ ← false
28 endwhile

Figure 8: Pseudocode for Update.

The Insert and Delete procedures are called when a vertex is added to
or removed from a thresholded similarity graph, respectively. These procedures
appropriately modify the graph structure and initialize the priority queue with
all satellite vertices that have the possibility of being promoted. The Update
procedure promotes satellites as necessary, destroying existing stars if required
and enqueuing any new satellites that have the possibility of being promoted.

Figure 6 provides the details of the Insert algorithm. A vertex α with a list
of adjacent vertices L is added to a graph G. The priority queue Q is initialized
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with α (lines 17–18) and its adjacent satellite vertices (lines 13–14).
The Delete algorithm presented in Figure 7 removes vertex α from the

graph data structures, and depending on the type of α enqueues its adjacent
satellites (lines 15–19) or the satellites of its adjacent centers (lines 6–13).

Finally, the algorithm for Update is shown in Figure 8. Vertices are or-
ganized in a priority queue, and a vertex φ of highest degree is processed in
each iteration (line 2). The algorithm creates a new star with center φ if φ has
no adjacent centers (lines 3–7) or if all its adjacent centers have lower degree
(lines 9–13). The latter case destroys the stars adjacent to φ, and their satellites
are enqueued (lines 14–23). The cycle is repeated until the queue is empty.

The on-line star cover algorithm is more complex than its off-line counter-
part. We devote the next two sections to proving that the algorithm is correct
and to analyzing its expected running time. A more optimized version of the
on-line algorithm is given and analyzed in the appendix.

4.2 Correctness of the on-line algorithm

In this section we show that the on-line algorithm is correct by proving that
it produces the same star cover as the off-line algorithm, when the off-line al-
gorithm is run on the final graph considered by the on-line algorithm. Before
we state the result, we note that the off-line star algorithm does not produce
a unique cover. When there are several unmarked vertices of the same highest
degree, the algorithm arbitrarily chooses one of them as the next star center.
We will show that the cover produced by the on-line star algorithm is the same
as one of the covers that can be produced by the off-line algorithm

Theorem 4.1 The cover generated by the on-line star algorithm when Gσ =
(V,Eσ) is constructed incrementally (by inserting or deleting its vertices one at
a time) is identical to some legal cover generated by the off-line star algorithm
on Gσ.

Proof: We can view a star cover of Gσ as a correct assignment of types (that
is, “center” or “satellite”) to the vertices of Gσ. The off-line star algorithm
assigns correct types to the vertices of Gσ. We will prove the correctness of the
on-line star algorithm by induction. The induction invariant is that at all times,
the types of all vertices in V −Q are correct, assuming that the true type of all
vertices in Q is “satellite.” This would imply that when Q is empty, all vertices
are assigned a correct type, and thus the star cover is correct.

The invariant is true for the Insert procedure: the correct type of the new
node α is unknown, and α is in Q; the correct types of all adjacent satellites
of α are unknown, and these satellites are in Q; all other vertices have correct
types from the original star cover, assuming that the nodes in Q are correctly
satellite. Delete places the satellites of all affected centers into the queue. The
correct types of these satellites are unknown, but all other vertices have correct
types from the original star cover, assuming that the vertices in Q are properly
satellite. Thus, the invariant is true for Delete as well.
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We now show that the induction invariant is maintained throughout the
Update procedure; consider the pseudocode given in Figure 8. First note that
the assigned type of all the vertices in Q is “satellite;” lines 14 and 18 in Insert,
lines 10 and 18 in Delete, and line 20 in Update enqueue satellite vertices.
We now argue that every time a vertex φ of highest degree is extracted from
Q, it is assigned a correct type. When φ has no centers in its adjacency list,
its type should be “center” (line 4). When φ is adjacent to star centers δi, each
of which has a strictly smaller degree that φ, the correct type for φ is “center”
(line 10). This action has a side effect: all δi cease to be star centers, and thus
their satellites must be enqueued for further evaluation (lines 14–23). (Note
that if the center δ is adjacent to a satellite µ of greater degree, then µ must
be adjacent to another center whose degree is equal to or greater than its own.
Thus, breaking the star associated with δ cannot lead to the promotion of µ, so
it need not be enqueued.) Otherwise, φ is adjacent to some center of equal or
higher degree, and a correct type for φ is the default “satellite.”

To complete the argument, we need only show that the Update procedure
eventually terminates. In the analysis of the expected running time of the
Update procedure (given in the next section), it is proven that no vertex can
be enqueued more than once. Thus, the Update procedure is guaranteed to
terminate after at most V iterations. �

4.3 Expected running time of the on-line algorithm

In this section, we argue that the running time of the on-line star algorithm is
quite efficient, asymptotically matching the running time of the off-line star algo-
rithm within logarithmic factors. We first note, however, that there exist worst-
case thresholded similarity graphs and corresponding vertex insertion/deletion
sequences which cause the on-line star algorithm to “thrash” (i.e., which cause
the entire star cover to change on each inserted or deleted vertex). These graphs
and insertion/deletion sequences rarely arise in practice, however. An analysis
more closely modeling practice is the random graph model [7] in which Gσ is
a random graph and the insertion/deletion sequence is random. In this model,
the expected running time of the on-line star algorithm can be determined. In
the remainder of this section, we argue that the on-line star algorithm is quite
efficient theoretically. In subsequent sections, we provide empirical results which
verify this fact for both random data and a large collection of real documents.

The model we use for expected case analysis is the random graph model [7].
A random graph Gn,p is an undirected graph with n vertices, where each of its
possible edges is inserted randomly and independently with probability p. Our
problem fits the random graph model if we make the mathematical assumption
that “similar” documents are essentially “random perturbations” of one another
in the vector space model. This assumption is equivalent to viewing the sim-
ilarity between two related documents as a random variable. By thresholding
the edges of the similarity graph at a fixed value, for each edge of the graph
there is a random chance (depending on whether the value of the corresponding
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random variable is above or below the threshold value) that the edge remains
in the graph. This thresholded similarity graph is thus a random graph. While
random graphs do not perfectly model the thresholded similarity graphs ob-
tained from actual document corpora (the actual similarity graphs must satisfy
various geometric constraints and will be aggregates of many “sets” of “similar”
documents), random graphs are easier to analyze, and our experiments provide
evidence that theoretical results obtained for random graphs closely match em-
pirical results obtained for thresholded similarity graphs obtained from actual
document corpora. As such, we will use the random graph model for analysis
and for experimental verification of the algorithms presented in this paper (in
addition to experiments on actual corpora).

The time required to insert/delete a vertex and its associated edges and
to appropriately update the star cover is largely governed by the number of
stars that are broken during the update, since breaking stars requires inserting
new elements into the priority queue. In practice, very few stars are broken
during any given update. This is due partly to the fact that relatively few
stars exist at any given time (as compared to the number of vertices or edges
in the thresholded similarity graph) and partly to the fact that the likelihood
of breaking any individual star is also small.

Theorem 4.2 The expected size of the star cover for Gn,p is at most 1 +
2 log(n)/ log( 1

1−p ).

Proof: The star cover algorithm is greedy: it repeatedly selects the unmarked
vertex of highest degree as a star center, marking this node and all its adjacent
vertices as covered. Each iteration creates a new star. We will argue that
the number of iterations is at most 1 + 2 log(n)/ log( 1

1−p ) for an even weaker
algorithm which merely selects any unmarked vertex (at random) to be the next
star. The argument relies on the random graph model described above.

Consider the (weak) algorithm described above which repeatedly selects stars
at random from Gn,p. After i stars have been created, each of the i star centers
will be marked, and some number of the n−i remaining vertices will be marked.
For any given non-center vertex, the probability of being adjacent to any given
center vertex is p. The probability that a given non-center vertex remains
unmarked is therefore (1 − p)i, and thus its probability of being marked is
1 − (1 − p)i. The probability that all n − i non-center vertices are marked
is then

(
1 − (1 − p)i

)n−i. This is the probability that i (random) stars are
sufficient to cover Gn,p. If we let X be a random variable corresponding to the
number of star required to cover Gn,p, we then have

Pr[X ≥ i + 1] = 1 − (
1 − (1 − p)i

)n−i
.

Using the fact that for any discrete random variable Z whose range is {1, 2, . . . , n},

E[Z] =
n∑

i=1

i · Pr[Z = i] =
n∑

i=1

Pr[Z ≥ i],
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we then have the following.

E[X] =
n−1∑
i=0

[
1 − (

1 − (1 − p)i
)n−i

]

Note that for any n ≥ 1 and x ∈ [0, 1], (1 − x)n ≥ 1 − nx. We may then derive

E[X] =
n−1∑
i=0

[
1 − (

1 − (1 − p)i
)n−i

]

≤
n−1∑
i=0

[
1 − (

1 − (1 − p)i
)n

]

=
k−1∑
i=0

[
1 − (

1 − (1 − p)i
)n

]
+

n−1∑
i=k

[
1 − (

1 − (1 − p)i
)n

]

≤
k−1∑
i=0

1 +
n−1∑
i=k

n(1 − p)i

= k +
n−1∑
i=k

n(1 − p)i

for any k. Selecting k so that n(1− p)k = 1/n (i.e., k = 2 log(n)/ log( 1
1−p )), we

have the following.

E[X] ≤ k +
n−1∑
i=k

n(1 − p)i

≤ 2 log(n)/ log( 1
1−p ) +

n−1∑
i=k

1/n

≤ 2 log(n)/ log( 1
1−p ) + 1

�

We next note the following facts about the Update procedure given in
Figure 8, which repeatedly extracts vertices φ from a priority queue Q (line 2).
First, the vertices enqueued within the Update procedure (line 20) must be
of degree strictly less than the current extracted vertex φ (line 2). This is so
because each enqueued vertex µ must satisfy the following set of inequalities

µ.degree ≤ δ.degree < φ.degree

where the first and second inequalities are dictated by lines 18 and 9, respec-
tively. This implies that the degrees of the vertices φ extracted from the priority
queue Q must monotonically decrease; φ is the current vertex of highest degree
in Q, and any vertex µ added to Q must have strictly smaller degree. This fur-
ther implies that no vertex can be enqueued more than once. Once a vertex v is
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enqueued, it cannot be enqueued again while v is still present in the queue due
to the test of the inQ flag (line 18). Once v is extracted, it cannot be enqueued
again since all vertices enqueued after v is extracted must have degrees strictly
less than v. Thus, no more than |V | vertices can ever be enqueued in Q.

Second, any star created within the Update procedure cannot be destroyed
within the Update procedure. This is so because any star δ broken within the
Update procedure must have degree strictly less than the current extracted
vertex φ (line 9). Thus, any star created within the Update procedure (lines 4
and 10) cannot be subsequently broken since the degrees of extracted vertices
monotonically decrease.

Combining the above facts with Theorem 4.2, we have the following.

Theorem 4.3 The expected time required to insert or delete a vertex in a ran-
dom graph Gn,p is O(np2 log2(n)/ log2( 1

1−p )), for any 0 ≤ p ≤ 1 − Θ(1).

Proof: For simplicity of analysis, we assume that n is large enough so that
all quantities which are random variables are on the order of their respective
expectations.

The running time of insertion or deletion is dominated by the running time
of the Update procedure. We account for the work performed in each line of the
Update procedure as follows. Each vertex ever present in the queue must be
enqueued once (line 20 or within Insert/Delete) and extracted once (lines 2
and 27). Since at most n + 1 (Insert) or n − 1 (Delete) vertices are ever
enqueued, we can perform this work in O(n log n) time total by implementing
the queue with any standard heap. All centers adjacent to any extracted vertex
must also be examined (lines 3 and 9). Since the expected size of a centers list
is p times the number of stars, O(p log(n)/ log( 1

1−p )), we can perform this work
in O(np log(n)/ log( 1

1−p )) expected time.
For each star created (lines 4–7, 10–13, and 24), we must process the newly

created star center and satellite vertices. The expected size of a newly created
star is Θ(np). Implementing centers as a standard linked list, we can perform
this processing in Θ(np) expected time. Since no star created within the Up-
date procedure is ever destroyed within the Update procedure and since the
expected number of stars is O(log(n)/ log( 1

1−p )), the total expected time to
process all created stars is O(np log(n)/ log( 1

1−p )).
For each star destroyed (lines 14–19), we must process the star center and its

satellite vertices. The expected size of a star is Θ(np), and the expected size of
a centers list is p times the number of stars; hence, O(p log(n)/ log( 1

1−p )). Thus,
the expected time required to process a star to be destroyed is O(np2 log(n)/ log( 1

1−p )).
Since no star created within the Update procedure is ever destroyed within the
Update procedure and since the expected number of stars is O(log(n)/ log( 1

1−p )),
the total expected time to process all destroyed stars is O(np2 log2(n)/ log2( 1

1−p )).
Note that for any p bounded away from 1 by a constant, the largest of these

terms is O(np2 log2(n)/ log2( 1
1−p )). �
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The thresholded similarity graphs obtained in a typical IR setting are almost
always dense: there exist many vertices comprised of relatively few (but dense)
clusters. We obtain dense random graphs when p is a constant. For dense
graphs, we have the following corollary.

Corollary 4.4 The total expected time to insert n vertices into (an initially
empty) dense random graph is O(n2 log2 n).

Corollary 4.5 The total expected time to delete n vertices from (an n vertex)
dense random graph is O(n2 log2 n).

Note that the on-line insertion result for dense graphs compares favorably
to the off-line algorithm; both algorithms run in time proportional to the size of
the input graph, Θ(n2), within logarithmic factors. Empirical results on dense
random graphs and actual document collections (detailed in the next section)
verify this result.

For sparse graphs (p = Θ(1/n)), the analogous results are asymptotically
much larger than what one encounters in practice. This is due to the fact
that the number of stars broken (and hence vertices enqueued) is much smaller
than the worst case assumptions assumed in the above analysis of the Update
procedure. Empirical results on sparse random graphs (detailed in the next
section) verify this fact and imply that the total running time of the on-line
insertion algorithm is also proportional to the size of the input graph, Θ(n),
within lower order factors.

4.4 Efficiency experiments

We have conducted efficiency experiments with the on-line clustering algorithm
using two types of data. The first type of data matches our random graph
model and consists of both sparse and dense random graphs. While this type of
data is useful as a benchmark for the running time of the algorithm, it does not
satisfy the geometric constraints of the vector space model. We also conducted
experiments using 2,000 documents from the TREC FBIS collection.

4.4.1 Aggregate number of broken stars

The efficiency of the on-line star algorithm is largely governed by the number
of stars that are broken during a vertex insertion or deletion. In our first set
of experiments, we examined the aggregate number of broken stars during the
insertion of 2,000 vertices into a sparse random graph (p = 10/n), a dense
random graph (p = 0.2) and a graph corresponding to a subset of the TREC
FBIS collection thresholded at the mean similarity. The results are given in
Figure 9.

For the sparse random graph, while inserting 2,000 vertices, 2,572 total stars
were broken—approximately 1.3 broken stars per vertex insertion on average.
For the dense random graph, while inserting 2,000 vertices, 3,973 total stars
were broken—approximately 2 broken stars per vertex insertion on average.
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Figure 9: The dependence of the number of broken stars on the number of
inserted vertices in (a) a sparse random graph, (b) a dense random graph, and
(c) the graph corresponding to TREC FBIS data.
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The thresholded similarity graph corresponding to the TREC FBIS data was
much denser, and there were far fewer stars. While inserting 2,000 vertices, 458
total stars were broken—approximately 23 broken stars per 100 vertex insertions
on average. Thus, even for moderately large n, the number of broken stars per
vertex insertion is a relatively small constant, though we do note the effect of
lower order factors especially in the random graph experiments.

4.4.2 Aggregate running time

In our second set of experiments, we examined the aggregate running time
during the insertion of 2,000 vertices into a sparse random graph (p = 10/n),
a dense random graph (p = 0.2) and a graph corresponding to a subset of the
TREC FBIS collection thresholded at the mean similarity. The results are given
in Figure 10.

Note that for connected input graphs (sparse or dense), the size of the graph
is on the order of the number of edges. The experiments depicted in Figure 10
suggest a running time for the on-line algorithm which is linear in the size of
the input graph, though lower order factors are presumably present.

4.5 Cluster accuracy experiments

In this section we describe experiments evaluating the performance of the star
algorithm with respect to cluster accuracy. We tested the star algorithm against
two widely used clustering algorithms in IR: the single link method [28] and the
average link method [33]. We used data from the TREC FBIS collection as our
testing medium. This TREC collection contains a very large set of documents
of which 21,694 have been ascribed relevance judgments with respect to 47
topics. These 21,694 documents were partitioned into 22 separate subcollections
of approximately 1,000 documents each for 22 rounds of the following test. For
each of the 47 topics, the given collection of documents was clustered with each
of the three algorithms, and the cluster which “best” approximated the set of
judged relevant documents was returned. To measure the quality of a cluster,
we use the standard F measure from Information Retrieval [28],

F (p, r) =
2

1/p + 1/r
,

where p and r are the precision and recall of the cluster with respect to the set
of documents judged relevant to the topic. Precision is the fraction of returned
documents that are correct (i.e., judged relevant), and recall is the fraction of
correct documents that are returned. F (p, r) is simply the harmonic mean of
the precision and recall; thus, F (p, r) ranges from 0 to 1, where F (p, r) = 1
corresponds to perfect precision and recall, and F (p, r) = 0 corresponds to
either zero precision or zero recall.

For each of the three algorithms, approximately 500 experiments were per-
formed; this is roughly half of the 22 × 47 = 1, 034 total possible experiments
since not all topics were present in all subcollections. In each experiment, the
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Figure 10: The dependence of the running time of the on-line star algorithm on
the size of the input graph for (a) a sparse random graph, (b) a dense random
graph, and (c) the graph corresponding to TREC FBIS data.
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(p, r, F (p, r)) values corresponding to the cluster of highest quality were ob-
tained, and these values were averaged over all 500 experiments for each algo-
rithm. The average (p, r, F (p, r)) values for the star, average-link and single-
link algorithms were, respectively, (.77, .54, .63), (.83, .44, .57) and (.84, .41, .55).
Thus, the star algorithm represents a 10.5% improvement in cluster accuracy
with respect to the average-link algorithm and a 14.5% improvement in cluster
accuracy with respect to the single-link algorithm.

Figure 11 shows the results of all 500 experiments. The first graph shows
the accuracy (F measure) of the star algorithm vs. the single-link algorithm;
the second graph shows the accuracy of the star algorithm vs. the average-link
algorithm. In each case, the the results of the 500 experiments using the star
algorithm were sorted according to the F measure (so that the star algorithm
results would form a monotonically increasing curve), and the results of both
algorithms (star and single-link or star and average-link) were plotted according
to this sorted order. While the average accuracy of the star algorithm is higher
than that of either the single-link or average-link algorithms, we further note
that the star algorithm outperformed each of these algorithms in nearly every
experiment.

Our experiments show that in general, the star algorithm outperforms single-
link by 14.5% and average-link by 10.5%. We repeated this experiment on the
same data set, using the entire unpartitioned collection of 21,694 documents,
and obtained similar results. The precision, recall and F values for the star,
average-link, and single-link algorithms were (.53, .32, .42), (.63, .25, .36), and
(.66, .20, .30), respectively. We note that the F values are worse for all three
algorithms on this larger collection and that the star algorithm outperforms the
average-link algorithm by 16.7% and the single-link algorithm by 40%. These
improvements are significant for Information Retrieval applications. Given that
(1) the star algorithm outperforms the average-link algorithm, (2) it can be used
as an on-line algorithm, (3) it is relatively simple to implement in either of its
off-line or on-line forms, and (4) it is efficient, these experiments provide support
for using the star algorithm for off-line and on-line information organization.

5 A System for Information Organization

We have implemented a system for organizing information that uses the star
algorithm. Figure 12 shows the user interface to this system.

This organization system (that is the basis for the experiments described
in this paper) consists of an augmented version of the Smart system [31, 3], a
user interface we have designed, and an implementation of the star algorithms
on top of Smart. To index the documents we used the Smart search engine
with a cosine normalization weighting scheme. We enhanced Smart to compute
a document to document similarity matrix for a set of retrieved documents or
a whole collection. The similarity matrix is used to compute clusters and to
visualize the clusters. The user interface is implemented in Tcl/Tk.

The organization system can be run on a whole collection, on a specified
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Figure 11: The F measure for (a) the star clustering algorithm vs. the single link
clustering algorithm and (b) the star algorithm vs. the average link algorithm
(right). The y axis shows the F measure. The x axis shows the experiment
number. Experimental results have been sorted according to the F value for
the star algorithm.

subcollection, or on the collection of documents retrieved in response to a user
query. Users can input queries by entering free text. They have the choice
of specifying several corpora. This system supports distributed information
retrieval, but in this paper we do not focus on this feature, and we assume only
one centrally located corpus. In response to a user query, Smart is invoked
to produce a ranked list of the most relevant documents, their titles, locations
and document-to-document similarity information. The similarity information
for the entire collection, or for the collection computed by the query engine is
provided as input to the star algorithm. This algorithm returns a list of clusters
and marks their centers.

5.1 Visualization

We developed a visualization method for organized data that presents users with
three views of the data (see Figure 12): a list of text titles, a graph that shows
the similarity relationship between the documents, and a graph that shows the
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Figure 12: This is a screen snapshot from a clustering experiment. The top
window is the query window. The middle window consists of a ranked list of
documents that were retrieved in response to the user query. The user may select
“get” to fetch a document or “graph” to request a graphical visualization of the
clusters as in the bottom window. The left graph displays all the documents as
dots around a circle. Clusters are separated by gaps. The edges denote pairs
of documents whose similarity falls between the slider parameters. The right
graph displays all the clusters as disks. The radius of a disk is proportional to
the size of the cluster. The distance between the disks is proportional to the
similarity distance between the clusters.
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similarity relationship between the clusters. These views provide users with
summaries of the data at different levels of detail (text, document and topic)
and facilitate browsing by topic structure.

The connected graph view (inspired by [3]) has nodes corresponding to the
retrieved documents. The nodes are placed in a circle, with nodes corresponding
to the same cluster placed together. Gaps between the nodes allow us to identify
clusters easily. Edges between nodes are color coded according to the similarity
between the documents. Two slider bars allow the user to establish minimal
and maximal weight of edges to be shown.

Another view presents clusters as solid disks whose diameters are propor-
tional to the sizes of the corresponding clusters. The Euclidean distance between
the centers of two disks is meant to capture the topic separation between the
corresponding clusters. Ideally, the distance between two disks would be pro-
portional to the dissimilarity between the corresponding clusters C1 and C2;
in other words, 1−sim(c(C1), c(C2)) where c(Ci) is the star center associated
with cluster Ci. However, such an arrangement of disks may not be possible in
only two dimensions, so an arrangement which approximately preserves distance
relationships is required. The problem of finding such “distance preserving” ar-
rangements arises in many fields, including data analysis (e.g., multidimensional
scaling [23, 9]) and computational biology (e.g., distance geometry [11]). We
employ techniques from distance geometry [11] which principally rely on eigen-
value decompositions of distance matrices, for which efficient algorithms are
easily found [26].

All three views and a title window allow the user to select an individual doc-
ument or a cluster. Selections made in one window are simultaneously reflected
in the others. For example, the user may select the largest cluster (as is shown
in the figure) which causes the corresponding documents to be highlighted in
the other views. This user interface facilitates browsing by topic structure.

6 Conclusion

We presented and analyzed an off-line clustering algorithm for static information
organization and an on-line clustering algorithm for dynamic information orga-
nization. We discussed the random graph model for analyzing these algorithms
and showed that in this model, the algorithms have an expected running time
that is linear in the size of the input graph (within logarithmic factors). The
data we gathered from experimenting with these algorithms provides support
for the validity of our model and analyses. Our empirical tests show that both
algorithms exhibit linear time performance in the size of the input graph (within
lower order factors), and that they produce accurate clusters. In addition, both
algorithms are simple and easy to implement. We believe that efficiency, accu-
racy and ease of implementation make these algorithms very practical candidates
for use in automatically organizing digital libraries.

This work departs from previous clustering algorithms used in information
retrieval that use a fixed number of clusters for partitioning the document space.
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Since the number of clusters produced by our algorithms is given by the under-
lying topic structure in the information system, our clusters are dense and ac-
curate. Our work extends previous results [17] that support using clustering for
browsing applications and presents positive evidence for the cluster hypothesis.
In [4], we argue that by using a clustering algorithm that guarantees the cluster
quality through separation of dissimilar documents and aggregation of similar
documents, clustering is beneficial for information retrieval tasks that require
both high precision and high recall.

The on-line star algorithm described in Section 4 can be optimized somewhat
for efficiency, and such an optimization is given in the appendix. Both the
off-line and on-line star algorithms can be further optimized in their use of
similarity matrices. Similarity matrices can be very large for real document
corpora, and the cost of computing the similarity matrix can be much more
expensive than the basic cost of either the off-line or on-line star algorithms.
At least two possible methods can be employed to eliminate this bottleneck
to overall efficiency. One method would be to employ random sampling of the
vertices. A random sample consisting of Θ(

√
n) vertices could be chosen, the

similarity matrix for these vertices computed, and the star cover created. Note
that the size of the computed similarity matrix is Θ(n), linear in the size of
the input problem. Further note that the expected size of the star cover on n
vertices is O(log(n)), and thus the size of the star cover on the Θ(

√
n) sampled

vertices is expected to be only a constant factor smaller. Thus, the star cover on
the Θ(

√
n) sampled vertices may very well contain many of the clusters from the

full cover (though the clusters may be somewhat different, of course). Once the
sampled vertices are clustered, the remaining vertices may be efficiently added
to this clustering by comparing to the current cluster centers (simply add a
vertex to a current cluster if its similarity to the cluster center is above the
chosen threshold). Another approach applicable to the on-line algorithm would
be to infer the vertices adjacent to a newly inserted vertex in the thresholded
similarity graph while only minimally referring to the similarity matrix. For
each vertex to be inserted, compute its similarity to each of the current star
centers. The expected similarity of this vertex to any of the satellites of a given
star center can then be inferred from Equation 1. Satellites of centers “distant”
from the vertex to be inserted will likely not be adjacent in the thresholded
similarity graph and can be assumed non-adjacent; satellites of centers “near”
the vertex to be inserted will likely be adjacent in the thresholded similarity
graph and can be assumed so. We are currently analyzing, implementing and
testing algorithms based on these optimizations.

We are currently pursuing several extensions for this work. We are develop-
ing a faster algorithm for computing the star cover using sampling. We are also
considering algorithms for computing star covers over distributed collections.
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A The Optimized On-line Star Algorithm

A careful consideration of the on-line star algorithm presented earlier in this
paper reveals a few possible optimizations. One of the parameters that regulates
the running time of our algorithm is the size of the priority queue. Considering
the Update procedure that appears in Figure 8, we may observe that most
satellites of a destroyed star are added to the queue, but few of those satellites
are promoted to centers. The ability to predict the future status of a satellite
can save queuing operations.

Let us maintain for each satellite vertex a dominant center; i.e., an adja-
cent center of highest degree. Let us maintain for each center vertex a list of
dominated satellites; i.e., a list of those satellite vertices for which the center
in question is the dominant center. Line 9 of the original Update procedure,
which determines whether a satellite should be promoted to a center, is equiv-
alent to checking if the degree of the satellite is greater than the degree of its
dominant center. In lines 16–22 of the original Update procedure, we note that
only satellites dominated by the destroyed center need to be enqueued. A list
of dominated satellites maintained for each center vertex will help to eliminate
unnecessary operations.

For each vertex v ∈ V we maintain the following data.
v.type satellite or center
v.degree degree of v
v.adj list of adjacent vertices
v.centers list of adjacent centers
v.domsats satellites dominated by this vertex
v.domcenter dominant center
v.inQ flag specifying if v being processed

In our implementation, lists of adjacent vertices and adjacent centers are
SkipList data structures [27], which support Insert and Delete operations in
expected Θ(log n) time. We will also define a Max operation which simply finds
the vertex of highest degree in a list. This operation runs in time linear in the
size of a list; however, we will use it only on lists of adjacent centers, which are
expected to be relatively small.

The dominant center of a satellite is the adjacent center of highest degree.
The list of dominated satellites is implemented as a heap keyed by vertex de-
gree. The heap supports the standard operations Insert, Delete, Max and
ExtractMax; the Adjust function maintains the heap’s internal structure in
response to changes in vertex degree.

The procedures for Insert, Delete and Update presented here are struc-
turally similar to the versions described earlier in this paper. A few changes
need to be made to incorporate new pieces of data.

The Insert procedure in Figure 13 adds a vertex α with a list of adjacent
vertices L to a thresholded similarity graph Gσ and updates the star cover of
Gσ.

Lines 1–7 of the algorithm initialize various data fields of α. Lines 10–14
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update the degrees and adjacency lists of α and its adjacent vertices β. Lists of
dominated satellites that contain β are maintained in lines 13–15 to reflect the
change in degree of β. Lines 16–18 build the list of centers adjacent to α.

Any satellite vertex adjacent to α may potentially be placed into Q. How-
ever, as discussed earlier in this section, only satellites that have a degree higher
than the degree of their dominant centers need to be enqueued (lines 19–22).
Similarly, α is enqueued only if it has no adjacent centers lines 25–27, or if it has
a greater degree than its dominant center (lines 31–34). The Update procedure
called in line 36 computes a correct star cover.

The Delete procedure in Figure 14 removes vertex α from the appropriate
data structures and modifies the star cover. Lines 1–7 remove α from adja-
cency lists (line 3), modify degrees of affected vertices (line 2), and maintain
correct lists of dominated satellites (lines 4–6). A different course of action
should be taken upon removing a satellite vertex (lines 8–24) or a center vertex
(lines 25–36).

A satellite vertex should be removed from the dominated satellite list of its
dominant center (lines 10–12). The degrees of the centers adjacent to α have
decreased, leading to a possible conflict between a center and its dominated
satellites. The dominated satellites that have degrees greater than the degrees
of their dominant centers are located in lines 13–23 of the code, removed from
dominated satellites lists (line 16) and enqueued (lines 18–21).

If a center vertex is being removed, it is deleted from the lists of centers
of its adjacent vertices (lines 26–28), and its dominated satellites are enqueued
(lines 29–35). The Update procedure is then called to recompute the star cover.

The Update procedure is given in Figure 15. Vertices are organized in a
priority queue, and a vertex φ of highest degree is considered in each iteration
(line 2). The algorithm assigns an appropriate type to the vertex and updates
the graph data structures appropriately.

If φ has no adjacent centers (lines 3–8), it becomes a center and is included
in the centers lists of its adjacent vertices (lines 6–8). Otherwise, a dominant
center of φ is found and assigned to λ (line 10). If λ is a true dominant center
(i.e., the degree of λ is greater than the degree of φ), we set the dominant center
of φ to λ (lines 12–16). Otherwise (lines 17–40), the degree of φ is greater than
the degrees of all its adjacent centers, and thus φ is promoted to a center. The
centers adjacent to phi are destroyed (lines 23–38), and the satellites dominated
by these stars are enqueued (lines 30–36). The cycle is repeated until the queue
is empty.
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Insert(α, L, Gσ)
1 α.type ← satellite
2 α.degree ← 0
3 α.adj ← ∅
4 α.centers ← ∅
5 α.domcenter ← NIL
6 α.domsats ← ∅
7 α.inQ ← false
8 forall β in L
9 α.degree ← α.degree + 1

10 β.degree ← β.degree + 1
11 Insert(β, α.adj)
12 Insert(α, β.adj)
13 if (β.domcenter �= NIL)
14 Adjust(β, β.domcenter.domsats)
15 endif
16 if (β.type = center)
17 Insert(β, α.centers)
18 else
19 if (β.degree > β.domcenter.degree)
20 β.inQ ← true
21 Enqueue(β, Q)
22 endif
23 endif
24 endfor
25 if (α.centers = ∅)
26 α.inQ ← true
27 Enqueue(α, Q)
28 else
29 α.domcenter ← Max(α.centers)
30 Insert(α, α.domcenter.domsats)
31 if (α.degree > α.domcenter.degree)
32 α.inQ ← true
33 Enqueue(α, Q)
34 endif
35 endif
36 Update(Gσ)

Figure 13: The details of the Insert oper-
ation for the optimized on-line star algo-
rithm.

Delete(α, Gσ)
1 forall β in α.adj
2 β.degree ← β.degree − 1
3 Delete(α, β.adj)
4 if (β.domcenter �= NIL)
5 Adjust(β, β.domcenter.domsats)
6 endif
7 endfor
8 if (α.type = satellite)
9 forall β in α.centers

10 if (β = α.domcenter)
11 Delete(α, β.domsats)
12 endif
13 γ ← Max(β.domsats)
14 while (β.domsats �= ∅ and
15 γ.degree > β.degree)
16 ExtractMax(β.domsats)
17 γ.domcenter ← NIL
18 if (γ.inQ = false)
19 γ.inQ ← true
20 Enqueue(γ, Q)
21 endif
22 γ ← Max(β.domsats)
23 endwhile
24 endfor
25 else
26 forall β in α.adj
27 Delete(α, β.centers)
28 endfor
29 forall ν in α.domsats
30 ν.domcenter ← NIL
31 if (ν.inQ = false)
32 ν.inQ ← true
33 Enqueue(ν, Q)
34 endif
35 endfor
36 endif
37 Update(Gσ)

Figure 14: The details of the Delete op-
eration for the optimized on-line star algo-
rithm.
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Update(Gσ)
1 while (Q �= ∅)
2 φ ← ExtractMax(Q)
3 if (φ.centers = ∅)
4 φ.type ← center
5 φ.domcenter ← NIL
6 forall β in φ.adj
7 Insert(φ, β.centers)
8 endfor
9 else

10 λ ← Max(φ.centers)
11 if (λ.degree ≥ φ.degree)
12 if (φ.domcenter �= NIL)
13 Delete(φ, φ.domcenter.domsats)
14 endif
15 φ.domcenter ← λ
16 Insert(φ, λ.domsats)
17 else
18 φ.type ← center
19 φ.domcenter ← NIL
20 forall β in φ.adj
21 Insert(φ, β.centers)
22 endfor
23 forall δ in φ.centers
24 δ.type ← satellite
25 δ.domcenter ← φ
26 Insert(δ, φ.domsats)
27 forall µ in δ.adj
28 Delete(δ, µ.centers)
29 endfor
30 forall ν in δ.domsats
31 ν.domcenter ← NIL
32 if (ν.inQ = false)
33 ν.inQ ← true
34 Enqueue(ν, Q)
35 endif
36 endfor
37 δ.domsats ← ∅
38 endfor
39 φ.centers ← ∅
40 endif
41 endif
42 φ.inQ ← false
43 endwhile

Figure 15: The details of the Update operation for the optimized on-line star
algorithm.


