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Abstract

We describe a heuristic method for drawing graphs which uses a mul-
tilevel framework combined with a force-directed placement algorithm.
The multilevel technique matches and coalesces pairs of adjacent vertices
to define a new graph and is repeated recursively to create a hierarchy
of increasingly coarse graphs, G0, G1, . . . , GL. The coarsest graph, GL, is
then given an initial layout and the layout is refined and extended to all
the graphs starting with the coarsest and ending with the original. At
each successive change of level, l, the initial layout for Gl is taken from
its coarser and smaller child graph, Gl+1, and refined using force-directed
placement. In this way the multilevel framework both accelerates and
appears to give a more global quality to the drawing. The algorithm can
compute both 2 & 3 dimensional layouts and we demonstrate it on exam-
ples ranging in size from 10 to 225,000 vertices. It is also very fast and can
compute a 2D layout of a sparse graph in around 12 seconds for a 10,000
vertex graph to around 5-7 minutes for the largest graphs. This is an
order of magnitude faster than recent implementations of force-directed
placement algorithms.

Keywords: graph-drawing, multilevel optimisation, force-directed place-
ment.
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1 Introduction

Graph-drawing algorithms form a basic enabling technology which can be used
to help with the understanding of large sets of inter-related data. By presenting
data in a visual form it can often be more easily digested by the user and
both regular patterns and anomalies can be identified. However most data sets
do not contain any explicit information on how they should be laid out for
easy viewing, although normally such a layout will depend on the relationships
between pieces of data. Thus if we model the data points with the vertices of a
graph and the relationships with the edges we can use graph-based technology
and, in particular, graph-drawing algorithms to infer a ‘good’ layout from an
arbitrary data set based on the relationships.

There has been considerable research into graph-drawing in recent years and
a comprehensive survey can be found in [2]. Many such algorithms are based
on physical models and the vertices are placed so as to minimise the ‘energy’
in the physical system (see below, §2.3). Typically such algorithms are able to
display structures and symmetries in the graph but their computational cost in
terms of CPU time is very high.

1.1 Motivation

The motivation behind our approach to graph-drawing arises from our work in
the field of graph partitioning and the multilevel paradigm, e.g. [20, 21]. In
recent years it has been recognised that an effective way of enhancing parti-
tioning algorithms is to use multilevel techniques and this strategy has been
successfully developed to overcome the localised nature of the Kernighan-Lin
and other partition optimisation algorithms, e.g. [12]. The multilevel process
has also recently been successfully applied to the travelling salesman and graph
colouring problems and appears to work (for combinatorial problems at least)
by sampling and smoothing the objective function, [20], thus imparting a more
global perspective to the optimisation.

This is an important consideration for graph-drawing; the localised posi-
tioning of a vertex relative to fixed neighbours is actually fairly easy and it is
the global untangling of the graph which is more difficult or time consuming.
We therefore aim to use the multilevel ideas to both enhance the layout and
accelerate the graph-drawing process.

In this paper (and an earlier version, [19]) we apply multilevel ideas to force-
directed placement (FDP) algorithms. In fact such ideas have been previously
suggested in the graph-drawing literature and for example in 1991 Fruchterman
& Reingold, [7], suggested the possible use of ‘a multigrid technique that allows
whole portions of the graph to be moved’, whilst Davidson & Harel, [1], suggest
a multilevel approach to ‘expedite the SA [simulated annealing] process’. More
recently Hadany & Harel, [9], and in particular Harel & Koren, [10], have actu-
ally used multilevel ideas (or as they refer to them, multiscale) and are able to
robustly handle graphs of up to 15,000 vertices. However their algorithm uses
the placement scheme of Kamada & Kawai, [13], which requires the graph the-
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oretic distances (path lengths) between pairs of vertices, and hence the overall
complexity of the method contains an O(N2) term. Gajer et al., who subse-
quently developed a similar scheme, [8], managed to reduce this complexity by
calculating these distances dynamically and also enhanced the scheme by com-
puting the layout in higher dimensions. All three of these approaches ([8, 9, 10])
share many features with the algorithm outlined here (although derived inde-
pendently) and confirm that the multilevel paradigm can be a powerful tool for
force-directed placement irrespective of the specific FDP algorithm used.

A related but somewhat different idea is that of multilevel drawings, e.g.
[3, 6]. Rather than using the multilevel process to create a good layout of the
original graph, a multilevel graph is created, either by natural clustering which
exists in the graph or by artificial means similar to those applied here. Each
level is drawn on a plane at a different height and the entire structure can then
be used to aid understanding of the graph at multiple abstraction levels, [5].

Finally, although not strictly related to the multilevel ideas described here,
it is worth mentioning that Koren et al. have recently developed a number of
other graph-drawing schemes which can work even faster than multilevel force-
directed placement (although the layout quality is often somewhat inferior).
In particular, these include the use of the algebraic multigrid techniques, [14],
and (building on the ideas due to Gajer et al., [8]) the development of higher-
dimensional embeddings, [11].

2 A multilevel algorithm for graph-drawing

In this section we describe how we combine the multilevel optimisation ideas
with our variant of a force-directed placement algorithm.

2.1 Notation and Definitions

Let G = G(V,E) be an undirected graph of vertices V , with edges E and which
we will assume is connected. For any vertex v let Γv be the neighbourhood of,
or set of vertices adjacent to, v, i.e., Γv = {u ∈ V : (u, v) ∈ E}. We use the
|.| operator to denote the size of a set so that |V | is the number of vertices in
the graph and |Γv| is the number of vertices adjacent to v (the degree of v).
We also use |.| to denote the weight of a vertex; since weighted vertices in the
coarsened graphs represent sets of vertices from the original graph, the weight
of a coarsened vertex is just equivalent to the number of original vertices in the
set it represents. We then use ||.|| to denote Euclidean distance in either 2D or
3D.

2.2 The multilevel framework

As stated above, the inspiration behind our graph-drawing scheme is the mul-
tilevel paradigm, e.g. [20]. The idea is to coalesce clusters of vertices to define
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a new graph and recursively iterate this procedure to create a hierarchy of in-
creasingly coarse graphs, G0, G1, . . . and until the size of the coarsest graph
falls below some threshold. The coarsest graph, GL, is then given an initial
layout and the layout is refined and extended to all the graphs starting with
the coarsest and ending with the original. At each successive change of level,
l, the initial layout for Gl is taken from its coarser and smaller child graph,
Gl+1, and refined using force-directed placement. Thus the algorithm does not
actually operate simultaneously on multiple levels of the graph (as, for example,
a multigrid algorithm might) but instead refines the layout at each level and
then extends the result to the next level down.

2.2.1 Graph coarsening

There are many ways to create a coarser graph Gl+1(Vl+1, El+1) from Gl(Vl, El)
and clustering algorithms are an active area of research within the field of graph-
drawing amongst others, e.g. [3, 17]. Usually such clustering algorithms seek
to retain the more important structural features of the graph in order that the
visualisation of each level is meaningful in itself. However, here we are only
interested in the drawing of the original graph and as such we seek a fast and
efficient (i.e., not necessarily optimal) algorithm that judiciously reduces the size
of the graph. Thus, if too many vertices are clustered together in one step it
may depreciate the benefits of the multilevel paradigm and in particular inhibit
the force-directed placement algorithm, as applied to Gl, from making use of
the positioning obtained for Gl+1. Conversely, if each clustering only shrinks
the graph by a small fraction, the multilevel scheme may be significantly slowed
by having to compute the layout for a multitude of fairly similar coarse graphs.
To suit these requirements we choose (as is typical for partitioning) a coarsening
approach known as matching in which each vertex is matched with at most one
neighbour, so that clusters are thus formed of at most two vertices and the
number of vertices in the coarsened graph Gl+1 is no less than half the number
in Gl.

Computing a matching is equivalent to finding a maximal independent subset
of graph edges which are then collapsed to create the coarser graph. The set is
independent if no two edges in the set are incident on the same vertex (so no
two edges in the set are adjacent), and maximal if no more edges can be added
to the set without breaking the independence criterion. Having found such a
set, each selected edge is collapsed and the vertices, u1, u2 ∈ Vl say, at either
end of it are merged to form a new vertex v ∈ Vl+1 with weight |v| = |u1|+ |u2|.

The problem of computing a matching of the vertices is known as the max-
imum cardinality matching problem. Although there are optimal algorithms
to solve this problem, they are of at least O(|V |2.5), e.g. [15]. Unfortunately
this is too slow for our purposes and, since it is not essential for the multilevel
process to solve the problem optimally, we use a variant of the edge contraction
heuristic proposed by Hendrickson & Leland, [12]. Their method of construct-
ing a maximal independent subset of edges is to create a randomly ordered list
of the vertices and visit them in turn, matching each unmatched vertex with



C. Walshaw, Multilevel Force-Directed Drawing , JGAA, 7(3) 253–285 (2003)257

an unmatched neighbouring vertex (or with itself if no unmatched neighbours
exist). Matched vertices are removed from the list.

If there are several unmatched neighbours the choice of which to match
with can be random, but in order to keep the weight of the vertices in the
coarser graphs as uniform as possible, we choose to match with the neighbouring
vertex with the smallest weight (note that even if the original graph G0 is
unweighted, Gl for l = 1, 2, . . . will be weighted). In the case of several such
minimally weighted neighbours a random choice is made from amongst them.
Other matching heuristics were tested (e.g. such as one that prefers to match
across heavily weighted edges) but did not reveal any noticeable benefits and in
the end the choice was based purely on empirical evidence (not presented here).

2.2.2 The initial layout

Having constructed the series of graphs until the number of vertices in the
coarsest graph, GL, is smaller than some threshold, we need to compute an
initial layout for GL. However, if the graph is coarsened down to 2 vertices
(which because of the mechanisms of the coarsening will be connected by a
single weighted edge) we can simply place these vertices at random with no loss
of generality.

Note that contraction down to 2 vertices should always be possible pro-
vided the graph is connected (assumed, §2.1). To see this consider that every
connected graph of |V | vertices must have at least |V | − 1 edges and that the
collapsing of an edge results in a connected graph. Thus, if |V | > 2 there must
be at least one edge which can be collapsed to create a graph with |V | − 1
vertices and so on by induction.

2.2.3 Uncoarsening

At each level l the layout on graph Gl(Vl, El) is refined and then extended to its
parent Gl−1(Vl−1, El−1). This uncoarsening step is a trivial matter and matched
pairs of vertices, v1, v2 ∈ Vl−1, are placed at the same position as the cluster,
v ∈ Vl, which represents them.

2.3 The force-directed placement algorithm

We use a standard drawing algorithm to refine the layout on the graph, Gl, at
each level l. There has been considerable research into graph-drawing paradigms,
[2], and here we are interested in straight-line drawing schemes and, in partic-
ular, spring-embedder or force-directed placement algorithms. The original con-
cept came from a paper by Eades, [4], and is based on the idea of replacing
vertices by rings or hinges and edges by springs. The vertices are given initial
positions, usually random, and the system is released so that the springs move
the vertices to a minimal energy state (i.e., so that the springs are compressed
or extended as little as possible).
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Unfortunately the local spring forces are insufficient to globally untangle
a graph and so such algorithms also employ global repulsive forces, calculated
between every pair of vertices in the graph, and thus the system resembles an n-
body problem. Such repulsive forces between non-adjacent vertices do not have
an analogue in the spring system but are a crucial part of the spring-embedder
algorithms to avoid minimal energy states in which the system is collapsed in on
itself in some manner. As a simple example of this consider a chain of 3 vertices
{u, v, w} connected by two edges (u, v) and (v, w) and a spring model of this
graph where both springs have a natural length k. Perhaps the most intuitive
zero energy layout for this system would have u & w placed a distance 2k apart
with v in the middle. However, with no global repulsive forces there is nothing
to stop u & w from being placed in the same position and if this is a distance
k away from v then once again the energy is zero. On a larger scale, repulsion
is necessary to push whole regions, which are not immediately connected, away
from each other.

The particular variant of force-directed placement that we use is based on
an algorithm by Fruchterman & Reingold (FR), [7], itself a variation of Eades’
original algorithm. From the point of view of the multilevel approach it is
attractive as it is an incremental scheme which iterates to convergence and
which can reuse a previously calculated initial layout. We have made a number
of parameter modifications based on our experience with it and, in particular,
because of the additional problems associated with drawing very large graphs.
In principle however, it should be possible to use any iterative incremental
algorithm for this part of the multilevel graph-drawing, although in practice
different algorithms can be somewhat sensitive and require a certain amount of
tuning.

Figure 1 shows the basic outline of our algorithm and is written in a similar
fashion to the original FR algorithm, [7]. Thus ∆ is shorthand notation for
the difference vector between the positions of two vertices and Θ is short for
the vector of displacements calculated for the current vertex v. There are two
main differences (apart from the choice of parameters); the order of updating
and the weighting of the repulsive forces (discussed in more detail below). One
other fairly minor difference is that we do not impose any boundaries around
the drawing (referred to as the frame in [7]); the layout can thus expand (or
contract) as required by the forces within the system. The positions may be
subsequently scaled to fit onto a computer screen or a hardcopy or indeed into
any region required by the user, but this forms no part of the algorithm.

2.3.1 Updating

An important difference from the original FR algorithm is the order of updating
of the vertex positions. The original algorithm used two vectors (of length
|V |), one containing the position of the vertices and the second containing their
displacement as calculated during the current iteration of the outer loop. The
outer loop then contained three main inner loops, the first looping over the
vertices to calculate displacement caused by (global) repulsive forces and the
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{ initialisation }
function fr(x,w) := begin return −Cwk2/x end
function fa(x) := begin return x2/k end
t := t0;
Posn := NewPosn;

while (converged �= 1) begin
converged := 1;

for v ∈ V begin
OldPosn[v] = NewPosn[v]

end

for v ∈ V begin
{ initialise Θ, the vector of displacements of v }
Θ := 0;

{ calculate (global) repulsive forces }
for u ∈ V , u �= v begin

∆ := Posn[u] − Posn[v];
Θ := Θ + (∆/||∆||) · fr(||∆||, |u|);

end

{ calculate (local) attractive/spring forces }
for u ∈ Γv begin

∆ := Posn[u] − Posn[v];
Θ := Θ + (∆/||∆||) · fa(||∆||);

end

{ reposition v }
NewPosn[v] = NewPosn[v] + (Θ/||Θ||) · min(t, ||Θ||);
∆ := NewPosn[v] − OldPosn[v];
if (||∆|| > k·tol) converged := 0;

end

{ reduce the temperature to reduce the maximum movement }
t := cool(t);

end

Figure 1: Force-directed placement algorithm
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second looping over edges and calculating the displacement (on the vertices at
either end of the edge) due to the local attractive forces. The final inner loop
over the vertices updated the positions.

In our version however, we only calculate displacements for one vertex at
a time, updating each at the end of the inner loop. At first it might seem
as if this is less efficient, since the attractive forces are calculated twice for
each edge. However, Posn is a pointer which points to NewPosn, the newly
calculated position of each vertex which may have already been updated during
the current iteration of the outer loop. In our experience this dramatically
improves the performance of the algorithm (see §3.2). It is also very easy to
recover the behaviour of the original FR algorithm (for comparison) by setting
the pointer Posn := OldPosn in the initialisation section.

2.3.2 Vertex weighting.

We use a weighted version of the original FR repulsive function, computed
by multiplying the repulsive force by the weight, |u|, of the vertex, u, which
generates it, to give fr(x, |u|) = −C · |u| · k2/x. Although we are typically (but
not exclusively) interested in drawing unweighted graphs, any of the coarsened
graphs will have weights attached to both vertices & edges and in particular
the vertex weight of a coarsened vertex u will represent the sum of weights of
vertices from the original graph contained in the cluster. If we then consider
the repulsive forces in the original graph, all of the vertices in the cluster u
would act on any vertex from the cluster v so it makes sense to multiply the
repulsive force of u on v by |u|. This was also confirmed by experimentation
and made a considerable improvement as compared with neglecting this factor.
For unweighted graphs, and in particular the force-directed algorithm used in
its standard single-level format then |u| = 1 for all u ∈ V and this function
reverts back to the original FR version from [7].

Finally the constant C was determined by experimentation as suggested by
Fruchterman & Reingold. We found that the smaller the value of C, the better
the algorithms (both multilevel and the original single-level version) seemed to
work, but the longer they took to run. This is presumably because, with the
grid-variant in use (see below, §2.4), the smaller the value of C, the smaller the
effect of the repulsive forces and hence the more vertices are used to calculate
them. Thus the quality improves but the runtime increases. After extensive
testing we settled on C = 0.2, although C = 0.5 & C = 0.1 could equally be
used to give similar results.

2.3.3 Edge weighting.

Note that there is no simple equivalent edge weight analogue for the local at-
tractive forces. To see this consider the three graphs shown in Figure 2(a)-(c)
and suppose that in each case the ringed vertices are matched and merged to
give the graph shown in Figure 2(d). The weight of the edge in Figure 2(d)
would then be 3 if derived from Figure 2(a), 2 if derived from 2(b) and 1 if
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(c) (d)(b)(a)

Figure 2: Examples of coarsening

from 2(c). Now consider the attractive force on each vertex of the cluster v by
looking at the attractive forces in the three original graphs and assuming that
the matched vertices are placed at the same position. In the case of the graph
in Figure 2(a) there are 2 attractive forces from each vertex in the cluster w
on each vertex in the cluster v (this corresponds to the edge weight 3). Mean-
while, for Figure 2(b) there is 1 attractive force per vertex (corresponding to
edge weight 2). However for the graph in Figure 2(c) it is not even clear what
the attractive force from cluster w on cluster v should be, although arguably
it should be less than 1 in some averaged sense (and this corresponds to edge
weight 1). Hence there is no linear relation between edge weight and attractive
forces and indeed for more complex cases (i.e., after multiple coarsenings) the
relationship becomes even harder to evaluate.

The simplest way of dealing with this problem, and the one that we use for all
the experiments in this paper, is just to ignore edge weights. However, we have
tested two alternative schemes (using the same testing regime as that described
in Section 3). The first scheme we tried was to multiply each attractive force
by the weight of the edge along which it acts. In fact this produced very similar
results to ignoring the edge weights altogether, except that the drawings were
somewhat less extended and took around 10-20% longer to compute (essentially
both of these effects arise because the attractive forces are stronger relative to
the repulsive ones and similar results can be seen simply by reducing the size of
the parameter C).

The second alternative was to average the attractive forces by again mul-
tiplying each force by the corresponding edge weight but also dividing by the
weight of the cluster on which it acts (giving multipliers of 3

2 , 1 & 1
2 respectively

for the graphs in Figures 2(a), (b) & (c)). In fact this produced worse layouts
than ignoring the edge weights, especially when using a fast cooling schedule
(see §2.3.5), although for slow cooling schedules it made little difference. In the
end, however, we decided to ignore edge weights.

2.3.4 Natural spring length, k

A crucial part of the algorithm is the choice of the natural spring length, k, (the
length at which a spring or edge is neither extended nor compressed). At the
start of the execution of the placement algorithm for graph Gl the vertices will
all be in positions determined by the layout calculated for graph Gl+1 (except
for GL, the coarsest graph). We must therefore somehow set the spring length
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relative to this existing layout in order not to destroy it. If, for example, we set k
too large, then the entire graph will have to expand from its current layout and
potentially ruin any advantage gained from having calculated an initial layout
via the multilevel process.

P R

Q

v

u

v’

u

v’

w

k/2

k

d
v

(a) (b)

k

Figure 3: Calculation of natural spring length

In fact we derive the new value for k by considering what happens when we
coarsen a graph, Gl, with well placed vertices (i.e., all vertices are approximately
at a distance k from each other). Consider Figure 3(a) and suppose that v and
u (at distance k from each other) are going to be clustered to form a vertex v′

at the mid-point between them. Any vertex w adjacent to v should, if ideally
spaced, lie somewhere on the arc PQR of the circle of radius k centred on v
(it should not be on the arc PuR as that would place it too close to u). The
distance between w and v′ will then be 3k/2 if w lies at Q or

√
3k/2 if w lies

at P or R. If we take an average position for w midway along the arc PQ then
from Figure 3(b) and the cosine rule, the length d is given by

d2 = k2 +
(

k

2

)2

− 2 · k · k

2
cos(2π/3) = k2 +

1
4
k2 +

1
2
k2 =

7
4
k2

If we take d as an estimate for the new natural spring length k′ then k′ =√
7/4 · k.
Reversing this process, given a graph Gl+1 with natural spring length kl+1,

we can estimate the natural spring length for the parent graph Gl at the start
of the placement algorithm to be

kl =

√
4
7
· kl+1.

Remarkably this simple formula works very robustly over all the examples that
we have tested, certainly better than other functions we have tried (for example
based on average edge length of the initial layout). Very occasionally on one or
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two of the examples the value for k that it gives is too small for the existing
layout and the graph placement expands rapidly for the first few iterations.
However, this usually occurs on one of the coarser graphs and the multilevel
procedure is still able to find a good layout. Nonetheless we feel that the choice
of this parameter could do with further investigation.

For the initial coarsest graph, GL, we simply set

kL =
1

|EL|
∑

(u,v)∈EL

||(u, v)||,

the average edge length. Typically we coarsen down to 2 vertices and 1 edge
and so k is set to the length of that edge.

2.3.5 Convergence

We retain the ‘cooling schedule’ used in the original FR algorithm. Notice from
Figure 1 that when the positions are updated, the maximum movement is limited
by the value t (or temperature) and that t is reduced at the end of each iteration
of the outer loop. This idea, drawn from a graph-drawing algorithm due to
Davidson & Harel, [1] and based on simulated annealing, allows large movements
(high temperature t) at the beginning of the iterations but progressively reduces
the maximum movement as the algorithm proceeds (and the temperature falls).
Fruchterman & Reingold do not give the exact cooling schedule that they use,
although they do recommend a two phase scheme, first cooling rapidly and
steadily (possibly linearly) and the second phase at a constant low temperature.
Here for simplicity we use the scheme ti = λti−i, or in pseudo-code

function cool(t) := begin return λt end

which operates similarly (i.e., initial rapid decay and a slow tail-off) but only
involves one parameter, λ. After experimentation we then set t0 = kl at each
level l and the algorithm is then deemed to have converged when the movement
of every vertex is less than some tolerance, tol, times kl. Again after extensive
experimentation we set tol = 0.01. This also allows us to avoid explicitly setting
any maximum number of iterations since eventually the temperature will drop
below tol·kl and so there is an implicit limit.

By varying the cooling rate, λ, and measuring performance against runtime
for a range of values of λ, we are able to compare different algorithms in a
more meaningful way (see §3.2). However in the examples following we then
recommend a value of λ = 0.9 and this means that all movement ceases at
iteration i where 0.9i < 0.01 or in other words after 44 iterations. This is close
to the 50 iterations recommended in the original FR algorithm, [7].

2.3.6 Coincident vertices

The algorithm needs minor exception handling if two vertices are found to be in
exactly the same position. This can occasionally occur during the execution of
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the algorithm but it also always happens when the code commences on a graph
Gl, having calculated the layout on Gl+1, since we initially place the vertices
in a cluster at the same position as the cluster. In these cases the vertices
are simply treated as if they were a small distance apart (the actual direction
generated randomly with the distance no more than 0.001 · k) and the forces
calculated accordingly. This allows us to extend the layout of one graph to its
parent without any additional sophisticated mechanism.

2.4 Reducing the complexity

It is fairly clear from the description of the algorithm that the placement com-
plexity for each iteration on graph Gl(Vl, El) is O(|Vl|2 + |El|). For the types
of sparse graphs in which we are interested, the |Vl|2 heavily dominates this
expression and we therefore use the FR grid variant for reducing the run-times,
[7]. Their motivation was that over long distances the repulsive forces are suf-
ficiently small to be neglected. If we set R to be the maximum distance over
which repulsive forces will act we can then modify the algorithm by changing
the global force calculation to:

function fr(x,w) :=
begin

if (x ≤ R) return −Cwk2/x;
else return 0.0;

end

In itself this modification will do little or nothing to speed up the calculation
as the complexity is still O(|Vl|2). However Fruchterman & Reingold, [7], showed
that if the domain is divided up into regular square cells (or cube shaped cells in
3D) of size R2 (or R3 in 3D) then each vertex will only be affected by repulsive
forces from vertices in its own and adjacent cells (including those diagonally
adjacent). To implement this efficiently we simply visit every vertex at the
start of each outer loop and add each to a linked list of vertices for the cell to
which it belongs. Repulsive forces can then be calculated for each vertex by
using the linked lists of their own and adjacent cells. In practice this seems
to work very well although we note that the number of grid cells can greatly
exceed the number of vertices, particularly in 3D. However the implied memory
limitations are not difficult to deal with by storing only the non-empty cells in
a tree structure rather than storing all of them in an array.

We also note that, since we update vertex positions continuously throughout
the outer loop, vertices are quite likely to move from one cell to another and
thus not appear in the appropriate linked list. However we ignore the possible
inaccuracies and do not transfer them during the course of an iteration and in
practice it does not seem to matter.

Finally we must decide what value to give to R. In the original FR algorithm
the value R = 2k was used, but for the larger graphs in which we are interested,
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this did not prove sufficient to ‘untangle’ them in a global sense. Unfortunately
the larger the value given to R the longer the algorithm takes to run and so
although assigning R = 20k gave better results, it did so with a huge time
penalty. Fortunately, however, the power of the multilevel paradigm comes
to our aid once again and we can make R a function of the level l. Thus
for the initial coarse graphs we can set Rl to be relatively large and achieve
some impressive untangling without too much cost (since |Vl| is very small for
these graphs). Meanwhile, for the final large graphs, when most of the global
untangling has already been achieved we can make Rl relatively small without
penalising the placement. In fact, provided this parameter is not too small it
should be very robust (since it just determines a cut off point for tiny repulsive
forces) and because the first such schedule that we tried worked very well, we
have not experimented further.

The value that we use, therefore, is Rl = 2(l + 1)kl for each graph Gl. In
this expression l is just the graph number where G0 is the original graph and
Gl the graph after l coarsenings. Conveniently this also replicates the choice of
R = 2k for G0 in the original single-level FR algorithm.

2.5 Complexity analysis

It is not easy to derive complexity results for the algorithm but we can state
some bounds. Firstly the number of graph levels, L, is dependent on the rate
of coarsening. At best the number of vertices will be reduced by a factor of 2 at
every level (if the code succeeds in matching every vertex with another one) and
in the worst case, the code may only succeed in matching 1 vertex at every level
(e.g. if the graph is a star graph, a ‘hub’ vertex connected to every other vertex
each of which is only connected to the hub). Thus we have log2 |V | ≤ L < |V |.
This probably indicates that the algorithm is not well suited to graphs with a
small diameter relative to their size (such as star graphs) and in fact for the
examples given in Section 3 the coarsening rate is close to 2.

The matching & coarsening parts of the algorithm are O(|Vl|+ |El|) for each
level l but in fact the total runtime is heavily dominated by the FDP algorithm.
Using the above simplification (§2.4) of neglecting long range repulsive forces we
can see that each iteration of the FDP algorithm is bounded below by O(|Vl|+
|El|) although with a large coefficient. In fact if the graph is dense, or in the
worst case a complete graph, it may be that this is still O(|Vl|2+|El|), dependent
on the relative balance of attractive & repulsive forces. However, we suspect
that no FDP algorithm is appropriate for dense graphs because the minimal
energy state corresponds to a tightly packed ‘hair-ball’ and so no structure is
discernible in the drawing.

In summary the total complexity at each level is close to O(|Vl| + |El|) for
sparse graphs and the runtime is heavily dominated by the FDP iterations.

Finally consider the FDP algorithm used, without coarsening, on a given
sparse graph of size N (i.e., standard single-level placement) and compare it
with multilevel placement (MLFDP) used on the same graph. Let Tp be the
time for the FDP algorithm to run on the graph and for MLFDP let Tc be



C. Walshaw, Multilevel Force-Directed Drawing , JGAA, 7(3) 253–285 (2003)266

the time to coarsen and contract it. If we suppose that the coarsening rate
is close to 2 (which is true for most of the examples below) then for MLFDP
this gives us a series of problems of size N,N/2, . . . , N/N whilst the (almost)
linear complexity for the placement scheme at each level gives the total runtime
for MLFDP as Tc + Tp/N + . . . + Tp/2 + Tp. In all the examples we have
tested Tc � Tp and so we can neglect it giving a total runtime of approximately
Tp/N + . . . + Tp/2 + Tp ≈ 2Tp. In other words MLFDP should take only
twice as long as FDP to run (and yet in the examples below achieves far better
results). In fact the final level of the MLFDP algorithm is likely to already have
a very good initial layout which means that it should run even faster than FDP
although this is neutralised somewhat by the fact that the coarsening rate is
normally somewhat less than 2. Nonetheless this factor of 2 is a good ‘rule of
thumb’ and note that if the chosen FDP algorithm were O(N2) or even O(N3)
then a similar analysis suggests that the MLFDP runtime would be substantially
less than twice that of FDP.

3 Experimental Results

We have implemented the algorithms described here within the framework of
JOSTLE, a mesh partitioning software tool developed at the University of
Greenwich1. We illustrate and test these schemes in a variety of ways and
on a large number of problem instances including a suite of small random pla-
nar graphs together with some much bigger graphs from genuine applications.
Firstly in §3.1 we demonstrate the multilevel scheme with an extended example
of the technique in action. Next in §3.2 we present the results from extensive
tests which show algorithmic performance against runtime and compare the be-
haviour of single-level and multilevel versions. In §3.3 we then present a test of
runtime complexity and finally in §3.4 highlight the multilevel algorithm with
some detailed individual layouts.

The experiments were all carried out using a 1 GHz Pentium III with 256
Mbytes of memory running Linux. (Although this is three times faster than the
processor used for our original testing in [19], differences in floating point per-
formance mean that it only runs about twice as fast on this sort of application.
Other differences in runtime result from changes in the algorithms that we have
made since the previous paper.)

3.1 An extended example

In this section we demonstrate in more detail how the multilevel scheme works.
Figure 4 shows the original layout of a small mesh-based graph, 516 (with 516
vertices), drawn from a computational mechanics problem, and (lightly shaded)
the underlying triangular mesh. Typically in such graphs the vertices can ei-
ther represent mesh nodes (the nodal graph), mesh elements (the dual graph),

1freely available for academic and research purposes under a licensing agreement from
http://www.gre.ac.uk/jostle
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Figure 4: The original layout of 516 also showing the underlying triangular mesh
elements

a combination of both (the full or combined graph) or some other special pur-
pose representation. In this case the graph is a dual graph where each vertex
represents a triangular element.

Table 1: The sizes of the coarsened graphs of 516
l 0 1 2 3 4 5 6 7 8 9

|Vl| 516 288 156 86 46 24 13 7 4 2
|El| 729 501 319 190 97 48 23 9 3 1

The MLFDP algorithm was applied to this problem (ignoring the existing
layout) and Table 1 lists the sizes of the graphs, G1(V1, E1) to G9(V9, E9),
constructed by the coarsening. Notice that |Vl| ≥ |Vl−1|/2 since no more than
two vertices are clustered together and so the graph cannot shrink by more
than a factor of two. The initial layout is computed by placing the two vertices
of G9 at random and setting the natural spring length, k, to be the distance
between them. Starting from Gl = G8 the layout is extended from Gl+1, by
simply placing vertices at the same position as the cluster representing them in
the coarser graph, and then refined.

Figure 5(a) shows the final layout on G4 and it can been clearly seen that,
although over 10 times smaller than the original, the layout is already beginning
to take shape. Figures 5(b)-(d) meanwhile illustrate the placement algorithm
on G2. Figure 5(b) shows the initial layout as extended from G3 and with
many of the vertices coincident whilst Figure 5(c) then shows the layout after
the first iteration and where the coincident vertices have been pushed apart.
Figure 5(d) finally shows the layout after the placement algorithm has converged
for G2. Notice an important feature of the multilevel process (common with
the partitioning counterpart) that the final layout (partition), does not differ
greatly from the initial one and hence the placement scheme at each level need
not be very powerful in a global sense, since the multilevel framework seems to
impart this property. Figure 5(e) shows the final layout on the original graph,
G0. The small kink arises from the hole in the graph which distorts the layout
slightly, but in general the final drawing is excellent. Finally note that the
MLFDP algorithm took less than half a second to compute this layout (this is
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the time for the entire algorithm including reading the problem, coarsening and
placement at each level).

For comparison, Figure 5(f) shows the placement algorithm used on a ran-
dom initial layout of the same graph (in other words as the standard single-level
placement algorithm, FDP). Possibly the algorithm is not well tuned for this
problem, but what can be seen is that although the micro structure of the graph
has been reconstructed reasonably well (at least this can be seen by examining
the layout in more detail than Figure 5(f) allows), the single-level placement
has not been able to ‘untangle’ the graph in a global sense. In fact, by adjusting
the cooling schedule so that the algorithm runs for at least 2,150 iterations, the
single-level scheme can achieve a similar layout to that shown in Figure 5(e);
however this takes 9.76 seconds to run, about twenty times longer than the 0.48
seconds required by the multilevel scheme. We believe that this at least hints
at the power of the multilevel framework.

(a) MLFDP, G4, final iteration (b) MLFDP, G2, iteration 0

(c) MLFDP, G2, iteration 1 (d) MLFDP, G2, final iteration

(e) MLFDP, G0, final iteration (f) FDP, final iteration

Figure 5: The multilevel algorithm illustrated for the graph 516

3.2 Comparison of single-level and multilevel algorithms

Although anecdotal evidence (above and in [19]) suggests that the multilevel
framework can significantly enhance force-directed placement, we test this con-
clusion more thoroughly by comparing algorithmic performance on two test
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suites. The first suite2 consists of 200 randomly generated planar graphs origi-
nally constructed to benchmark the GDT3 software. There are 20 graphs each of
size |V | = 10, 20, . . . , 100 and we have subdivided the suite into two subclasses:
100 tiny graphs with 10 ≤ |V | ≤ 50 and 100 small graphs with 60 ≤ |V | ≤ 100.

Table 2: The test suite of mesh-based graphs
size degree MLFDP placement (λ = 0.9)

graph |V | |E| max min avg crossings time (secs.)
140 140 199 3 2 2.84 0 0.12
grid1 252 476 4 2 3.78 121 0.29
399 399 573 3 1 2.87 0 0.38
rj20 400 760 4 2 3.80 0 0.42
516 516 729 3 1 2.83 0 0.48
771 771 1133 3 1 2.94 0 0.86
788 788 1123 3 2 2.85 90 0.78
mesh1024 1024 1504 3 2 2.94 0 1.18
dime01 1095 1570 3 2 2.87 34 1.03
sierpinski06 1095 2187 4 2 3.99 0 0.81
grid2 3296 6432 5 2 3.90 0 3.82
3elt 4720 13722 9 3 5.81 3391 7.57
uk 4824 6837 3 1 2.83 116 5.02
4970 4970 7400 3 2 2.98 0 6.86
dime06 5343 7836 3 2 2.93 295 5.53
ukerbe1 5981 7852 8 2 2.63 374 9.48
whitaker3 9800 28989 8 3 5.92 0 11.48
sierpinski08 9843 19683 4 2 4.00 158 7.71
t10k 10027 14806 3 2 2.95 0 10.65
crack 10240 30380 9 3 5.93 0 13.31

The second suite comprises 20 much larger planar graphs, listed in Table 2,
and mostly drawn from genuine examples of computational mechanics meshes.
The Table gives their sizes (|V | & |E|) and the maximum, minimum & average
degree of the vertices. It also shows the number of edge crossings and runtime
required for a layout produced by the multilevel algorithm (using the cooling
rate, λ = 0.9, suggested below, §3.3). Once again we have split the suite into
two subclasses: 10 small mesh-based graphs of between 100 and around 1,000
vertices and 10 medium sized with between 1,000 to around 10,000 vertices.
Note that although these graphs are all planar, some of them (in particular
grid1, dime01, 3elt & dime06) are exceptionally difficult to draw with a planar
layout because of extreme variations in mesh density. Meanwhile sierpinski06
& sierpinski08, despite their regular local structure, contain large holes which
add to the drawing complexity. Both of these difficulties are explained further
and illustrated in §3.4.

We use the test suites to compare three different algorithms: FDP0, the
original FR algorithm (or as close as we can get to it); FDP, our version of that
algorithm; and MLFDP, the multilevel version of FDP. We have also tested

2available from http://www.dia.uniroma3.it/∼gdt/testsuite/GDT-testsuite-BUP.tgz
3graph-drawing toolkit, see http://www.dia.uniroma3.it/∼gdt/
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MLFDP0, the multilevel version of FDP0, but since it always seems to perform
worse than MLFDP we do not present any results for it.

The variants are differentiated by parameter settings defined as follows (in
approximate order of importance):

FDP0 FDP MLFDP
Posn := OldPosn Posn := NewPosn Posn := NewPosn

t0 := 0.1
d
√

A t0 := k t0 := kl

k := d
√

A/|V | k := 1
|E|

∑
e∈E

||e|| kL := 1
|E|

∑
e∈E

||e||
kl :=

√
4
7
· kl+1 l = 0, . . . , L − 1

Thus for FDP0 (the original FR algorithm) the updating is based on vertex
positions at the start of the loop rather than their current positions (see §2.3.1).
The initial temperature is then given by t0 = 0.1 d

√
A where A is the area of the

initial layout and d (= 2, 3) the dimension of the layout we wish to compute.
Fruchterman & Reingold actually suggest t0 as one tenth of the width of the
drawing but since we generate the initial positions by random placement in the
region [0, 1]d, for 2D drawings this amounts to the same thing. Similarly the
original scheme uses k =

√
A/|V | but for 3D drawings this should naturally be

k = 3
√

A/|V | (where A is then the volume of the region) to be dimensionally
correct.

We compare the three algorithms by looking at how close each can come to
some notionally ‘optimal’ layout in a given time. Although it is impossible to
define an optimal drawing of any graph (because this is very much a subjective
choice), nonetheless studies with real users have indicated that ‘reducing the
number of edge crossing is by far the most important aesthetic’, [16], and we use
this measure. Furthermore in order to compare different drawing algorithms it is
necessary to bear in mind that for optimisation schemes such as these, typically
the longer an algorithm is allowed for refinement, the better the layout it is
likely to achieve. It is therefore insufficient to choose fixed parameter settings
and compare results since the runtimes of the different algorithms are likely to
be very different. We thus compare the algorithms over a range of different
runtimes and fortunately, as described in §2.3.5, the cooling schedule, and in
particular the cooling rate, λ, allows us an easy method to do this.

To assess a given algorithm then, we measure the runtime and solution
quality (number of edge crossings) for a chosen group of problem instances and
for a variety of values of λ. For problem instance p, at cooling rate λ, this
gives a pair, Qλ,p, the solution quality found, and Tλ,p, the runtime. We then
normalise the runtime values and average over all problem instances to give a
single data point of averaged solution quality, Qλ, and runtime, Tλ, for a given
cooling rate λ. By using several cooling rates, λ, we can then plot Qλ against
Tλ to give an indication of algorithmic performance over those instances.

Typically one might think of normalising solution quality by dividing the
results by the quality of the optimal (or best known) solution, e.g. as in [20].
However all of the test graphs in this section are known to be planar and so an
optimal layout (at least in terms of the performance measure) contains no edge
crossings (i.e., quality 0). An alternative normalisation could be the number of
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edges in each graph, |E|, or even the number of edges squared since presumably
|E|2 is the maximum possible number of edge crossings. However we have not
used either of these and, since the graphs in each subclass do not exhibit too
much variation in size, we do not normalise the solution quality. The time
normalisation is more simple and is calculated by Tλ,p/TA

p where TA
p is the

runtime on an instance p for some well known reference algorithm, A. In this
case we use A = FDP0 with λ = 0.9.

To summarise then, for a set of problem instances P , we plot averaged
solution quality Qλ against averaged normalised runtime Tλ for a variety of
cooling rates, λ, and where:

Qλ =
1
|P |

∑
p∈P

Qλ,p , Tλ =
1
|P |

∑
p∈P

Tλ,p

TA
p

.

The particular cooling rates that we used for the tests shown here were

λ = 0.5, 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 0.998, 0.999

for MLFDP and additionally (because of the factor of two runtime overhead
for MLFDP, §2.5) λ = 0.9995 for FDP0 and FDP. In each case the runtime
measurement includes reading in the problem, output of the solution and any
initialisation required including an initial solution construction algorithm for
the single-level local search schemes. It does not, however, include the time to
count the edge crossings which forms no part of the algorithm and is only used
here as a post-processed performance measure.
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Figure 6: Plots of algorithmic behaviour on the random graphs

Figures 6 & 7 show the results on the two test suites and illustrate graph-
ically the behaviour of the three algorithms. First of all we can see that the
solution quality for FDP, our version of the FR algorithm, is far better than
that for the original, FDP0. The parameter settings certainly contribute to this
improvement and hence this is a slightly unfair test for the original FR algo-
rithm; firstly because Fruchterman & Reingold did not give complete parameter
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Figure 7: Plots of algorithmic behaviour on the mesh-based graphs

settings and secondly because, even for those that they did give, our parameter
settings were partially tuned on this set of problem instances and hence are
likely to be more appropriate. On the other hand extensive testing of different
parameter combinations revealed that by far the most significant contribution
to the difference between FDP and FDP0 was the fact that the positions are
updated continuously rather than at the end of every outer iteration (see §2.3.1
for more details).

Next, comparing the single-level FDP algorithm with the multilevel version,
we see that MLFDP can also significantly enhance the scheme and that the
benefits increase with graph size. This is perhaps not a surprise since there is
a much greater potential for global tangling in large graphs (rather than those
with less than 50 vertices) and hence the multilevel scheme is more likely to
be of assistance. Furthermore the larger the graph, the more coarsening, and
hence the more refinement at different levels, takes place.

Looking at the curves in more detail in fact we see that for the random
graphs, Figure 6, the MLFDP & FDP algorithms appear to have approximately
the same asymptotic limit in solution quality. However the MLFDP curves
bottom out more quickly.

The mesh-based graphs demonstrate this difference even more graphically
in Figure 7 (where note that we have offset the x-axis away from 0 to avoid
confusion with the MLFDP curve). MLFDP reaches its asymptotic limit almost
immediately (for λ ≈ 0.9) and it is not clear whether FDP can ever reach
the same limit even after excessive runtimes (e.g. the 9,000 or so iterations
represented by the final point on the FDP curves). Furthermore, even though
the asymptotic limits for MLFDP & FDP do not seem that different, a look at
individual layouts reveals that the single-level algorithm has not really untangled
the graph properly. Of course the mesh-based test graphs are well structured
locally and so we do not claim that the results would necessarily carry over to
other graph types. On the other hand with such structure one might imagine
that this sort of graph should be the easiest for a single-level force-directed
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approach to handle and that FDP0 & FDP should be at their best for this
suite.

Figure 7(a) demonstrates one further point; since the schemes are not di-
rectly trying to minimise the number of edge crossings, it is possible for the
quality to depreciate rather than improve monotonically.

Finally the plots also suggest that the approximate runtime factor of two,
suggested in §2.5, is fairly good. The final point on the FDP curve corresponds to
λ = 0.9995 or 9,210 iterations whilst the final point on the MLFDP corresponds
to λ = 0.999 or 4,604 iterations per level and, as can be seen, in all four plots
these two points are fairly close together. Note that this analysis does not apply
to FDP0 because the initial temperature, t0, is different.

3.3 Runtime complexity testing

From here on the tests are carried out at fixed cooling rate λ = 0.9 which we
have found to be a good compromise between solution quality and runtime since
it is close to the turning point in the MLFDP curves of Figures 6 & 7.

With this parameter fixed we then tested algorithmic complexity by com-
paring runtime against graph size using a set of 20 dual graphs, dime01, . . . ,
dime20, ranging in size from |V | = 1, 095 to |V | = 224, 843 (note that some of
these are used under different names in [19] and Laplace.0 ≡ dime11, Laplace.2
≡ dime13, . . . , Laplace.9 ≡ dime20). They are somewhat unrepresentative, but
of interest for complexity testing because each mesh is formed from the previ-
ous one using mesh refinement and so the underlying geometry is unchanged.
Also, because they are duals of triangular meshes (as is 516 in §3.1), the average
vertex degree approximately 3 which means that the number of edges for each
graph scales linearly with the number of vertices. They are planar, but once
again difficult for a spring-based placement method to draw because of the high
variation in graph density (see §3.4 for further details). Two of them, dime01
& dime06, are also used in the mesh test suite (listed in Table 2 in §3.2), whilst
another, dime20, is shown in §3.4.
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Figure 8: A plot of runtime against graph size
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Figure 8 shows a plot of runtime against graph size and, as can clearly be
seen, the complexity is almost linear confirming one of the conclusions in §2.5.
Furthermore, the runtime for the largest graph, dime20, of nearly a quarter of
a million vertices is only 264 seconds.

3.4 Further examples

In this final results section we highlight the multilevel scheme with some inter-
esting specific layouts that it has produced (including some for graphs which
have a known layout). We discuss each example graph in a little more detail
in the following sections but Table 3 gives a summary in the form of a list of
the graphs, their sizes (|V | & |E|), the maximum, minimum & average degree
of the vertices, the time that the multilevel algorithm required to produce a
layout (and whether it was computed in 2D or 3D) and a short description.
Although all of the layouts were produced automatically, for the 3D examples,
included to illustrate further points, the viewpoint has been selected manually
by rotating the final drawing (the choice of optimal viewpoints is itself a subject
for research, e.g. [22]).

Table 3: A summary of the illustrated graphs

size degree placement
graph |V | |E| max min avg time (secs.) graph type
c-fat500-10 500 46627 188 185 186.5 5.6 (2D) random clique test
4970 4970 7400 3 2 3.0 6.4 (2D) 2D dual
4elt 15606 45878 10 3 5.9 24.3 (2D) 2D nodal
finan512 74752 261120 54 2 7.0 363.8 (2D) linear programming
dime20 224843 336024 3 2 3.0 264.3 (2D) 2D nodal
data 2851 15093 17 3 10.6 6.6 (3D) 3D nodal
add32 4960 9462 31 1 3.8 12.5 (3D) 32-bit adder
sierpinski10 88575 177147 4 2 4.0 136.7 (3D) 2D ‘fractal’
mesh100 103081 200976 4 2 3.9 431.1 (3D) 3D dual

c-fat500-10: Despite the suggestion that FDP algorithms are best suited to
sparse graphs, §2.5, Figure 9(a) shows a dense regular graph (originally
generated to test algorithms for the maximum clique problem). The 2D
layout took around 6 seconds to compute and demonstrates that here the
MLFDP algorithm has captured the symmetries nicely.

4970: The next example, Figure 10(a), is a planar dual graph derived from a
mesh (also used in the mesh-based test suite, §3.2), originally constructed
to highlight a problem in the mesh generator which created it. In fact
by most definitions this would be considered a very poor mesh as the
triangles become extremely long and thin towards the bottom left hand
corner. Figure 10(b) shows the (2D) layout calculated by the MLFDP
algorithm and is useful in that, by trying to equalise the edge lengths, the
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drawing has actually revealed far more of the graph than was originally
shown. This layout took around 6 seconds to compute.

4elt: A far more challenging task for any graph-drawing algorithm which seeks
to equalise edge lengths is shown in Figure 11 (also showing the detail at
the centre of the mesh). This is a planar nodal graph (a larger and more
complex version of the 3elt graph used in the mesh-based test suite, §3.2)
which represents the fluid around a 4 element airfoil. However, because
the mesh has been created to study fluid behaviour close to the airfoil, the
mesh exhibits extreme variations in nodal density and a far-field (the outer
border of the mesh) containing very few edges. Figure 12(a) shows the
(2D) layout generated by the MLFDP algorithm and illustrates some of
the difficulties. Firstly the original outer border has become the smallest of
the holes whilst the outer border of the new layout is actually the perimeter
of one of the original holes. Furthermore, the perimeters of the other holes
exhibit buckling and folding as too many vertices have to be crammed into
a space constrained in size by the rest of the graph. Possibly we could
eliminate some of this folding if we increased the strength of the repulsive
forces, but the layout is nonetheless fairly good and arguably shows the
whole of the graph at a single resolution better than the original layout.
Figure 12(b) shows some of the folding in more detail and demonstrates
that the micro structure is well captured. The runtime of the MLFDP
algorithm for 4elt was around 24 seconds.

finan512: Perhaps the centre-piece of these examples is taken from a linear
programming matrix with around 75,000 vertices and for which no existing
layout is known. Figure 13(a) shows the highly illuminating layout found
by the MLFDP algorithm; the graph is revealed to have a fairly regular
structure and consists of a ring with 32 ‘handles’ each of which has a
number of fronds protruding. Figure 13(b) then shows a detailed view of
one of the handles. It was an extremely useful picture from the point of
view of partitioning the graph because it explained why there are good
natural partitions of the graph (provided that the ring is cut between the
handles). This 2D layout took about 6 minutes to compute.

Note that for this particular drawing we used a 2D layout (although a
3D layout looks identical from the right viewpoint) and this example il-
lustrates well the memory problems that can arise with the grid based
simplification of repulsive forces. As explained in §2.4 this modification
divides the region into square or cube shaped cells with dimensions equal
to some multiple of k. If a 3D layout is chosen and the ring happens by
chance to more or less align itself with one of the x, y or z axes, then a
box containing the graph is relatively flat and so the number of grid cells
is not unreasonable. In the worst case however, if the ring happens to
lie diagonally across all three axes then the box containing the graph will
be cube shaped and the number of grid cells (most of which are empty)
enormous relative to |V |. This reinforces our suggestion of using sparse
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data technology to only allocate memory for non-empty grid cells.

dime20: This is the largest graph which we have tested (also included as part
of the complexity testing, §3.3, and, in smaller versions, as part of the
mesh-based test suite, §3.2). Once again the original mesh, Figure 14(a),
exhibits extreme variations in mesh density although it is perhaps easier
to draw than 4elt. The runtime to calculate the layout, shown in Fig-
ure 14(b), for this huge graph was only 264 seconds (i.e., less than 41

2
minutes).

data: This is the first 3D layout we have shown and illustrates some interest-
ing points. Figure 15(a) shows the original nodal graph which despite
the appearance of being 2D is actually a segment of the thin shell of
some aeronautical body. Figure 15(b) shows the 3D layout computed by
the MLFDP algorithm which, despite looking nothing like the original,
demonstrates some very interesting features not least of which are the
three ‘panels’ only weakly connected to the rest of the mesh. Until seeing
this layout we had no idea of the existence of such ‘panels’ – the original
layout certainly gives no hint of them – although they could have consid-
erable impact on any graph-based algorithm. This layout took around 6
seconds to compute.

add32: The next graph is a representation of an electronic circuit, a 32-bit
adder, for which we do not know of an existing layout. Figure 16(a) shows
the results of the 3D MLFDP algorithm whilst Figure 16(b) shows a detail
of the micro structure. Although the graph is not a tree (because of the
existence of loops) the placement has clearly demonstrated its tree like
nature with many outlying branches or fronds. The 3D layout took about
12 seconds to compute.

sierpinski10: Figure 17(a) shows the original layout of sierpinski10, a self-
similar ‘fractal’ type structure, constructed by splitting equilateral trian-
gles of the previous graph in the series into four (two smaller examples,
sierpinski06 & sierpinski08, are used in §3.2). This is a challenging prob-
lem for the drawing algorithms because of the large holes (so that repulsive
forces do not act as uniformly as in a mesh-derived graph such as 4970).
Here we have chosen to draw a 3D layout, shown in Figure 17(b), despite
the fact that the original graph is planar. This helps to prevent vertices
from becoming trapped in local optima (as discussed by Fruchterman &
Reingold, [7]) since repulsive forces need not push vertices through groups
of other vertices. The 3D layout adds approximately an additional 50%
time penalty (as might be expected) but the runtime is still less than 21

2
minutes. Finally note that the bottom left-hand corner is not compacted
in on itself, it is merely bent backwards along the line of vision; rotating
the picture reveals this corner but hides other details. It is unfortunate
that the drawing procedure has not managed to map the graph to a flat
plane, but with an interactive visualisation tool this does not matter too
much.
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mesh100: The final graph in this section is one of the largest that we have ex-
perimented with, over 100,000 vertices, and illustrates one of the problems
that any graph-drawing algorithm faces. The graph is the dual of a 3D
tetrahedral solid mesh and as such, with none of the face information that
exists in the mesh, it is very difficult to draw meaningfully. Even in the
original layout, Figure 18(a), 3D solid objects are seen to be very difficult
to draw with a graph. Figure 18(b) shows the 3D MLFDP layout which
took just over 7 minutes to compute. It suffers from the same problems
as the original although it is splayed out because of the repulsive forces;
however the symmetry is captured nicely.

Figure 9: The graph c-fat500-10

(a) original layout as derived
from the mesh

(b) the layout computed by
multilevel placement

Figure 10: The graph 4970
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(a) original layout as derived
from the mesh

(b) detail of central region

Figure 11: The graph 4elt

(a) the layout computed by
multilevel placement

(b) detail of the folding

Figure 12: The graph 4elt
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(a) the layout computed by
multilevel placement

(b) detail of a “handle”

Figure 13: The graph finan512

(a) original layout as derived
from the mesh

(b) the layout computed by
multilevel placement

Figure 14: The graph dime20
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(a) original layout as derived
from the mesh

(b) the layout computed by
multilevel placement

Figure 15: The graph data

(a) the layout computed by
multilevel placement

(b) the multilevel layout – de-
tail

Figure 16: The graph add32
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(a) original layout (b) the layout computed by
multilevel placement

Figure 17: The graph sierpinski10

(a) original layout as derived
from the mesh

(b) the layout computed by
multilevel placement

Figure 18: The graph mesh100
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4 Summary and further research

We have described a multilevel algorithm for force-directed graph-drawing. The
algorithm does not actually operate simultaneously on multiple levels of the
graph (as, for example, a multigrid algorithm might) but instead, inspired by
the multilevel partitioning paradigm, refines the layout at each level and then
extends the result onto the next level down. The algorithm is fast, e.g. for sparse
graphs the runtime is about 12 seconds for a 2D layout of up to around 10,000
vertices and about 5-7 minutes for 75-100,000 vertices. At the time that the
algorithm was originally devised (2000) this was an order of magnitude faster
than existing single-level implementations of force-directed placement (e.g. 135
seconds for a 1,000 vertex sparse planar mesh-based graph in [18, pp. 421];
even taking into account the fact that the machine used for this calculation
was notionally 8 times slower this is still 16 times slower than similar examples
in Table 2 which took around 1 second). It also broadens the scope of phys-
ically based graph-drawing algorithms by imparting a more global element to
the layout and seems to work robustly on a range of different graphs. Further-
more, although the number of coarse graphs is typically O(log2 N), it only adds
an approximate factor of two runtime overhead to the force-directed algorithm
despite considerably enhancing the results. Finally it has sometimes been sug-
gested that it is unnecessary to draw large graphs as the human eye can not
distinguish more than about 500 vertices. However examples such as finan512
in §3.4 contradict this and indicate that graphs need to be drawn at the level
of the structure contained within them, although this may suggest that it is
fruitless to test drawing algorithms on very large random graphs (i.e., with no
structure).

So far we have tested the algorithm on a number of different graphs including
several derived from unstructured meshes which tend to be relatively homoge-
neous in both vertex degree and local adjacency patterns. An obvious source of
further research is to test the technique on graphs arising from different areas
(e.g. models of social or communications networks or the internet). Our algo-
rithm also allows vertex weights and although we have only tested this in the
context of the multilevel procedure, its use with weighted graphs might provide
further interesting insights. In addition we believe, partly because of our expe-
rience in dynamic repartitioning algorithms, that the multilevel process is well
suited to handling dynamically changing graphs and this looks to be a fruitful
topic for future research. We have not addressed disconnected graphs but feel
that this requires only minor modifications. Finally we suspect that further
work on some of the parameters of the algorithm would enhance its robustness
and efficiency. In particular the calculation of the natural spring length k seems
almost too simple to be effective.

We have not particularly tried to address graphs for which the technique
might not work. It is likely that very dense graphs, or even those such as
mesh100 which have a dense substructure, are never going to be good candidates
for any graph-drawing algorithm, and ours is no exception. It is also likely that
graphs of small diameter may not particularly suit the coarsening process (see
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§2.5) although it might be possible to develop modifications to the algorithm
which could deal with hubs or star graphs (e.g. by contracting the whole star
in one step). In summary, however, we believe that the multilevel process can
accelerate and enhance FDP algorithms for a range of useful graphs and further
testing on different types of graph is an important subject for further research.
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