
Journal of Graph Algorithms and Applications
http://jgaa.info/

vol. 7, no. 2, pp. 141–180 (2003)

Deciding Clique-Width for Graphs of Bounded
Tree-Width

Wolfgang Espelage Frank Gurski Egon Wanke

Department of Computer Science
D-40225 Düsseldorf, Germany

http://www.cs.uni-duesseldorf.de/
{espelage,gurski,wanke}@cs.uni-dueseldorf.de

Abstract

We show that there exists a linear time algorithm for deciding whether
a graph of bounded tree-width has clique-width k for some fixed integer k.

Communicated by Giuseppe Liotta and Ioannis G. Tollis: submitted October 2001;
revised July 2002 and February 2003.

The work of the second author was supported by the German Research Association

(DFG) grant WA 674/9-2.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 142

1 Introduction

The clique-width of a graph is defined by a composition mechanism for vertex-
labeled graphs, see [CO00]. The operations are the vertex disjoint union G⊕H
of two graphs G and H, the addition of edges ηi,j(G) between vertices labeled
by i and vertices labeled by j, and the relabeling ρi→j(G) of vertices labeled
by i into vertices labeled by j. The clique-width of a graph G is the minimum
number of labels needed to define G.

Graphs of bounded clique-width are interesting from an algorithmic point
of view. A lot of NP-complete graph problems can be solved in polynomial
time for graphs of bounded clique-width if the composition of the graph is
explicitly given. For example, all graph properties which are expressible in
monadic second order logic with quantifications over vertices and vertex sets
(MSO1-logic) are decidable in linear time on graphs of bounded clique-width,
see [CMR00]. The MSO1-logic has been extended by counting mechanisms
which allow the expressibility of optimization problems concerning maximal or
minimal vertex sets, see [CMR00]. All these graph problems expressible in
extended MSO1-logic can be solved in polynomial time on graphs of bounded
clique-width. Furthermore, a lot of NP-complete graph problems which are not
expressible in MSO1-logic or extended MSO1-logic like Hamiltonicity and a lot
of partitioning problems can also be solved in polynomial time on graphs of
bounded clique-width, see [EGW01, KR01, Wan94].

The following facts are already known about graphs of bounded clique-width.
If a graph G has clique-width at most k then the edge complement G has clique-
width at most 2k, see [CO00]. Distance hereditary graphs have clique-width at
most 3, see [GR00]. The set of all graphs of clique-width at most 2 is the set of
all cographs. The clique-width of permutation graphs, interval graphs, grids and
planar graphs is not bounded by some fixed integer, see [GR00]. An arbitrary
graph with n vertices has clique-width at most n− r, if 2r < n− r, see [Joh98].

One of the central open questions concerning clique-width is determining
the complexity of recognizing and finding a decomposition with clique-width
operations of graphs of clique-width at most k, for fixed k ≥ 4. Clique-width
of at most 2 is decidable in linear time, see [CPS85]. Clique-width of at most
3 is decidable in polynomial time, see [CHL+00]. The recognition problem for
graphs of clique-width at most k is still open for k ≥ 4. The complexity of the
minimization problem where k is additionally given to the input is also open,
i.e., not known to be NP-complete nor known to be solvable in polynomial time.

A famous class of graphs for which a lot of NP-complete graph problems
can be solved in polynomial time is the class of graphs of bounded tree-width,
see Bodlaender [Bod98] for a survey. For every fixed integer l, it is decidable in
linear time whether a given graph G has tree-width l, see [Bod96]. All graph
properties expressible in monadic second order logic with quantifications over
vertex sets and edge sets (MSO2-logic) are decidable in linear time for graphs of
bounded tree-width by dynamic programming, see [Cou90]. The MSO2-logic has
also been extended by counting mechanisms to express optimization problems
which can then be solved in polynomial time for graphs of bounded tree-width,

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 143

see [ALS91].
Clique-width seems to be “more powerful” than tree-width. Every graph of

tree-width at most l has clique-width at most 3 · 2l−1, see [CR01]. Since the
set of all cographs already contains all complete graphs, the set of all graphs
of clique-width at most 2 does not have bounded tree-width. In [GW00], it is
shown that every graph of clique-width at most k which does not contain the
complete bipartite graph Kn,n for some n > 1 as a subgraph has tree-width at
most 3k(n − 1) − 1.

An algorithm to decide a graph property on a graph of bounded tree-width
can simply be obtained by partitioning the set of all so-called l-terminal graphs
into a finite number of equivalence classes as follows. An l-terminal graph is a
graph with a list of l distinct vertices called terminals. Two l-terminal graphs
G and H can be combined to a graph G ◦ H by taking the disjoint union of
G and H and then identifying the i-th terminal of G with the i-th terminal of
H for 1 ≤ i ≤ l. They are called replaceable with respect to a graph property
Π if for all l-terminal graphs J the answer to Π is the same for G ◦ J and
H ◦ J . Replaceability is obviously an equivalence relation. A graph property Π
is decidable in linear time on a graph of bounded tree-width if there is a finite
number of equivalence classes with respect to Π for all l-terminal graphs and
all l ≥ 0. The linear time algorithm first computes a binary tree-decomposition
TD for G and then bottom-up the equivalence class for every l-terminal graph
G′ represented by a complete subtree T ′

D of TD. The equivalence class of G′

defined by subtree T ′
D with root u′ is computable in time O(1) from the classes

of the two l-terminal graphs defined by the two subtrees in T ′
D − {u′}, see also

[Arn85, ALS91, AP89, Bod97, Cou90, LW88, LW93].
In this paper, we prove that the graph property “clique-width at most k”

divides the set of all l-terminal graphs into a finite number of equivalence classes.
This implies that there exists a linear time algorithm for deciding “clique-width
at most k” for graphs of bounded tree-width. Since every graph of tree-width
l has clique-width at most 3 · 2l−1, there is also a linear time algorithm for
computing the “exact clique-width” of a graph of bounded tree-width by testing
“clique-width at most k” for k = 1, . . . , 3 · 2l−1. Note that it remains still open
whether the clique-width k property is expressible in MSO2-logic and whether
“clique-width at most k” is decidable in polynomial time for arbitrary graphs.

The paper is organized as follows. In Section 2 we define the clique-width
of vertex labeled graphs. Every graph of clique-width at most k is defined by a
k-expression X.

In Section 3, we define the k-expression tree of a k-expression. Every k-
expression defines a unique k-expression tree and every k-expression tree defines
a unique k-expression. We will mostly work with the expression tree instead
of the expression, because many transformation steps are easier to explain for
expression trees than for expressions.

In Section 4, we define a normal form for a k-expression. We show that for
every k-expression there is an equivalent one in normal form.

In Section 5, we define l-terminal graphs, for some nonnegative integer l, and

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 144

an equivalence relation on the set of all l-terminal graphs, called replaceability.
This equivalence relation is defined with respect to the graph property clique-
width at most k. If the relation has a finite number of equivalence classes, then
the graph property clique-width at most k is decidable in linear time on graphs
of tree-width at most l by dynamic programming algorithms.

In Section 6, we give an overview about the proof of the main result.
In Section 7, we show that every combined graph H ◦ J of clique-width at

most k can be defined by a k-expression in normal form whose expression tree
satisfies further special properties concerning the composition of H and J to
H ◦ J . Every of these special expression trees defines a connection tree for H.
The set of all connection trees for H is called the connection type of H. For fixed
integers k and l, there is only a fixed number of mutually different connection
trees and thus a fixed number of connection types.

In Section 8, we show that if two l-terminal graphs H1 and H2 define the
same connection type then they are replaceable with respect to property clique-
width at most k. This shows that the equivalence relation defined in Section 5
has a finite number of equivalence classes, which implies that graph property
clique-width at most k is decidable in linear time for graphs of bounded tree-
width.

2 Clique-width

We work with finite undirected graphs G = (VG, EG), where VG is a finite set of
vertices and EG ⊆ {{u, v} | u, v ∈ VG, u �= v} is a finite set of edges. A graph
J = (VJ , EJ) is a subgraph of G if VJ is a subset of VG and EJ is a subset of
EG ∩ {{u, v} | u, v ∈ VJ , u �= v}. J is an induced subgraph of G if additionally
EJ = {{u, v} ∈ EG | u, v ∈ VJ}. G and J are isomorphic if there is a bijection
b : VG → VJ such that for every pair of vertices u, v ∈ VG, {u, v} is an edge of
G if and only if {b(u), b(v)} is an edge of J . To distinguish between the vertices
of (non-tree) graphs and trees, we simply call the vertices of the trees nodes.

The notion of clique-width for labeled graphs is first defined by Courcelle
and Olariu in [CO00]. Let [k] := {1, . . . , k} be the set of all integers between 1
and k. A k-labeled graph G = (VG, EG, labG) is a graph (VG, EG) whose vertices
are labeled by a mapping labG : VG → [k]. The k-labeled graph consisting
of a single vertex labeled by some label t ∈ [k] is denoted by •t. A k-labeled
graph J = (VJ , EJ , labJ) is a k-labeled subgraph of G if VJ ⊆ VG, EJ ⊆ EG ∩
{{u, v} | u, v ∈ VJ , u �= v} and labJ(u) = labG(u) for all u ∈ VJ . G and J are
isomorphic if there is a bijection b : VG → VJ such that {u, v} ∈ EG if and only
if {b(u), b(v)} ∈ EJ , and for every vertex u ∈ VG, labG(u) = labJ(b(u)).

Definition 2.1 (Clique-width, [CO00]) Let k be some positive integer. The
class CWk of k-labeled graphs is recursively defined as follows.

1. The k-labeled graphs •t for t ∈ [k] are in CWk.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 145

2. Let G = (VG, EG, labG) ∈ CWk and J = (VJ , EJ , labJ) ∈ CWk be two
vertex disjoint k-labeled graphs. Then the k-labeled graph

G ⊕ J := (V ′, E′, lab′)

defined by V ′ := VG ∪ VJ , E′ := EG ∪ EJ , and

lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ
, ∀u ∈ V ′

is in CWk.

3. Let i, j ∈ [k], i �= j, be two distinct integers and G = (VG, EG, labG) ∈
CWk be a k-labeled graph then

(a) the k-labeled graph ηi,j(G) := (VG, E′, labG) defined by

E′ := EG ∪ {{u, v} | u, v ∈ VG, u �= v, lab(u) = i, lab(v) = j}
is in CWk and

(b) the k-labeled graph ρi→j(G) := (VG, EG, lab′) defined by

lab′(u) :=
{

labG(u) if labG(u) �= i
j if labG(u) = i

, ∀u ∈ VG

is in CWk.

An expression X built with the operations •t,⊕, ηi,j , ρi→j for integers t, i, j ∈
[k] is called a k-expression. To distinguish between the k-expression and the
graph defined by the k-expression, we denote by val(X) the graph defined by
expression X. That is, CWk is the set of all graphs val(X), where X is a
k-expression.

We say, a k-labeled graph G has clique-width at most k if G is contained in
class CWk, i.e., the set CWk is the set of all k-labeled graphs of clique-width at
most k. The clique-width of a k-labeled graph G is the smallest integer k such
that G has clique-width at most k.

We sometimes use the simplified notions labeled graph and expression for a
k-labeled graph and a k-expression, respectively. In these cases, however, either
k is known from the context, or k is irrelevant for the discussion.

An unlabeled graph G = (VG, EG) has clique-width at most k if there is
some labeling labG : VG → [k] of the vertices of G such that the labeled graph
G′ = (VG, EG, labG) has clique-width at most k. The clique-width of an un-
labeled graph G = (VG, EG) is the smallest integer k such that there is some
labeling labG : VG → [k] of the vertices of G such that the labeled graph
G′ = (VG, EG, labG) has clique-width at most k.

If X is a k-expression then obviously ρi→1(X) is a k-expression for all i ∈
[k], i > 1. For the rest of this paper, we consider an unlabeled graph as a labeled
graph in that all vertices are labeled by the same label, which is without loss
of generality label 1. This allows us to use the notation “graph” without any
confusion for labeled and unlabeled graphs.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 146

3 Expression tree

Every k-expression X has by its recursive definition a tree structure that is
called the k-expression tree T for X. It is an ordered rooted tree whose nodes
are labeled by the operations of the k-expression and whose arcs are directed
from the leaves towards the root of T . The root of T is labeled by the last
operation of the k-expression.

Definition 3.1 (Expression tree) The k-expression tree T for k-expression
•t consists of a single node r (the root of T) labeled by •t. The k-expression
tree T for ηi,j(X) and ρi→j(X) consists of a copy T ′ of the k-expression tree
for X, an additional node r (the root of T) labeled by ηi,j or ρi→j, respectively,
and an additional arc from the root of T ′ to node r. The k-expression tree T
for X1 ⊕ X2 consists of a copy T1 of the k-expression tree for X1, a copy T2 of
the k-expression tree for X2, an additional node r (the root of T) labeled by ⊕
and two additional arcs from the roots of T1 and T2 to node r. The root of T1

is the left child of r and the root of T2 is the right child of r.
A node of T labeled by •t, ηi,j, ρi→j, or ⊕ is called a leaf, edge insertion

node, relabeling node, or union node, respectively.

If integer k is known from the context or irrelevant for the discussion, then we
sometimes use the simplified notion expression tree for the notion k-expression
tree. The leaves of expression tree T for expression X correspond to the vertices
of graph val(X). For some node u of expression tree T , let T (u) be the subtree
of T induced by node u and all nodes of T from which there is a directed path
to u. Note that T (u) is always an expression tree. The expression X(u) defined
by T (u) can simply be determined by traversing the tree starting from the root,
where the left children are visited first. The vertices of G′ are the vertices of
G corresponding to the leaves of T (u). The edges of G′ and the labels of the
vertices of G′ are defined by expression X(u). For two vertices u, v of G′, every
edge {u, v} of G′ is also in G but not necessarily vice versa. Two equal labeled
vertices in G′ are also equal labeled in G but not necessarily vice versa. The
labeled graph G′ is denoted by G(T, u) or simply G(u), if tree T is unique from
the context. Figure 1 illustrates these notations.

4 Normal form

We next define a so-called normal form for a k-expression. This normal form
does not restrict the class of k-labeled graphs that can be defined by k-expres-
sions, but is very useful for the proof of our main result.

To keep the definition of our normal form as simple as possible, we enumerate
the vertices in a graph G = val(X) defined by some k-expression X as follows.
The single vertex in val(•t) is the first vertex of val(•t). Let G = val(Y1 ⊕ Y2).
If val(Y1) has n vertices and val(Y2) has m vertices, then for i = 1, . . . , n the
i-th vertex of G is the i-th vertex of val(Y1) and for i = n+1, . . . , n+m the i-th
vertex of G is the (i − n)-th vertex of val(Y2). The i-th vertex of val(ηi,j(Y))

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 147

X = ρ1→2(η2,3(((η1,2(•1 ⊕ •2)) ⊕ (η1,2(•1 ⊕ •2))) ⊕ •3))

X(u) = (η1,2(•1 ⊕ •2)) ⊕ (η1,2(•1 ⊕ •2))

T

u

T (u)G

G(T, u)

η
2,3

ρ
1 2

1 2

η
1,2

η
1,2

1 21 2

η
1,2

η
1,2

1 21 2 1 2

3

22 2 2

3

Figure 1: A 3-labeled graph G defined by a 3-expression X with 3-expression
tree T , and a 3-labeled graph G(T, u) defined by 3-expression X(u) with 3-
expression tree T (u)

and val(ρi→j(Y)) is the i-th vertex of val(Y). We say two expressions X and
Y are equivalent, denoted by X ≡ Y , if val(X) and val(Y) are isomorphic in
consideration of the order of the vertices, that is,

1. val(X) and val(Y) have the same number n of vertices,

2. the i-th vertex in val(X), 1 ≤ i ≤ n, has the same label as the i-th vertex
in val(Y), and

3. there is an edge between the i-th and j-th vertex in val(X), 1 ≤ i, j ≤ n,
if and only if there is an edge between the i-th and j-th vertex in val(Y).

Otherwise X and Y are not equivalent, denoted by X �≡ Y .
If two k-expressions X and Y are equivalent then they do not need to be

equal. If two k-labeled graphs val(X) and val(Y) defined by two k-expressions
X and Y are isomorphic (see the second paragraph of Section 2) then X and Y
do not need to be equivalent. Figure 2 shows an example.

Definition 4.1 (Normal form) Our normal form for k-expressions is defined
as follows.

1. The k-expression •t for some t ∈ [k] is in normal form.

2. If Y1 and Y2 are two k-expressions in normal form then the k-expression
ρin→jn (· · · ρi1→j1 (ηi′

n′ ,j′
n′ (· · · ηi′1,j′1

(Y1 ⊕ Y2) · · ·)) · · ·)

for i1, j1, . . . , in, jn, i′1, j
′
1, . . . , i

′
n′ , j′n′ ∈ [k] is in normal form if the fol-

lowing properties hold true.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 148

X1 = η2,3((η1,2(•1 ⊕ •2)) ⊕ •3) ≡ X2 = η1,2(•1 ⊕ (η2,3(•2 ⊕ •3)))

val(X1) :
1 2 3

1 2 3 val(X2) :
1 2 3

1 2 3

X3 = (η1,2(•2 ⊕ •1)) ⊕ •2 �≡ X4 = •2 ⊕ (η1,2(•1 ⊕ •2))

val(X3) :
2 1 2

1 2 3 val(X4) :
2 1 2

1 2 3

Figure 2: The small indices at the vertices represent their numbering with re-
spect to the corresponding k-expression. The expressions X1 and X2 are equiv-
alent but not equal. The labeled graphs val(X3) and val(X4) are isomorphic
but the expressions X3 and X4 are not equivalent.

(a) For every edge insertion operation ηi′
l′ ,j

′
l′
, 1 ≤ l′ ≤ n′,

ηi′
l′ ,j′

l′
(ηi′

l′−1
,j′

l′−1
(· · · ηi′1,j′1

(Y1⊕Y2) · · ·)) �≡ ηi′
l′−1

,j′
l′−1

(· · · ηi′1,j′1
(Y1⊕Y2) · · ·),

ηi′
l′ ,j′

l′
(Y1) ≡ Y1, and ηi′

l′ ,j′
l′

(Y2) ≡ Y2.

(b) For every relabeling operation ρil→jl
, 1 ≤ l ≤ n, graph

val(ρil−1→jl−1 (· · · ρi1→j1 (ηi′
n′ ,j′

n′ (· · · ηi′1,j′1
(Y1 ⊕ Y2) · · ·)) · · ·))

has a vertex labeled by il and a vertex labeled by jl, and
il �∈ {j1, . . . , jl−1}.

(c) For every pair of two distinct labels i, j ∈ [k], i �= j,

i. if val(Y1) has a vertex labeled by i and a vertex labeled by j then

ρil→jl
(· · · ρi1→j1 (ηi′

n′ ,j′
n′ (· · · ηi′1,j′1

(Y1 ⊕ Y2) · · ·)) · · ·)
�≡ ρil→jl

(· · · ρi1→j1 (ηi′
n′ ,j′

n′ (· · · ηi′1,j′1
(ρi→j(Y1) ⊕ Y2) · · ·)) · · ·)

and
ii. if val(Y2) has a vertex labeled by i and a vertex labeled by j then

ρil→jl
(· · · ρi1→j1 (ηi′

n′ ,j′
n′ (· · · ηi′1,j′1

(Y1 ⊕ Y2) · · ·)) · · ·)
�≡ ρil→jl

(· · · ρi1→j1 (ηi′
n′ ,j′

n′ (· · · ηi′1,j′1
(Y1 ⊕ ρi→j(Y2)) · · ·)) · · ·).

If X is a k-expression in normal form then the operations between two union
operations are ordered such that there are first the edge insertion operations
and after that the relabeling operations. Edges are inserted and vertices are
relabeled as soon as possible in the following sense. By Definition 4.1(2.(a)),

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 149

every edge insertion operation ηi′
l′ ,j

′
l′

inserts at least one edge between a vertex
of val(Y1) and a vertex of val(Y2) but no edge between two vertices of val(Y1) or
between two vertices of val(Y2). By Definition 4.1(2.(b)), a relabeling operation
ρil→jl

always relabels at least one vertex to some label already used by at least
one other vertex. Thus every relabeling operation decreases the number of
labels used by the vertices of the graph. Since none of the relabeling operations
ρil−1→jl−1 , . . . , ρi1→j1 relabels anything to il, every vertex is relabeled at most
once (between two union operations). The three properties, there is a vertex
labeled by il, there is a vertex labeled by jl, and il �∈ {jl−1, . . . , j1} imply that
il �∈ {il−1, . . . , i1, jl−1, . . . , j1} and jl �∈ {il−1, . . . , i1}. Finally, by Definition
4.1(2.(c)), the number of labels used in the graphs defined by the subexpressions
is always minimal.

The following observations are easy to verify. If k-expression ρi→j(Y) is in
normal form then k-expression Y is in normal form, if k-expression ηi′,j′(Y) is in
normal form then k-expression Y is in normal form, and if k-expression Y1 ⊕Y2

is in normal form then k-expression Y1 and k-expression Y2 are in normal form.
That is, if an expression is in normal form, then every complete subexpression
is in normal form.

Theorem 4.2 For every k-expression X there is an equivalent k-expression in
normal form.

Proof: We show how to transform an arbitrary k-expression X into an equiv-
alent k-expression in normal form.

The following transformation steps can be used to transform a k-expression
X into an equivalent k-expression in that no edge insertion operation is applied
directly after a relabeling operation.

Let Z = ηi′,j′(ρi→j(Y)) be a subexpression of X.

1. If {i, j} ∩ {i′, j′} = ∅, then Z can be replaced by ρi→j(ηi′,j′(Y)), because
the two operations do not affect each other.

2. If i ∈ {i′, j′}, then we can omit the edge insertion operation ηi′,j′ , because
it does not create an edge.

3. If i �∈ {i′, j′} and j ∈ {i′, j′}, then we distinguish between two cases. If
j = i′ then Z can be replaced by ρi→j(ηi′,j′(ηi,j′(Y))), if j = j′ then Z
can be replaced by ρi→j(ηi′,j′(ηi′,i(Y))).

These transformation steps can be used to transform a k-expression X into
an equivalent k-expression such that all edge insertion and relabeling operations
are in the right order with respect to Definition 4.1. The succeeding transfor-
mation steps will not change this right order.

Next we consider an induction on the number of union operations and the
composition of X. The transformation steps do not change the number of union
operations in the modified subexpressions.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 150

Let
X = ρin→jn

(· · · ρi1→j1(ηi′
n′ ,j′

n′ (· · · ηi′1,j′
1
(•t) · · ·)) · · ·)

be a k-expression without any union operation. Then X is equivalent to a
k-expression •j for some j ∈ {j1, . . . , jn, t}.

Let
X = ηi′

l′ ,j
′
l′
(ηi′

l′−1
,j′

l′−1
(· · · ηi′1,j′

1
(Y1 ⊕ Y2) · · ·))

be a k-expression, where

X = ηi′
l′−1

,j′
l′−1

(· · · ηi′1,j′
1
(Y1 ⊕ Y2) · · ·)

is in normal form.

1. If val(Y1) does not contain all edges between vertices labeled by i′l′ and
vertices labeled by j′l′ , then we transform the k-expression ηi′

l′ ,j
′
l′
(Y1) into

an equivalent k-expression Y ′
1 in normal form and replace in X the subex-

pression Y1 by Y ′
1 . The transformation of ηi′

l′ ,j
′
l′
(Y1) into normal form is

possible by the inductive hypothesis. The same replacement is possible
for Y2, if necessary.

2. If

ηi′
l′ ,j

′
l′
(ηi′

l′−1
,j′

l′−1
(· · · ηi′1,j′

1
(Y1⊕Y2) · · ·)) ≡ ηi′

l′−1
,j′

l′−1
(· · · ηi′1,j′

1
(Y1⊕Y2) · · ·)

then we omit operation ηi′
l′ ,j

′
l′

from X, because it does not create any
edge.

The result is an equivalent k-expression in normal form.

Let

X = ρin→jn
(· · · ρi1→j1(ηi′

n′ ,j′
n′ (· · · ηi′1,j′

1
(Y1 ⊕ Y2) · · ·)) · · ·)

be a k-expression, where subexpression

Z0 := ηi′
n′ ,j′

n′ (· · · ηi′1,j′
1
(Y1 ⊕ Y2) · · ·)

is in normal form.
If graph val(Y1) has a vertex labeled by i and a vertex labeled by j for two

distinct labels i, j ∈ [k] such that

ρil→jl
(· · · ρi1→j1(ηi′

n′ ,j′
n′ (· · · ηi′1,j′

1
(Y1 ⊕ Y2) · · ·)) · · ·)

≡ ρil→jl
(· · · ρi1→j1(ηi′

n′ ,j′
n′ (· · · ηi′1,j′

1
(ρi→j(Y1) ⊕ Y2) · · ·)) · · ·),

then we transform the k-expression ρi→j(Y1) into an equivalent k-expressions
Y ′

1 in normal form and replace in k-expression X the subexpression Y1 by Y ′
1 .

The transformation of ρil→jl
(Y1) into normal form is possible by the inductive

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 151

hypothesis. After that we transform Z0 with the new subexpression Y1 into
normal form, if necessary. This is possible by the inductive hypothesis and the
transformation steps already defined above. The same replacement is possible
for Y2, if necessary. This procedure can be repeated at most k − 1 times for
Y1 and Y2, because after every replacement the number of labels used by the
vertices of val(Y1) and val(Y2) decreases by one.

We now compute for every label l ∈ [k], the label h(l) into which label l is
relabeled by performing the n relabeling operations ρi1→j1 , . . . , ρin→jn

in this
given order one after the other. Function h : [k] → [k] can be considered as
a directed graph H = (VH , AH) with vertex set VH = [k] and arc set AH =
{(l, h(l)) | l ∈ [k]}. Every vertex l of H has exactly one outgoing arc (l, h(l)).

We first remove all arcs (l1, l2) from H for which graph val(Z0) has no vertex
labeled by l1 and all arcs (l1, l2) for which l1 = l2, because these arcs do not
represent any relabeling of vertices of val(Z0). Next we consider every pair of two
arcs (l1, l2), (l2, l3) of H and simultaneously replace in expression Z0 all labels
l1 by l2 and all labels l2 by l1, and remove both arcs (l1, l2) and (l2, l3) from H.
After that we insert a new arc (l1, l3) into H if l1 �= l3. Note that k-expression
Z0 remains in normal form if two labels are exchanged in all operations of Z0.
Finally, we consider all arcs (l1, l2) of H for which graph val(Z0) has no vertex
labeled by l2. We then simultaneously replace in expression Z0 all labels l1 by
l2 and all labels l2 by l1, and remove arc (l1, l2) from H.

Now we can define the new relabeling by the remaining arcs of H. We remove
step by step an arc (l1, l2) from H and apply the relabeling operation ρl1→l2

to the current k-expression Zi (which is initially Z0) to get a new k-expression
Zi+1 = ρl1→l2(Zi). This leads to a k-expression which is in normal form and
equivalent to the original one. �

The proof of Theorem 4.2 uses a simple relabeling trick to omit a relabeling
operation ρil→jl

(X) if graph val(X) has no vertex labeled by jl. This relabeling
simultaneously replaces in expression X all labels il by jl and all labels jl by il.
Let Xil↔jl

be the resulting expression. If X is in normal form then Xil↔jl
is in

normal form, and Xil↔jl
≡ ρil→jl

(X).

5 Replaceability

Most of the bottom-up dynamic programming algorithms for deciding a graph
property Π on a tree-structured graph G are based on the idea of substituting
a subgraph of G by a small so-called replaceable subgraph. The substitution
is defined by a composition mechanism which is different for the various graph
models. However, the notion of replaceability can be defined for every composi-
tion mechanism. Thus, the bottom-up dynamic programming techniques work
in principle for all tree-structured graphs, more or less successfully.

For the analysis of tree-width bounded graphs, we need so-called l-terminal
graphs and an operation denoted by ◦ which combines two l-terminal graphs by
identifying vertices. Since we are mainly interested in labeled graphs, we use

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 152

a labeled version of l-terminal graphs. Terminal graphs are also called sourced
graphs, see [ALS91].

Definition 5.1 (k-labeled l-terminal graph) A k-labeled l-terminal graph
is a system

G = (VG, EG, PG, labG)

where (VG, EG, labG) is a k-labeled graph and PG = (x1, . . . , xl) is a sequence of
l ≥ 0 distinct vertices of VG. The vertices in sequence PG are called terminal
vertices or terminals for short. Vertex xi, 1 ≤ i ≤ l, is the i-th terminal of G.
The other vertices in VG − PG are called the inner vertices of G.

Let H = (VH , EH , PH , labH) and J = (VJ , EJ , PJ , labJ) be two vertex dis-
joint k-labeled l-terminal graphs such that the i-th terminal of PH has the same
label as the i-th terminal of PJ for i = 1, . . . , l. Then the composition H ◦ J
is the k-labeled graph obtained by taking the disjoint union of (VH , EH , labH)
and (VJ , EJ , labJ), and then identifying corresponding terminals, i.e., for i =
1, . . . , l, identifying the i-th terminal of H with the i-th terminal of J , and re-
moving multiple edges.

Definition 5.2 (Replaceability of k-labeled l-terminal graphs) Let Π be
a graph property, i.e., Π : Gk → {true, false}, where Gk is the set of all k-labeled
graphs. Two k-labeled l-terminal graphs H1 and H2 are called replaceable with
respect to Π, denoted by H1 ∼Π,l H2, if for every k-labeled l-terminal graph J ,

Π(H1 ◦ J) = Π(H2 ◦ J).

Figure 3 and 4 show three 4-labeled 3-terminal graphs H1,H2, J . The two
4-labeled 3-terminal graphs H1 and H2 are not replaceable, for example, with
respect to Hamiltonicity, because H1 ◦ J has a Hamilton cycle but H2 ◦ J does
not.

.H1 J H1 ◦ J

1

2

3

1

2

3

22

3

3 3

3

1

1

1

3

1

1

13

4

4

1

4

4 3

2

3

1

Figure 3: Two 4-labeled 3-terminal graphs H1,J and the composed graph H1◦J .
The underlined integers represent the numbering of the terminals.

It is well known that if ∼Π,l divides the set of all k-labeled l-terminal graphs
into a finite number of equivalence classes then Π is decidable in linear time for
all k-labeled graphs of tree-width at most l. Note that linear time means under
the assumption that integer l is fixed and not part of the input.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 153

H2 J H2 ◦ J

1

2

3

1

2

3

3

2

3

33

2

1

4

4

1

3

3

24

4

1

11

1 1

1

11

Figure 4: Two 4-labeled 3-terminal graphs H2,J and the composed graph H2◦J

The same schema can be used to solve graph properties on graphs of bounded
clique-width. In this case the composition of two vertex disjoint k-labeled graphs
H and J is done by an operation ×S , where S ⊆ [k] × [k]. The composed k-
labeled graph H ×S J is the disjoint union of H and J with all additional edges
between vertices u ∈ VH and v ∈ VJ for which (labH(u), labJ(v)) ∈ S. Two k-
labeled graphs H1 and H2 are replaceable with respect to some graph property
Π, denoted by ∼Π,k, if for all k-labeled graphs J and all S ⊆ [k] × [k],

Π(H1 ×S J) = Π(H2 ×S J).

If this equivalence relation ∼Π,k has a finite number of equivalence classes then
property Π is decidable in linear time for all k-labeled graphs val(X) of clique-
width at most k if the k-expression X is given to the input (integer k is assumed
to be fixed and not part of the input).

For all who are interested in the details how to solve a graph property on
a tree-width or clique-width bounded graph with the bottom-up techniques
mentioned above, we refer to [Arn85, AP89, ALS91, Bod97, Bod98, CMR00,
Cou90, EGW01, KR01, LW93, Wan94]. These details are not necessary for this
paper.

6 Overview

In this section, we intuitively explain how the proof of our main result is run-
ning. Let Πk be the graph property clique-width at most k. Let ∼Πk,l be the
equivalence relation defined for k-labeled l-terminal graphs as in Definition 5.2.
Our aim is to show that ∼Πk,l divides the set of all k-labeled l-terminal graphs
into a finite number of equivalence classes, for every fixed k ≥ 1 and every fixed
l ≥ 0. This would imply that the graph property clique-width at most k is
decidable in linear time for graphs of tree-width at most l.

For every k-labeled l-terminal graph G we will define a so-called connection
type consisting of a set of so-called connection trees. We will show that two
k-labeled l-terminal graphs are replaceable with respect to the graph property
clique-width at most k if they are of the same connection type, but not nec-
essarily vice versa. Thus, the number of equivalence classes of ∼Πk,l can be

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 154

bounded by the number of mutually different connection types for all k-labeled
l-terminal graphs. If there is a finite number of mutually different connection
types for every fixed k ≥ 1 and every fixed l ≥ 0, then ∼Πk,l has a finite number
of equivalence classes, and our main result follows.

The outline of the proof can easily be explained more precisely, but still
intuitively, with a simplified version of the connection tree. To distinguish be-
tween the real connection tree and the simplified one, we will call the simplified
version the strong connection tree. Let H and J be two k-labeled l-terminal
graphs such that the k-labeled graph H ◦ J has clique-width at most k, see also
Figure 5. Let X be a k-expression for H ◦J and let T be the k-expression tree of
X. The k-expression tree T can be decomposed into two subtrees, say TH and
TJ , as follows. Subtree TH describes the k-labeled subgraph of H ◦ J induced
by the vertices of H. That is, TH consists of the leaves of T representing the
vertices of H and of all nodes of T on the paths from these leaves to the root
of T . Subtree TJ is defined in the same way with respect to the vertices of J .
Note that TH and TJ are not necessarily expression tress. Every node of T is
in at least one of these two subtrees TH and TJ . Some of the nodes of T are
contained in both subtrees. More precisely, the root of T is in both subtrees and
at least the leaves of T representing the identified terminals of H and J , and all
nodes of T on the paths of these leaves to the root of T are in both subtrees.

1 2

21

1 2

21

1

1

1

2

2

1 1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

H1 J

1

2

1

2

u1

u2

u4

u3

u5

u6

u7

H2 J ′

1

2

1

2

v1

v2

v3 v4

v5 v6

v7
v8

v9

v10

v11

H1 ◦ J

u1 u4/u5

u2 u3/u6

u7

H2 ◦ J ′

v1

v2

v3

v5/v6

v4/v7
v8

v10
v9

v11

Figure 5: Four 2-labeled 2-terminal graphs H1, H2, J , and J ′, and the two
2-labeled graphs H1 ◦ J and H2 ◦ J ′

The common part of both subtrees TH and TJ , denoted by C, defines a
strong connection tree for H. The leaves in the common part C are either
leaves of T or union nodes. If a leaf u represents a vertex of H ◦ J obtained
by identifying the i-th terminal of H with the i-th terminal of J , then u will
additionally be labeled by index i. Let u be a union node of the k-expression

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 155

tree T and let ul and ur be the left and right child of u in T . If u is in the
common part C but ul or ur is not, then we add a left child vl to C or a right
child vr to C, respectively, such that we get an ordered tree in that every union
node has a left child and a right child. If ul (ur) is a node of TH but not a node
of TJ , then the inserted leaf vl (vr, respectively) is labeled by the set L of all
labels of the vertices in the k-labeled graph defined by the k-expression subtree
T (ul) (k-expression subtree T (ur), respectively) of T . Figure 6 illustrates such
a labeling of the inserted leaves by an example. The existence of the non-empty
labeling L indicates that the leaf represents a subtree of TH and not a subtree of
TJ . These leaves are called internal leaves, the other leaves are called external
leaves. The notions internal and external refer to the association that the left
argument H is the internal graph for which we compute the connection tree,
and the right argument J is the external graph, i.e., the environment to which
H is attached. The resulting structure C is called a strong connection tree for
H. To get all strong connection trees for H, we have to consider all k-labeled
l-terminal graphs J such that H ◦J has clique-width at most k, and all possible
k-expressions for H ◦J . The set of all strong connection trees for H is the strong
connection type of H.

Let us next explain why two k-labeled l-terminal graphs H1 and H2 of the
same strong connection type are replaceable with respect to clique-width at
most k. After that we consider the size of the strong connection tees. Assume
H1 ◦J has clique-width at most k for some k-labeled l-terminal graph J . Let X
be a k-expression for H1◦J . Let T be the k-expression tree of X and let TH1 and
TJ be the two subtrees for H1 and J , respectively. The common part of TH1 and
TJ defines a strong connection tree C for H1 which is, by our assumption, also
a strong connection tree for H2. That is, there has to be at least one k-labeled
l-terminal graph J ′ such that H2 ◦ J ′ has clique-width at most k. Furthermore,
there has to be a k-expression X ′ with a k-expression tree T ′ for H2 ◦ J ′ such
that the common part of the two subtrees T ′

H2
and T ′

J ′ defines the same strong
connection tree C for H2. Now we can replace in k-expression tree T subtree
TH1 by subtree T ′

H2
, see Figure 7. This can easily be done by substituting

the corresponding subtrees represented by the internal leaves. Let T ′′ be the
resulting k-expression tree we get after this replacement.

It is easy to verify that the k-expression tree T ′′ defines the k-labeled graph
H2 ◦ J . The vertices from H2 and J are labeled in the k-labeled graph defined
by T ′′ as in the k-labeled graphs H2 ◦ J ′ and H1 ◦ J , respectively. Two vertices
from H2 or two vertices from J are connected by an edge if and only if they are
connected by an edge in H2 ◦ J ′ or H1 ◦ J , respectively. This is, because the
subtrees defined by the paths from the involved leaves to the roots are equal
in both k-expression trees T ′′ and T or in both k-expression trees T ′′ and T ′,
respectively.

The additional L-labeling of the internal leaves in the strong connection tree
C is necessary to ensure that T ′′ defines no forbidden edge between an inner
vertex u1 of H2 and an inner vertex u2 of J . If the graph defined by T ′′ has
such a forbidden edge then H1 ◦ J would also have at least one such forbidden
edge, because the corresponding subgraph of H1 would have at least one vertex

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 156

1ρ
2 1

η
1,2

1 2

22

η
1,2

ρ
2 1

η
1,2

1

η
1,2

ρ
1 2

1 2

ρ
2 1

η
1,2

η
1,2

1 2

η
1,2

1 2

ρ
2 1

η
1,2

η
1,2

2

2222

η
1,2

ρ
1 2

2

T

TH1

TJ

u1 u2

u7 u4/u5u3/u6

T ′

TH2 TJ ′

v5/v6 v4/v7

v1 v2

v3

v8 v9 v10 v11

C1

1 2vl

{1}
vr

C2

1 2vl vr

{1}

Figure 6: A 2-expression tree T for the 2-labeled graph H1◦J and a 2-expression
tree T ′ for the 2-labeled graph H2 ◦ J ′. C1 is a strong connection tree for H1

and H2. C2 is a strong connection tree for J and J ′.

labeled as u1 of H2. If for every k-labeled l-terminal graph J , graph H1 ◦ J has
clique-width at most k if and only if H2 ◦ J has clique-width at most k, then
obviously H1 and H2 are replaceable with respect to clique-width at most k.

Finally, we have to consider the size of the strong connection trees. The
size of the common part of the two subtrees TH and TJ can, unfortunately, not
be bounded by some constant depending only on k and l. However, the main
part of the next section is the proof that for every k-labeled graph H ◦ J of
clique-width at most k there is at least one k-expression tree T such that the
information we really need from the common part of the two subtrees TH and
TJ can be bounded. This information is still tree-structured and will be defined
in the next section as the real connection tree.

We will show step by step that there is a k-expression tree for H ◦ J in that
the paths in the common part of TH and TJ have the following structure. We
divide the operations of the nodes of T into H-operations and J-operations. An

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 157

ρ
2 1

η
1,2

ρ
2 1

η
1,2

η
1,2

1 2

η
1,2

1 2

ρ
2 1

1 2

22

η
1,2

ρ
1 2

ρ
2 1

η
1,2

1

η
1,2

ρ
1 2

1 2

22

η
1,2

1

1

1

1

1

2

2

1

1

1

1

1

1

2

2

T ′′′ T ′′

H1 ◦ J ′

H2 ◦ J

u1 u2

u4/v6 u3/v7

v8 v9 v10 v11 v1 v2

v3

u7 v5/u5 v4/u6

Figure 7: A 2-expression tree T ′′′ for the 2-labeled graph H1 ◦ J ′ and a 2-
expression tree T ′′ for the 2-labeled graph H2 ◦ J .

H-operation changes a label of a vertex from H or inserts an edge incident to
a vertex from H. A J-operation does anything concerning the vertices from J .
Some of the operations could even be H-operations and an J-operations. In
the next section, we will prove that there is always a k-expression tree T for
H ◦ J such that in the common part of TH and TJ the number of times the
classification into H- and J-operations changes along a path from a leaf to the
root can be bounded by some constant depending only on k and l. This property
finally allows us to define a connection structure of bounded size, which we call
the connection tree for H. The main idea is to replace the unbounded subpaths
with certain operations of the same type by single so-called bridge nodes.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 158

7 Determining the connection type

We consider the case where we have a k-labeled l-terminal graph

H = (VH , EH , PH , labH)

and a k-labeled l-terminal graph J = (VJ , EJ , PJ , labJ) such that H and J are
vertex disjoint and the combined graph

G = (VG, EG, labG) = H ◦ J

has clique-width at most k.
We partition the vertex set VG of G into three disjoint sets UH , UJ , UP such

that UH ∪UJ ∪UP = VG. Vertex set UH = VH −PH contains the inner vertices
from H, vertex set UJ = VJ −PJ contains the inner vertices from J , and vertex
set UP contains the joined terminals from H and J . Vertex set UP has exactly
l vertices, because the l terminals of H are identified with the l terminals of J .
Note that graph G does not have any edge between a vertex of UH and a vertex
of UJ .

3

3

3 11

3

3

3

21 32

3

1

1 13

c

d

e

ba

gf

1

2

3

1

2

3

H J G = H ◦ J

UH UP UJ

Figure 8: Two 3-labeled 3-terminal graphs H and J , the 3-labeled graph G =
H ◦ J , and the partition of its vertices into UH , UP , and UJ

Let T be a k-expression tree for G = H ◦ J . The subtree TP of T is defined
by the l leaves of T that correspond to the l vertices of UP and by all nodes of
T on the paths from these leaves to the root of T , see Figure 9. Thus the root
of TP is the root of T . Tree TP is in general not an expression tree. It is only
an expression tree if neither H nor J has inner vertices. In this case, TP and T
are equal.

Our intention is to show that for each such pair H, J as above there is
always at least one k-expression tree T for G such that TP has a very special
form. This special form represents the necessary information how H and J are
combined. We will see that the size of this connection information will depend
only on k and l but not on the size of H or J .

The following four subsections start with a lemma that allows us to consider
a more restricted k-expression tree T than before. The restrictions are expressed

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 159

ρ
2 1

1 2

η
1,2

ρ
2 1

η
2,3

1 2

η
1,2

η
2,3

3 3

η
2,3

ρ
2 3

2

η
2,3

ρ
2 3

2

η
2,3

3

e
3

e

η
2,3

b

c

d

a

c

d

fg

T TP

Figure 9: A 3-expression tree T for the 3-labeled graph G of Figure 8 and the
subtree TP of T

by certain properties that have to be satisfied. The lemmas show that this is
always possible without loss of generality.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 160

Partition into paths of type 1, 1.a, and 1.b

Lemma 7.1 There is always a k-expression tree T for G that satisfies the fol-
lowing property.

Property 7.2 Let u1 be a union node of T such that one of its children u0 is
in TP and the other child u′

0 is not in TP . Then the vertices of G(u′
0) are either

all from UH or all from UJ .

Proof: Since G(u′
0) does not contain vertices from UP , we know that the vertices

of G(u′
0) are all from UH ∪ UJ . If the vertices of G(u′

0) are not all from UH or
not all from UJ then let TH and TJ be the two k-expression trees that define
the subgraphs of G(u′

0) induced by the vertices of UH and UJ , respectively. TH

and TJ can easily be constructed from T (u′
0) by removing subtrees whose leaves

represent only vertices from UJ or UH , respectively. A union node that loses
one of its children can be omitted by making the remaining child to the child of
its parent node. Then we replace subtree T (u′

0) by TH and TJ as follows. We
insert a new union node v0 between u1 and u0, and make the roots of TH and
TJ to the second child of u1 and v0, respectively. The expression of the resulting
tree obviously defines the same graph as before but u1 now satisfies Property
7.2. This can be done for all union nodes which do not satisfy Property 7.2. See
also Figure 10. �

u’
0

u
0

u
1

u
1

u
0

0
v

T

T

H

J

Figure 10: A transformation step used in the proof of Lemma 7.1

Let X be the k-expression of k-expression tree T which satisfies Property
7.2. Then we can apply the transformation steps of the proof of Theorem 4.2
to get a k-expression in normal form equivalent to X. This is possible because
the transformation steps of the transformation into normal form only rearrange
some relabeling and edge insertion operations. They do not change Property
7.2 of T . ¿From now on we will assume that T satisfies Property 7.2 and that
X is in normal form.

Let u1 be a union node of T such that one of its children u0 is in TP and the
other child u′

0 is not in TP . We define ξ(u1) := 0 or ξ(u1) := 1 if the vertices
of G(u′

0) are all from UH or all from UJ , respectively. In all other cases and in

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 161

the case where u1 is not a union node, we say ξ(u1) is undefined. For better
readability we write ξ(u1) = H instead of ξ(u1) = 0 and ξ(u1) = J instead of
ξ(u1) = 1. This does not mean that ξ(u1) is the graph H or J , but only that all
vertices of G(u′

0) are from UH or HJ , respectively. By Lemma 7.1, we can now
assume that ξ(u1) is well defined for all union nodes u1 of T for which exactly
one of their children is not in TP .

The tree TP with l leaves now consists of at most 2l − 1 maximal paths
p = (u1, . . . , us′), s′ ≥ 1, such that u1 is a union node with two children in TP

or u1 has only one child in TP which is a leaf. The last node us′ of such a path
p is either the root of TP or a child of some union node whose children are both
in TP . All the graphs G(us) for s = 1, . . . , s′ contain the same vertices of UP .
Such a path of TP is called a 1-path or path of type 1. Every non-leaf node of
TP is in exactly one of these paths of type 1.

A maximal subpath (u1, . . . , ur′ , . . . , us′) of TP such that u1 is a union node,
u2, . . . , ur′ are edge insertion nodes, and ur′+1, . . . , us′ are relabeling nodes, is
called a frame of TP . Every frame has at most

(
k
2

)
+ k nodes, because there is

exactly one union node u1, there are at most
(
k
2

)
edge insertion nodes u2, . . . , ur′ ,

and at most k − 1 relabeling nodes ur′+1, . . . , us′ . Figure 11 shows the general
structure of a frame.

η

η

ρ

ρ

Figure 11: A frame always starts with a union node followed by edge insertion
nodes and relabeling nodes.

The first frame of every 1-path is called a path of type 1.a. The remaining
part, if not empty, is called a path of type 1.b. There are at most 2l − 1 paths
of type 1.a and at most 2l − 1 paths of type 1.b. Every 1.a path has at most(
k
2

)
+k nodes, because it is a frame. For every union node u1 of a 1.b-path there

is either ξ(u1) = H or ξ(u1) = J .

Partition into paths of type 2.a and 2.b

For some node us of the k-expression tree T , let LH(us), LJ (us), and LP (us)
be the label sets of the vertices of G(us) which are from UH , UJ , and UP ,

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 162

type 1

type 1.a

btype 1.

Figure 12: Every 1-path p is divided into a path of type 1.a and a path of type
1.b. The path of type 1.a is the first frame of p. The path of type 1.b is the
remaining part of p, which can also be empty.

respectively. The intersection sets

LH(us) ∩ LJ(us), LP (us) ∩ LH(us), LP (us) ∩ LJ (us),

and
LP (us) ∩ LH(us) ∩ LJ (us)

are abbreviated by

LH∩J(us), LP∩H(us), LP∩J(us)

and
LP∩H∩J(us),

respectively.

Lemma 7.3 There is always a k-expression tree T for G such that the k-
expression X of T is in normal form and T satisfies Property 7.2 and addi-
tionally Property 7.4.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 163

Property 7.4 Let us be a relabeling node of TP labeled by ρi→j and let us−1

be the child of us in TP . If i ∈ LP (us−1) then j ∈ LP (us−1).

Proof: By induction on the height of TP . Assume X is in normal form and TP

satisfies Property 7.2. Let q = (u1, . . . , ur′ , . . . , us′) be a frame of TP and us,
r′ < s ≤ s′, be a relabeling node labeled by ρi→j . Let i ∈ LP (us−1). By the
inductive hypothesis, we assume that T (us−1) already satisfies Property 7.4.

If j �∈ LP (us−1) then we simultaneously replace in the expression of subtree
T (ur′) every label i by label j and every label j by label i. The expression of
the resulting subtree T (ur′) is still in normal form and T (ur′) satisfies Property
7.2 and 7.4. Since i is not involved in the relabeling operations of the nodes
ur′+1, . . . , us−1, the resulting expression X is obviously in normal form and
defines the same graph as before, and T (us) satisfies Property 7.2 and Property
7.4. �

Let us−1 be the child of some relabeling node us of TP . By Lemma 7.3, we
can now assume that

LP (us−1) ⊇ LP (us).

If LP (us−1) = LP (us), then the reverse inclusion holds true for the sets
LP∩H(us) and LP∩J(us), i.e.,

LP∩H(us−1) ⊆ LP∩H(us) and LP∩J(us−1) ⊆ LP∩J(us),

because a relabeling of a label from LP∩H(us−1) or LP∩J(us−1) is always a
relabeling of a label from LP (us−1).

This allows us to divide every 1.b-path p into paths of type 2.a and paths of
type 2.b as follows. The 2.a-paths are the frames q = (u1, . . . , ur′ , . . . , us′) of p
for which at least one of the following two properties holds true.

1. There is some relabeling node us, r′ < s ≤ s′, such that

LP (us−1) � LP (us), LP∩H(us−1) � LP∩H(us),

or
LP∩J(us−1) � LP∩J(us).

2.
LP∩H(u0) � LP∩H(u1) or LP∩J(u0) � LP∩J(u1),

where u0 is the child of union node u1 which is in TP .

It is easy to verify that this is equivalent to property

LP (u0) � LP (us′), LP∩H(u0) � LP∩H(us′), or LP∩J(u0) � LP∩J(us′).

where u0 is the child of union node u1 which is in TP .
The 2.a-paths are the frames q of the 1.b-paths for which either the number

of labels in LP decreases or the number of labels in LP∩H or LP∩J increases.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 164

btype 1.

atype 2.

btype 2.

atype 2.

type 2.a

btype 2.

Figure 13: Every 1.b-path is divided into paths of type 2.a and paths of type
2.b. The 2.a-paths are the frames q of the 1.b-paths for which the number of
labels in LP decreases or the number of labels in LP∩H or LP∩J increases.

The 2.b-paths are the remaining parts of the 1.b-paths. In a 2.b-path p all the
sets LP (us) are equal, all the sets LP∩H(us) are equal, all the sets LP∩J(us)
are equal, and thus also all the sets LP∩H∩J(us) are equal, for all nodes us of p
including the child u0 of the first node u1 which is in TP . See also Figure 13.

For a frame q = (u1, . . . , ur′ , . . . , us′) of a 2.b-path let

LP (q) = LP (us′), LP∩H(q) = LP∩H(us′),

LP∩J(q) = LP∩J(us′), and LP∩H∩J(q) = LP∩H∩J(us′).

We use q as the argument instead of some node of q to emphasize that the sets
above are equal for all nodes of q including the child u0 of the first node of q
which is in TP . It is easy to count that for every 1.b-path p there are at most
3k − 1 paths of type 2.a and thus at most 3k paths of type 2.b. A worst case
example for k = 3 is shown in the following table. The j-th row shows the
labeling for the last node ui of the j-th 2.a-frame.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 165

j LP (ui) LP∩H(ui) LP∩J(ui)
1 {1, 2, 3} {1} ∅
2 {1, 2, 3} {1, 2} ∅
3 {1, 2, 3} {1, 2, 3} ∅
4 {1, 2, 3} {1, 2, 3} {1}
5 {1, 2, 3} {1, 2, 3} {1, 2}
6 {1, 2, 3} {1, 2, 3} {1, 2, 3}
7 {1, 2} {1, 2} {1, 2}
8 {1} {1} {1}

Partition into paths of type 3.a and 3.b

Lemma 7.5 There is always a k-expression tree T for G such that the k-
expression X of T is in normal form and T satisfies Property 7.2, Property
7.4, and additionally Property 7.6.

Property 7.6 Let p be a 2.b-path of TP , and q = (u1, . . . , ur′ , . . . , us′) be a
frame of p such that node us, r′ < s ≤ s′, is a relabeling node labeled by ρi→j.
If i ∈ LH∩J(us−1) then j ∈ LH∩J(u1).

Before we prove Lemma 7.5 let us emphasize that label j will even be from
LH∩J(u1) and not only from LH∩J(us−1).

Proof: Assume X is in normal form, T satisfies Property 7.2 and Property 7.4,
and T (us−1) satisfies additionally Property 7.6 for some s, r′ < s ≤ s′. Let
i ∈ LH∩J(us−1).

If j ∈ LP (q) then the assumption i ∈ LH∩J(us−1) and the relabeling ρi→j

at node us imply j ∈ LP∩H∩J(us) = LP∩H∩J(q) and thus j ∈ LH∩J(u1).
If j �∈ LP (q) and j �∈ LH∩J(u1) then we simultaneously replace in the expres-

sion of subtree T (ur′) every label i by label j and every label j by label i. The
new expression of the resulting subtree T (ur′) is still in normal form and subtree
T (ur′) still satisfies the Properties 7.2, 7.4, and 7.6. Let ρi1→j1 , . . . , ρil−1→jl−1

be the relabeling operations of the nodes ur′+1, . . . , us−1. Label i is not in-
volved in these relabeling operations, i.e., i �∈ {i1, . . . , il−1, j1, . . . , jl−1}. Label
j is not relabeled by these relabeling operations, i.e., j �∈ {i1, . . . , il−1}, and
none of these relabeling operations relabels some label of LH∩J(ur′) to j in the
original expression, because the original tree T (ur′) satisfies Property 7.6 and
j �∈ LH∩J(u1). Thus the new expression of the resulting tree T (us) is in normal
form and defines the same graph as before, and tree T (us) now satisfies the
Properties 7.2, 7.4, and 7.6. �

For some node us of TP and some label j ∈ [k] let forbP (us, j) be the set of
all labels i ∈ LP (us) such that graph G(us) has two non adjacent vertices, one
labeled by i and one labeled by j. If the set forbP (us, j) is empty then either
graph G(us) has no vertex labeled by j or every vertex of G(us) labeled by j is
adjacent to every vertex of G(us) labeled by some label of LP (us). (Remember
that LP (us) is always non-empty for the nodes us of TP).

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 166

Let q = (u1, . . . , ur′ , . . . , us′) be a frame of TP such that u1 is a union node.
Let u0 be the child of u1 which is in TP . If one of the edge insertion nodes ur,
1 < r ≤ r′, is labeled by ηi,j then i �∈ forbP (u0, j) and j �∈ forbP (u0, i), because
otherwise ηi,j would create a forbidden edge between two vertices from G(u0).

Let us be a relabeling node of TP labeled by ρi→j . If i �∈ LP (us−1) then
obviously

forbP (us, j) = forbP (us−1, j) ∪ forbP (us−1, i).

Intuitively speaking, a vertex labeled by some label of LP (us−1) is not adjacent
in G(us) to some vertex labeled by j if and only if it is not adjacent in G(us−1)
to some vertex labeled by j or i.

Lemma 7.7 Assume expression tree T satisfies Property 7.2, Property 7.4, and
Property 7.6 and the k-expression X of T is in normal form. Let p be a 2.b-path
of TP , let q = (u1, . . . , ur′ , . . . , us′) be a frame of p, and let u0 be the child of u1

which is in TP . If a node us, r′ < s ≤ s′, is a relabeling node labeled by ρi→j

and if i ∈ LH∩J(us−1) then

forbP (u0, i) � forbP (us′ , j) and forbP (u0, j) � forbP (us′ , j).

Proof: Since i is not involved in the relabeling operations of the nodes ur′+1,
. . . , us−1, label i is also in LH∩J(u1). By Property 7.6, we know that j ∈
LH∩J(u1) and thus i, j ∈ LH∩J(u1). Let u′

0 be the other child of u1 which is
not in TP . Without loss of generality, let ξ(u1) = H. Since i and j are both
in LJ (u1) and since the vertices of G(u′

0) are all from UH , graph G(u0) has at
least one vertex labeled by i and at least one vertex labeled by j.

If label i or label j is involved in an edge insertion operation ηi′,j′ of the nodes
u2, . . . , ur′ then the other label of {i′, j′} has to be in LP (q)−LH∪J(u1), i.e., is
not in LH∪J(u1), where LH∪J(u1) is defined by LH(u1) ∪ LJ (u1). Otherwise,
a forbidden edge between a vertex from UH and a vertex from UJ is created,
because i and j are both in LH(u1) and both in LJ (u1). By our normal form
Property 2.(a), we know that all these edge insertion operations do not create
a new edge between two vertices from G(u′

0) or two vertices from G(u0). Thus
every of these edge insertion operations in that label i or j is involved creates an
edge between a vertex from G(u′

0) labeled by i or j, respectively, and a vertex
from G(u0) labeled by some label of LP (q) − LH∪J(u1).

If every label of forbP (u0, i) is also in forbP (u0, j) then an additional rela-
beling ρi→j applied to the expression represented by T (u0) does not change the
graph G(us′). This contradicts normal form Property 2.(c). On the other hand,
if every label of forbP (u0, j) is also in forbP (u0, i) then an additional relabeling
ρj→i applied to the expression represented by T (u0) does not change the graph
G(us′). This also contradicts normal form Property 2.(c).

So there has to be at least one label in forbP (u0, i) which is not in forbP (u0, j)
and one label in forbP (u0, j) which is not in forbP (u0, i). Since forbP (u0, i) ⊆
forbP (us−1, i) and forbP (u0, j) ⊆ forbP (us−1, j), the result follows. �

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 167

Next we divide every 2.b-path p into paths of type 3.a and paths of type 3.b
as follows. The 3.a-paths are the frames q = (u1, . . . , ur′ , . . . , us′) of p for which

LH∩J(u0) � LH∩J(us′) or forbP (u0, j) � forbP (us′ , j)

for some j ∈ LP (u0) ∪ LH∩J(u0), where u0 is the child of u1 in TP .
The sets above can change their size in a frame of a 2.b-path as follows.

1. LH∩J(u0) ⊆ LH∩J(u1) and forbP (u0, j) ⊆ forbP (u1, j), because a union
operation can not remove labels from LH∩J(u0) or forbP (u0, j), respec-
tively.

2. LH∩J(ur−1) = LH∩J(ur) and forbP (u0, j) ⊆ forbP (ur, j) for r = 2, . . . , r′,
because the edge insertion operations do not change the labels, and do
not create edges between two vertices from G(u0), respectively. Note that
they can not remove labels from forbP (u0, j), although they can remove
labels from forbP (u1, j).

3. Let us, r′ < s ≤ s′, be a relabeling node labeled by ρj→j′ .

(a) If j �∈ LP (us−1) ∪ LH∩J(us−1), then LH∩J(us−1) ⊆ LH∩J(us).
(b) If j ∈ LP (us−1) ∪ LH∩J(us−1) then j ∈ LH∩J(us−1), because we

consider a 2.b-path. By Lemma 7.5, j′ ∈ LH∩J(us−1) and thus
LH∩J(us−1) � LH∩J(us). By Lemma 7.7, forbP (us, j) = ∅,
forbP (u0, j) � forbP (us, j

′) and forbP (u0, j
′) � forbP (us, j

′).

The size of forbP (us−1, j) for some j ∈ LP (us−1) ∪ LH∩J(us−1) can only
become smaller in case 3.(b), where j ∈ LH∩J(us−1) is relabeled into another
label j′ ∈ LH∩J(us−1). In this case forbP (us, j) = ∅, because G(us) has no
vertex labeled by j.

A simple idea shows that the number of 3.a-paths (3.a-frames) can be
bounded by (k + 1)k+1. For a node us let α(us) = (z0, . . . , zk′) be the vec-
tor, where k′ = |LP (us)| and zt, 0 ≤ t ≤ k′, is the number of sets forbP (us, j),
j ∈ LP (us) ∪ LH∩J(us), of size t. We say vector (z′0, . . . , z

′
k′) is larger than

vector (z0, . . . , zk′), denoted by

(z′0, . . . , z
′
k′) > (z0, . . . , zk′),

if there is some t, 0 ≤ t ≤ k′, such that z′t > zt and z′t′ = zt′ for t′ = t+1, . . . , k′.
For every 3.a-path q = (u1, . . . , ur′ , . . . , us′), we have α(us′) > α(u0), where
u0 is the child of u1 which is in TP . This bounds the number of 3.a-paths by
(k + 1)k+1. Note that this bound is not really tight.

The remaining parts of p are the 3.b-paths. In a 3.b-path p all the sets
LH∩J(us) are equal for all nodes us of p including the child of the first node
which is in TP . To emphasizes this we define LH∩J(q) = LH∩J(us′) for the
frames q = (u1, . . . , ur′ , . . . , us′) of a 3.b-path p. The sets forbP (us, j) for j ∈
LP (u0) ∪ LH∩J(u0) do not need to be equal for all nodes us of p. In a frame
q = (u1, . . . , ur′ , . . . , us′) of a 3.b-path p, it could be that there is some r,
1 ≤ r < r′, such that set forbP (ur, j) has a label which is not in forbP (u0, j).
However, we know that for s = r′, . . . , s′, forbP (u0, j) = forbP (us, j).

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 168

Partition into paths of type 4

To partition the paths of type 3.b into paths of type 4, we need three more
lemmas. The first lemma already holds for paths of type 1.b, but we use it only
for paths of type 3.b.

Lemma 7.8 Let q = (u1, . . . , ur′ , . . . , us′) be a frame of a 1.b-path p such that
ur, 1 < r ≤ r′, is an edge insertion node labeled by ηi′,j′ . Let u0 and u′

0 be
the two children of u1, where u0 is in TP . If ξ(u1) = H (if ξ(u1) = J) then
operation ηi′,j′ only inserts edges between vertices from graph G(u′

0) labeled by
labels of LH(u1) (of LJ (u1)) and vertices from G(u0) not labeled by labels of
LJ (u1) (of LH(u1), respectively).

Proof: If ξ(u1) = H (if ξ(u1) = J) then all vertices of G(u′
0) are from UH (from

UJ , respectively). Since ηi′,j′ creates at least one edge between a vertex from
G(u′

0) and a vertex from G(u0) and since there is no edge between a vertex from
UH and a vertex from UJ , one label of {i′, j′} has to be in LH(u1) (in LJ (u1))
and the other label of {i′, j′} can not be in LJ (u1) (in LH(u1), respectively). �

The next lemma shows that the relabeling operations of a frame

q = (u1, . . . , ur′ , . . . , us′)

from a 3.b-path with ξ(u1) = H relabels only inner vertices from H.

Lemma 7.9 Let q = (u1, . . . , ur′ , . . . , us′) be a frame of a 3.b-path p such that
node us, r′ < s ≤ s′, is a relabeling node labeled by ρi→j.

1. If ξ(u1) = H then i ∈ LH(us−1) − LP (q) − LJ(us−1) and j ∈ LH(us−1).

2. If ξ(u1) = J then i ∈ LJ (us−1) − LP (q) − LH(us−1) and j ∈ LJ(us−1).

Proof: Since in a 3.b-path p, the labels of LP (q) and LH∩J(q) are not relabeled,
label i can only be in LH(us−1) − LP (q) − LJ (us−1) or LJ (us−1) − LP (q) −
LH(us−1).

If i ∈ LH(us−1) − LP (q) − LJ (us−1) then we get j ∈ LH(us−1), otherwise
LP∩H(us−1) � LP∩H(us) or LH∩J(us−1) � LH∩J(us). Both are not possible in
a 3.b-path. On the other hand, if i ∈ LJ(us−1)−LP (q)−LH(us−1) then we get
j ∈ LJ (us−1), otherwise LP∩J(us−1) � LP∩J(us) or LH∩J(us−1) � LH∩J(us).

Let u0 be the child of u1 which is in TP . Assume first that ξ(u1) = H,
i ∈ LJ (us−1)−LP (q)−LH(us−1), and j ∈ LJ(us−1). Then G(u0) has a vertex
labeled by i and a vertex labeled by j.

1. If j is not involved in an edge insertion operation of the nodes u2, . . . , ur

then in G(u0) label i can be relabeled into j, without changing G(us′).
This contradicts our normal form Property 2.(c).

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 169

2. If j is involved in some edge insertion operation of the nodes u2, . . . , ur

then j is contained in LH∩J(u1) = LH∩J(q) = LH∩J(u0) and thus
forbP (us′ , j) = forbP (u0, j), and we can also relabel i into j in graph
G(u0) without changing the resulting graph G(us′). This also contradicts
our normal form Property 2.(c).

Thus, we get i ∈ LH(us−1) − LP (q) − LJ (us−1) and j ∈ LH(us−1). For
ξ(u1) = J , we get i ∈ LJ (us−1) − LP (q) − LH(us−1) and j ∈ LJ (us−1). �

In the proof of the next lemma, we will frequently rearrange frames in a path
of type 3.b. Assume a path p consists of two consecutive frames, i.e.,

p = (u1, . . . , ur′ , . . . , us′ , us′+1, . . . , ur′′ , . . . , us′′),

where u1 and us′+1 are union nodes, u2, . . . , ur′ and us′+2, . . . , ur′′ are edge
insertion nodes, and ur′+1, . . . , us′ and ur′′+1, . . . , us′′ are relabeling nodes. Let
u′

0 and u0 be the two children of u1, where u0 is in TP , and let u′′
0 be the child

of us′+1 which is not in TP .
If we exchange the two frames of p then we get the new path

p′ = (us′+1, . . . , ur′′ , . . . , us′′ , u1, . . . , ur′ , . . . , us′).

In the resulting expression tree, union node us′+1 has the two children u′′
0 and

u0, and union node u1 has the two children u′
0 and us′′ . The left-right order of

the children of u1 and us′+1 is not changed. That is, if u′
0 is the left child (right

child) of u1 in the original expression tree then u′
0 is the left child (right child,

respectively) of u1 in the new expression tree, and if u′′
0 is the left child (right

child) of us′+1 in the original expression tree then u′′
0 is the left child (right

child, respectively) of us′+1 in the new expression tree.
This rearrangement changes the expression defined by the original expression

tree T (us′′) as follows, see also Figure 14. Let X1,X2,X3 be the expressions
defined by the expression trees T (u′

0), T (u0), and T (u′′
0), respectively. With-

out loss of generality, let u′
0 be the left child of u1 and u′′

0 be the right child
of us′+1. Let ηi2,j2 , . . . , ηir′ ,jr′ be the edge insertion operations of the nodes
u2, . . . , ur′ , let ρir′+1→jr′+1

, . . . , ρis′→js′ be the relabeling operations of the nodes
ur′+1, . . . , us′ , let ηis′+2,js′+2

, . . . , ηir′′ ,jr′′ be the edge insertion operations of the
nodes us′+2, . . . , ur′′ , and let ρir′′+1→jr′′+1

, . . . , ρis′′→js′′ be the relabeling op-
erations of the nodes ur′′+1, . . . , us′′ . Then the original expression defined by
T (us′′) is

ρis′′→js′′ (· · · ρir′′+1→jr′′+1
(ηir′′ ,jr′′ (· · · ηis′+2,js′+2

(Y ⊕ X3) · · ·)) · · ·),
where

Y = ρis′→js′ (· · · ρir′+1→jr′+1
(ηir′ ,jr′ (· · · ηi2,j2(X1 ⊕ X2) · · ·)) · · ·).

The expression of the new expression tree T (us′) which we get after exchang-
ing the two frames is

ρis′→js′ (· · · ρir′+1→jr′+1
(ηir′ ,jr′ (· · · ηi2,j2(X1 ⊕ Y ′) · · ·)) · · ·),

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 170

0
u´´

u
00

u´

u
1

u
r´

u
s´

u
s´+1

u
r´´

u
s´´

X3

u
0 0

u´´

0
u´

u
r´

u
1

u
s´´

u
s´

u
r´´

u
s´+1

X1

X1
X2 X2 X3

Figure 14: The rearrangement of two frames.

where

Y ′ = ρis′′→js′′ (· · · ρir′′+1→jr′′+1
(ηir′′ ,jr′′ (· · · ηis′+2,js′+2

(X2 ⊕ X3) · · ·)) · · ·).

Note that the new expression and the original expression do not need to be
equivalent, but the order of the leaves in the tree is not changed.

We need the following additional notation. Let us be a node of T . The
labels of LH(us) − LP (us) − LJ (us) and LJ (us) − LP (us) − LH(us) are called
the unfixed labels of G(us). Within a path of type 3.b, only unfixed labels are
relabeled, see also Lemma 7.9. The vertices labeled by unfixed labels of G(us)
are called unfixed vertices of G(us).

Lemma 7.10 There is always a k-expression X in normal form such that tree
T satisfies Property 7.2, Property 7.4, Property 7.6, and additionally Property
7.11.

Property 7.11 Every 3.b-path p is divided into at most 3 ·22(k+1) paths p′ such
that either for all frames q = (u1, . . . , ur′ , . . . , us′) of p′ ξ(u1) = H or for all
frames q = (u1, . . . , ur′ , . . . , us′) of p′ ξ(u1) = J .

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 171

Proof: Let q1, . . . , qt be the frames of a 3.b-path p, i.e., p = q1 � · · ·� qt, where
operation � is the concatenation of paths.

For a frame q = (u1, . . . , us′) of p, let ξ(q) := ξ(u1), unfixH(q) = |LH(us′)−
LP (us′) − LJ(us′)|, unfixJ(q) = |LJ (us′) − LP (us′) − LH(us′)| and

minH(p) = min{unfixH(q1), . . . ,unfixH(qt)} and
minJ(p) = min{unfixJ(q1), . . . ,unfixJ(qt)}.

Let r1, r2, 1 ≤ r1 ≤ r2 ≤ t, such that r2 − r1 is maximal and either

unfixH(qr1) = minH(p) and unfixJ(qr2) = minJ(p) or
unfixJ (qr1) = minJ(p) and unfixH(qr2) = minH(p).

If qi1 , . . . , qin
, 1 ≤ i1 < i2 < · · · < in ≤ t, are the frames for which

unfixH(qi1) = unfixH(qi2) = · · · = unfixH(qin
) = minH(p)

and if qj1 , . . . , qjm
, 1 ≤ j1 < j2 < · · · < im ≤ t, are the frames for which

unfixJ(qj1) = unfixJ(qj2) = · · · = unfixJ (qjm
) = minJ(p),

then either r1 = i1 and r2 = jm or r1 = j1 and r2 = in.
We divide the path p into three parts pfirst, pmiddle, plast such that p = pfirst�

pmiddle � plast. Subpath pmiddle starts with frame qr1 and ends with frame qr2 ,
see also Figure 15.

If the first part pfirst or the last part plast of p are not empty then they will
be partitioned in the same way as p. Since

minJ(pfirst) > minJ(p) and minH(plast) > minH(p) or
minH(pfirst) > minH(p) and minJ(plast) > minJ(p),

the partition procedure yields at most 22(k+1) such paths pmiddle.
Assume unfixH(qr1) = minH(p) and unfixJ(qr2) = minJ(p). The second

case where unfixJ(qr1) = minJ(p) and unfixH(qr2) = minH(p) runs analogously.
Then ξ(qr1) = H and ξ(qr2) = J and we rearrange the frames in path pmiddle

such that in the new path there is first frame qr1 , then all frames q with ξ(q) = J
and then all remaining frames q with ξ(q) = H. If we move all frames q of
pmiddle where ξ(q) = J to the front, then the remaining frames q of pmiddle

where ξ(q) = H (except frame qr1) will automatically move to the end. This
rearrangement will yield at most 3 · 22(k+1) paths such that for all frames q of
every path all ξ(q) are equal.

The order of the frames q with ξ(q) = J or ξ(q) = H is not changed, i.e, it
is the same order as in the original path pmiddle. The order of the nodes in the
frames is also not changed when moving frames. To ensure that the resulting
expression is really equivalent to the original one, we perform a relabeling of the
unfixed labels as follows.

For every node us of the new path pmiddle, we define step by step a bijection
bus

: [k] → [k]. The idea is to use for the operations on subgraph G(us) label

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 172

p
middle

ξ(q)=H
2

ξ(q)=J
4

ξ(q)=J
6

ξ(q)=J
8

3
(q)=Hξ

ξ(q)=H
5

p
first

p
last34

q
7

q
5

q
2

q
1

q
6

q
8

q
9 ξ(q)=J

9

ξ
7

(q)=H

ξ(q)=J
4

ξ(q)=H
2

ξ(q)=J
8

ξ(q)=J
6

ξ(q)=H
5

3
(q)=Hξ

ξ
1

(q)=J

ξ
7

(q)=H

q
3

q
4

q
8

q
6

q
4

q
2

q
3

q
5

q
7

 unfix (q)
H i

 unfix (q)
J i

p

4 4

42

2

4 2

4 3

2 3

34

4

2

2

Figure 15: The partition of path p into three parts pfirst, pmiddle, plast, where
minH(p) = 2, minJ (p) = 2, r1 = 2, and r2 = 8

bus
(i) instead of label i. For all labels i ∈ LP (us) ∪ LH∩J(us), we will have

bus
(i) = i, because these labels are not relabeled along a path of type 3.b.
The bijections for the nodes of qr1 are identities. The other bijections are

defined step by step depending on the operations of the nodes along the new
path pmiddle.

We consider the nodes us of the new path pmiddle in the given order starting
with the parent node of the last node of frame qr1 .

1. If us is a union node then let u′
s−1 and us−1 be the two children of us,

where u′
s−1 is not in TP . The bijection bus

of us is initially the bijection
bus−1 of the child us−1.

We then simultaneously replace in the expression of subtree T (u′
s−1) every

label i by bus
(i). After that, we verify whether there is a vertex w of

G(u′
s−1) which is an unfixed vertex in the original tree T (us) but not an

unfixed vertex in the new tree T (us).

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 173

If there is such a vertex w originally labeled by i and now labeled by bus
(i),

then we choose an arbitrary label j such that bus
(j) is not used up to now,

i.e., bus
(j) �∈ LP (us) ∪ LH(us) ∪ LJ(us) with respect to the expression

defined up to now by the new tree T (us). We define bus
(i) := bus

(j) and
bus

(j) := bus
(i), and simultaneously exchange in the expression of subtree

T (u′
s−1) every label bus

(i) by bus
(j) and every label bus

(j) by bus
(i).

2. If us is an edge insertion node labeled by ηi,j , then bijection bus
is the

bijection bus−1 and node us will be labeled by operation ηbus (i),bus (j).

3. If us is a relabeling node labeled by ρi→j , then bijection bus
is the bijection

bus−1 and node us will be labeled by operation ρbus (i)→bus (j).

For the final node us of the new path pmiddle we perform one additional
relabeling of the resulting expression defined by T (us) such that the unfixed
vertices of G(us) are labeled as in the graph defined by the final node of the
original path pmiddle.

All these relabeling steps are possible, because for all nodes us in the first
part of pmiddle unfixH(us) = minH(p), and for all nodes us of the last part of
pmiddle unfixJ (us) = minJ(p). Thus, there are always enough unused labels
to relabel the unfixed vertices. Note that the labels of the sets LP (us) and
LH∩J(us) are unchanged along the nodes of pmiddle.

It remains to show that the new expression is equivalent to the original
expression. Let q = (u1, . . . , ur′ , . . . , us′) be a frame of the original path pmiddle

where ξ(u1) = H. The other case where ξ(u1) = J runs analogously and is even
less complicated. Frame q can be moved by the rearrangement toward the end
of pmiddle. Let u′

0 and u0 be the two children of u1, where u0 is in TP . Node
u′

0 is also a child of u1 in the new expression tree, because the children of the
union nodes which are not in TP are not changed by the rearrangement of the
frames.

Consider now an edge insertion operation ηi,j of some node ur, 1 < r ≤ r′,
of frame q in the original expression. By Lemma 7.8, we know that the edge
insertion operation ηi,j of node ur creates only edges between vertices from
G(u′

0) and vertices from G(u0). We also know that one of the two labels i, j is
from LH(u1) and the other is not from LJ (u1). Without loss of generality, let
j ∈ LH(u1) and i �∈ LJ (u1).

The rearrangement of the frames does not change the order of the leaves
in the expression tree, see Figure 14. It also does not change the order of
the frames q with the same ξ(q) on path pmiddle. Since ηi,j creates only edges
between vertices from UH and vertices from UH ∪ UP , all these edges are also
created by the corresponding edge insertion operation ηbur (i),bur (j) in the new
expression.

Assume edge insertion operation ηbur (i),bur (j) in the new expression creates
an edge which is not in the graph defined by the original expression. Then one
of the nodes of this edge has to be in UJ . This node can only be labeled by
bur

(j), because i �∈ LJ (u1) for u1 from the original expression tree, and by our

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 174

relabeling procedure bur
(i) �∈ LJ(u1) for u1 from the new expression tree. Now

we get bur
(j) ∈ LH∩J(u1), bur

(i) ∈ LP (u1), and bur
(i) �∈ forbP (us′ , bur

(j)) for
u1 from the new expression tree. Since all sets LP (us) are equal for all nodes
us of pmiddle, all sets LH∩J(us) are equal for all nodes us of pmiddle, and all
sets forbP (us, j) are equal for all the last nodes us of all frames of pmiddle, and
since these labels are not relabeled by our relabeling procedure, we get that all
edges created by ηbur (i),bur (j) have to be in the graph defined by the original
expression. This contradicts our assumption.

Thus the original expression and the new expression are equivalent. Note
that the normal form property and the Properties 7.2, 7.4, and 7.6 are also not
changed by the rearrangement of the frames. �

Lemma 7.10 allows us to divide every 3.b-path into at most 3 · 22(k+1) paths
of type 4. The paths of type 4 are the those parts of the paths pmiddle in that
for all frames q all ξ(q) are equal.

The connection type of H

Let us summarize how the paths of tree TP are partitioned now. Tree TP consists
of

1. at most 2l − 1 paths of type 1.a,

2. at most (2l − 1) · (3k − 1) paths of type 2.a,

3. at most (2l − 1) · 3k · (k + 1)k+1 paths of type 3.a, and

4. at most (2l − 1) · 3k · ((k + 1)k+1 + 1) · 3 · 22(k+1) paths of type 4.

Every non-leaf node of TP is in exactly one of these paths of type 1.a, 2.a,
3.a, or 4. Every path of type 1.a, 2.a, or 3.a has at most

(
k
2

)
+ k nodes, because

these paths are frames. For all frames q = (u1, . . . , us′) in a path of type 4 all
ξ(u1) are equal, all sets LP (q) and LH∩J(q) are equal, and all sets forbP (us′ , j)
are equal for all j ∈ LP (q) ∪ LH∩J(q). For a node us of TP , let LP (us) be the
set of all terminal labels, LH(us) be the set of all internal labels, and LJ (us) be
the set of all external labels for node us.

We now replace every 4-path p = (u1, . . . , us′) of TP which consists of more
than one frame by some so-called bridge node node v. Let u0 be the child of
u1 which is in TP and us′+1 be the parent node of us′ in TP . Then the path
(u0, u1, . . . , us′ , us′+1) is replaced by path (u0, v, us′+1). Node v is called an
internal bridge node if ξ(u1) = H and an external bridge node if ξ(u1) = J .
Every bridge node represents a 4-path with more than one frame. Note that in
a succeeding replacement the nodes u0 and us′+1 can also be bridge nodes. At
every bridge node we store the information whether it is internal or external,
and the set of all terminal labels LP (us′), the set of all internal labels LH(us′),
the set of all external labels LJ (us′), and the pairs (forbP (us′ , j), j) for all
j ∈ LP (us′) ∪ LH∩J(us′).

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 175

A union node u1 is called an internal union node if ξ(u1) = H and an
external union node if ξ(u1) = J . At every union node us of TP for which ξ(us)
is defined, we store the information whether us is internal or external.

At every non-bridge node us of TP we store additionally to the clique-width
operation the set of all terminal labels LP (us), the set of all internal labels
LH(us), the set of all external labels LJ (us), and all pairs (forbP (us, j), j) for
all j ∈ LP (us) ∪LH∩J(us). If a leaf us of TP represents a vertex of G obtained
by joining the i-th terminal vertex from H with the i-th terminal vertex from
J , then leaf us is additionally labeled by index i. The result C is called a
connection tree for the k-labeled l-terminal graph H.

The set of all mutually different connection trees of H with respect to all k-
labeled l-terminal graphs J is called the connection type of H. Two connection
trees C1, C2 for H are equivalent if there is a bijection b between the nodes of
C1 and C2 such that

1. node us−1 is a child (left child, right child) of node us in C1 if and only if
node b(us−1) is a child (left child, right child, respectively) of node b(us)
in C2,

2. node us of C1 is an external or internal union node if and only if node
b(us) of C2 is an external or internal union node, respectively,

3. node us of C1 is an external or internal bridge node if and only if node
b(us) of C2 is an external or internal bridge node, respectively,

4. node us of C1 and node b(us) of C2 store the same terminal label sets,
internal label sets, external label sets, the same pairs (forbP (us, j), j), and
the same clique-width operation,

5. node us of C1 and node b(us) of C2 store the same index if us and b(us)
are leaves representing a vertex obtained by joining to terminal vertices.

Note that the two notions connection tree and connection type are always
defined with respect to graph property clique-width at most k. For better
readability, we will sometimes omit this extension.

8 Main result

The following theorem implies the main result of this paper.

Theorem 8.1 If two k-labeled l-terminal graphs are of the same connection type
with respect to graph property clique-width at most k, then they are replaceable
with respect to graph property clique-width at most k.

Proof: Let H1 and H2 be two k-labeled l-terminal graphs such that H1 and
H2 are of the same connection type. Let J be any k-labeled l-terminal graph
such that H1 ◦ J has clique-width at most k. We will show that H2 ◦ J has

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 176

also clique-width at most k. This implies that H1 and H2 are replaceable with
respect to graph property clique-width at most k.

Let T1 be a k-expression tree for H1 ◦ J which defines connection tree C.
Let T1,P be the subtree of T1 defined by the leaves of T1 which represent the
joined terminal vertices of H1 and J , and by the nodes on the paths from these
leaves to the root of T1.

Since H1 and H2 are of the same connection type, C is also a connection
tree for H2 with respect to some k-labeled l-terminal graph J ′. Let T ′ be a
k-expression tree for H2 ◦ J ′ which defines connection tree C. Let T ′

P be the
subtree of T ′ defined by the leaves of T ′ which represent the joined terminal
vertices of H2 and J ′, and by the nodes on the paths from these leaves to the
root of T ′.

Since T1 and T ′ define the same connection tree C, there is a one-to-one
correspondence between some nodes of T1, T ′, and C. For a node u of C, we
write uC to indicate that u is a node of C. If v is the corresponding node of T1,
then we write uT1 for v. The corresponding node in T ′ is denoted by uT ′

. We
use this notation also for frames and paths.

Our aim is to define a new k-expression tree T2 from T1 and T ′ such that T2

defines H2 ◦J . We start with a copy T ′
1 of the k-expression tree T1. Let T ′

1,P be
defined for T ′

1 in the same way as T1,P is defined for T1. Let uC
1 be an internal

union node, let u
T ′

1
0 be the child of u

T ′
1

1 which is not in T ′
1,P , and let uT ′

0 be the
child of uT ′

1 which is not in T ′
P . By our notation, it is clear from which trees

these nodes are. For every such node uC
0 we replace in the copy T ′

1 of T1 the
subtrees T ′

1(u
T ′

1
0) by the subtrees T ′(uT ′

0). Let uC be an internal bridge node,
let pT ′

1 be the corresponding 4-path in T ′
1 and pT ′

be the corresponding 4-path
in T ′. For every such node we substitute in the current tree T ′

1 the 4-path pT ′
1

by the 4-path pT ′
. This substitution includes all the subtrees at the children of

the union nodes of pT ′
1 and pT ′

which are not in T ′
1,P and T ′

P , respectively. The
resulting tree is denoted by T2. It is clear that T2 is a k-expression tree.

It remains to show that k-expression tree T2 defines H2 ◦ J . Let T2,P be the
subtree of T2 defined by the leaves of T2 which represent the joined terminal
vertices of H2 and J , and by the nodes on the paths from these leaves to the
root of T2.

We first show that the vertices in the k-labeled graph H2 ◦ J are labeled
as in the k-labeled graph defined by k-expression tree T2. There is obviously
a one-to-one correspondence between the vertices of H2 ◦ J and the vertices of
the graph defined by T2, because T2 is constructed from T1 and T ′ which define
J and H2. Let T2,H2 and T2,J be the subtrees of T2 defined by the leaves which
represent vertices of H2 and J , respectively, and by the nodes on the paths from
these leaves to the roots. The vertices of H2 are labeled in H2 ◦ J as in the
graph defined by k-expression tree T2, because these vertices are only relabeled
by relabeling operations of T2,H2 which do not belong to the external 4-paths
of T2,P . (Here external and internal 4-path means that the path is copied from
T1 and T ′, respectively.) The same holds for the vertices of J , because these
vertices are only relabeled by relabeling operations of T2,J which do not belong

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 177

to the internal 4-paths of T2,P .
Next we show that all edges of H2 ◦ J are also in the graph defined by T2.

Let T ′
H2

and T1,J be the subtrees of T ′ and T1, respectively, defined by the
leaves which represent vertices of H2 and J , respectively, and by the nodes on
the paths from these leaves to the roots. Let e be an edge of H2 ◦ J . If the
end vertices of e are both from H2 or both from J then e is created by an
edge insertion node uT ′

s or uT1
s which is also in T ′

H2
or T1,J , respectively. The

composition of T2 now implies that node uT2
s exists in T2 and the corresponding

edge is also contained in the graph defined by T2. Thus, all edges of H2 ◦ J are
in the graph defined by T2.

The most interesting part is to show that the edge insertion operations of
T2 do not create any edge which is not in H2 ◦ J . An edge insertion node uT2

s

of T2 which does not belong to T2,P creates only edges which are also in H2 ◦J ,
because the corresponding subtree defined by T2(uT2

s) is either completely copied
from T ′ or completely copied from T1.

Assume now the edge insertion node uT2
s belongs also to T2,P . Let ηi,j

be the edge insertion operation of uT2
s . If uT2

s is not from a 4-path of T2,P

which consists of more than one frame, then uT2
s is also in C. Then there is an

equivalent edge insertion node uT1
s or uT ′

s in T1 or T ′ which is labeled as uT2
s in

T2. This equal labeling ensures that the edge insertion operation ηi,j defines a
new edge between a vertex labeled by i and a vertex labeled by j if it defines at
least one such edge in T1 or T ′.

If uT2
s is from a 4-path pT2 which is also in T2,P and which consists of more

than one frame, then without loss of generality, let pT2 be copied from T ′, i.e.,
let pT2 be an internal 4-path for which ξ(qT2) = H2 for all frames qT2 of pT2 .
Let uC be the corresponding internal bridge node for pT2 and let u′C be the
child of uC in C. The child u′C can be a bridge node or a usual node. If it is
a usual node then the equal labeling of u′T2 and u′T ′

ensures that ηi,j defines a
new edge between a vertex labeled by i and a vertex labeled by j if it defines at
least one such edge in T ′.

If child u′C is a bridge node then let vT2 be the last node of the path of T2

which is represented by u′C in C. If u′C is an internal (external) bridge node
then the equal labeling of vT2 and vT ′

(and vT1 , respectively) ensures that ηi,j

defines a new edge between a vertex labeled by i and a vertex labeled by j if it
defines such an edge in T ′. Thus, every edge in the graph defined by T2 is also
in H2 ◦ J , and vice versa. �

By Theorem 8.1 and the fact that there is only a finite number of connection
types for fixed integers l and k it follows that the equivalence relation ∼Πk,l has
a finite number of equivalence classes, where Πk is the graph property clique-
width at most k. This implies the following corollary.

Corollary 8.2 For every integer k, there exists a linear time algorithm for
deciding clique-width at most k of a graph of bounded tree-width.

Since the clique-width of a graph of tree-width l is bounded by 3 · 2l−1, see
[CR01], there is also an algorithm which minimizes the clique-width of a graph

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 178

of bounded tree-width in linear time.

Corollary 8.3 There exists a linear time algorithm for computing the clique-
width of a graph of bounded tree-width.

The corollary above only states that such a linear-time algorithm for deciding
clique-width k for graphs of bounded tree-width exists. Although the proof
is constructive, the resulting algorithm seems to be only interesting from a
theoretical point of view.

Note that our result does not imply that the clique-width k property is
expressible in counting MSO2-logic. The equivalence between a finite number
of equivalence classes of ∼Πk,l and monadic second-order definability is only
given for special graph classes as for example for graphs of bounded tree-width
[Lap98], but not for the class of all graphs.

Acknowledgments

The authors wish to thank the anonymous referees for several useful suggestions.

References

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12:308–340, 1991.

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard
problems on graphs embedded in k-trees. Discrete Applied Mathe-
matics, 23:11–24, 1989.

[Arn85] S. Arnborg. Efficient algorithms for combinatorial problems on
graphs with bounded decomposability – A survey. BIT, 25:2–23,
1985.

[Bod96] H.L. Bodlaender. A linear-time algorithm for finding tree-decompo-
sitions of small treewidth. SIAM Journal on Computing, 25(6):1305–
1317, 1996.

[Bod97] H.L. Bodlaender. Treewidth: Algorithmic techniques and results.
In Proceedings of Mathematical Foundations of Computer Science,
volume 1295 of LNCS, pages 29–36. Springer-Verlag, 1997.

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209:1–45, 1998.

[CHL+00] D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, and U. Rotics.
Polynomial time recognition of clique-width at most three graphs.
In Proceedings of Latin American Symposium on Theoretical Infor-
matics (LATIN ’2000), volume 1776 of LNCS. Springer-Verlag, 2000.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 179

[CMR00] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory
of Computing Systems, 33(2):125–150, 2000.

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics, 101:77–114, 2000.

[Cou90] B. Courcelle. The monadic second-order logic of graphs I: Recogniz-
able sets of finite graphs. Information and Computation, 85:12–75,
1990.

[CPS85] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition al-
gorithm for cographs. SIAM Journal on Computing, 14(4):926–934,
1985.

[CR01] D.G. Corneil and U. Rotics. On the relationship between clique-
width and treewidth. In Proceedings of Graph-Theoretical Concepts
in Computer Science, volume 2204 of LNCS, pages 78–90. Springer-
Verlag, 2001.

[EGW01] W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph
problems on clique-width bounded graphs in polynomial time. In
Proceedings of Graph-Theoretical Concepts in Computer Science, vol-
ume 2204 of LNCS, pages 117–128. Springer-Verlag, 2001.

[GR00] M.C. Golumbic and U. Rotics. On the clique-width of some per-
fect graph classes. IJFCS: International Journal of Foundations of
Computer Science, 11(3):423–443, 2000.

[GW00] F. Gurski and E. Wanke. The tree-width of clique-width bounded
graphs without Kn,n. In Proceedings of Graph-Theoretical Con-
cepts in Computer Science, volume 1938 of LNCS, pages 196–205.
Springer-Verlag, 2000.

[Joh98] Ö. Johansson. Clique-decomposition, NLC-decomposition, and mod-
ular decomposition - relationships and results for random graphs.
Congressus Numerantium, 132:39–60, 1998.

[KR01] D. Kobler and U. Rotics. Polynomial algorithms for partition-
ing problems on graphs with fixed clique-width. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, pages 468–476.
ACM-SIAM, 2001.

[Lap98] D. Lapoire. Recognizability equals definability, for every set of graphs
of bounded tree-width. In Proceedings 15th Annual Symposium on
Theoretical Aspects of Computer Science, volume 1373 of LNCS,
pages 618–628. Springer-Verlag, 1998.

W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141–180 (2003) 180

[LW88] T. Lengauer and E. Wanke. Efficient solution of connectivity prob-
lems on hierarchically defined graphs. SIAM Journal on Computing,
17(6):1063–1080, 1988.

[LW93] T. Lengauer and E. Wanke. Efficient analysis of graph properties on
context-free graph languages. Journal of the ACM, 40(2):368–393,
1993.

[Wan94] E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Ap-
plied Mathematics, 54:251–266, 1994,
revised version: http://www.cs.uni-duesseldorf.de/∼wanke.

