
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 1, pp. 1–18 (2023)
DOI: 10.7155/jgaa.00607

The Minimum Moving Spanning Tree Problem

Hugo A. Akitaya 1 Ahmad Biniaz 2 Prosenjit Bose 3 Jean-Lou De Carufel 4

Anil Maheshwari 3 Lúıs Fernando Schultz Xavier da Silveira 3 Michiel Smid 3

1Department of Computer Science, University of Massachusetts Lowell, United States
2School of Computer Science, University of Windsor, Canada
3School of Computer Science, Carleton University, Canada

4School of Electrical Engineering and Computer Science, University of Ottawa, Canada

Submitted: June 2021 Reviewed: July 2022

Revised: September 2022 Accepted: October 2022

Final: November 2022 Published: January 2023

Article type: Regular paper Communicated by: Csaba D. Toth

Abstract. We investigate the problem of finding a spanning tree of a set of n
moving points in Rdim that minimizes the maximum total weight (under any convex
distance function) or the maximum bottleneck throughout the motion. The output
is a single tree, i.e., it does not change combinatorially during the movement of the
points. We call these trees a minimummoving spanning tree, and a minimum bottleneck
moving spanning tree, respectively. We show that, although finding the minimum
bottleneck moving spanning tree can be done in O(n2) time when dim is a constant, it is
NP-hard to compute the minimum moving spanning tree even for dim = 2. We provide
a simple O(n2)-time 2-approximation and a O(n log n)-time (2 + ε)-approximation for
the latter problem, for any constant dim and any constant ε > 0.

1 Introduction

A Euclidean minimum spanning tree (EMST) of a point set in the Euclidean plane is a minimum
weight graph that connects the given point set, where the weight of the graph is given by the sum of
Euclidean distances between endpoints of edges. Euclidean minimum spanning tree is a classic tool
in computational geometry and it has found many uses in network design and in approximating
NP-hard problems.

Research supported in part by NSERC. A preliminary version of this paper has been published in the proceedings

of the 17th Algorithms and Data Structures Symposium (WADS 2021) [3].

E-mail addresses: hugo akitaya@uml.edu (Hugo A. Akitaya) abiniaz@uwindsor.ca (Ahmad Biniaz) jit@scs.carleton.ca
(Prosenjit Bose) jdecaruf@uottawa.ca (Jean-Lou De Carufel) anil@scs.carleton.ca (Anil Maheshwari) lfsxs@mailbox.org
(Lúıs Fernando Schultz Xavier da Silveira) michiel@scs.carleton.ca (Michiel Smid)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00607
mailto:hugo_akitaya@uml.edu
mailto:abiniaz@uwindsor.ca
mailto:jit@scs.carleton.ca
mailto:jdecaruf@uottawa.ca
mailto:anil@scs.carleton.ca
mailto:lfsxs@mailbox.org
mailto:michiel@scs.carleton.ca
https://creativecommons.org/licenses/by/4.0/

2 Akitaya et al. Minimum Moving Sapnning Tree

Motivated by visualizations of time-varying spatial data, we investigate a natural generalization
of the minimum spanning tree (MST) and the minimum bottleneck spanning tree (MBST) for a
set of moving points. In general it is desirable that visualizations are stable, i.e., small changes
in the input should produce small changes in the output [27]. In this paper, we consider a set of
moving points in Rdim and we want to maintain all points connected throughout the motion by
the same tree (the tree does not change topologically during the time frame). We consider the case
when each point moves at constant speed along a straight line over the time interval [0, 1]. The
weight of an edge pq between points p and q is defined by a convex distance function. Note that
the weight of an edge changes over time. We define a Minimum Moving Spanning Tree (MMST)
of a set of moving points to be a spanning tree that minimizes the maximum sum of weights of its
edges during the time interval. Analogously, we define a Minimum Bottleneck Moving Spanning
Tree (MBMST) of a set of moving points to be a spanning tree that minimizes the maximum
individual weight of edges in the tree during the time interval.

The concepts of MMST and MBMST are relevant in the context of moving networks. Motivated
by the increase in mobile data consumption, network architecture containing mobile nodes have
been considered [23]. In this setting, the design of the topology of the networks is a challenge. Due
to the mobility of the vertices, existing methods update the topology dynamically and the stability
becomes important since there are costs associated with establishing new connections and handing
over ongoing sessions. The MMST and MBMST offer stability in mobile networks.

Results and Organization. We study the problems of finding an MMST and an MBMST of
a set of points moving linearly, each at constant speed. Section 2 provides formal definitions and
proves that the distance between any two moving points is maximized at time t = 0 or t = 1. We
use this property in an exact O(n2)-time algorithm for the MBMST as shown in Section 3. Our
algorithm computes a minimum bottleneck tree in a complete graph GS on the moving points in
which the weight of each edge is the maximum distance between the pairs of points during the time
frame. In Section 4.1, we show that the problem of finding an MMST is NP-hard; this is shown by
a reduction from the Partition problem. In Section 4.2, we present an O(n2)-time 2-approximation
for MMST by computing an MST of GS . We also show that our analysis for the approximation
ratio is tight. In Section 4.5, we improve the running time to O(n log n), but the approximation
ratio becomes 2 + ε, for any constant ε > 0. All our results hold for any convex distance function
and any constant dimension dim.

Since the first version of our result appeared at WADS 2021, Wang and Zhao [32] improved the
running time for the MBMST problem to O(n4/3 log3 n) for the special case when the points are
moving in R2 under the Euclidean distance metric.

Related work. In the visualization community, a series of methods generalize Euler diagrams
to represent spatial data [13, 4, 15, 26]. These approaches represent a set by a connected colored
shape containing the points in the plane that are in the given set. In order to reduce visual
clutter, approaches such as Kelp Diagrams [15] and colored spanning graphs [22] try to minimize
the area (or “ink”) of such colored shapes. Each shape can be considered as a generalization of the
EMST of points in the set. Examples of visualizations of time-varying spatial data are space-time
cubes [25], that represent varying 2D data points with a third dimension, and motion rugs [9, 33],
that reduces the dimentionality of the movement of data points to 1D, presenting a 2D static
overview visualizations. The representation of time-varying geometric sets were also the theme of
a recent Dagstuhl Seminar 19192 “Visual Analytics for Sets over Time and Space” [17]. In the
context of algorithms dealing with time-varying data Meulemans et al. [27] introduce a metric for
stability, analysing the trade-off between quality and stability of results, and applying it to the
EMST of moving points. Monma and Suri [29] study the number of topological changes that occur

JGAA, 27(1) 1–18 (2023) 3

in the EMST when one point is allowed to move.
The problem of finding an MMST and MBMST of moving points can be seen as a bicriteria

optimization problem if the points move linearly (as shown in Section 2). In this context, the
addition of a new criterion could lead to an NP-hard problem, such as the bi-criteria shortest path
problem in weighted graphs. Garey and Johnson show that given a source and target vertices,
minimizing both length and weight of a path from source to target is NP-hard [19, p. 214]. Arkin
et al. analyse other criteria combined with the shortest path problem [6], such as the total turn
length and different norms for path length.

Maintaining the EMST and other geometric structures of a set of moving points have been
investigated by several papers since 1985 [7]. Kinetic data structures have been proposed to
maintain the EMST [1, 31] and minimum Steiner tree [34]. The MMST and MBMST problems also
lie under a broader context of MST in parametric or time-varying graphs where the edge weights
vary with time. In the parametric minimum spanning tree problem we are given a graph (with n
vertices and m edges) with edge weights that are linear functions of a parameter λ and we want to
compute the sequence of minimum spanning trees generated as λ varies. This problem has a rich
background; see e.g. [2, 11, 16, 18, 20]. Research in this area has focused on bounds on the number
of combinatorial changes or transitions in the MST and on computing the updated MST. Agarwal
et al. [2] have given data structures to maintain the MST over time, with a cost of O(n2/3polylog n)
per change. Eppstein [16] has shown that the number of different minimum spanning trees obtained
as λ varies can be Ω(m log n). Chan [11] has given a randomized O(n(m/n)ε log n+m) expected
time algorithm for any fixed ε > 0 that finds the time value at which the weight of the largest
MST edge is minimized.

Perhaps the closest research to our model is by Katoh et al. [24] who investigate the numbers
of transitions of the minimum and maximum spanning trees where the points move along different
straight lines at different but fixed speeds. They show that the maximum number of possible
transitions of MST in L1 and L∞ metrics for n linearly moving points in any constant dimension
is O(n5/2α(n)) where α(n) is the inverse Ackermann’s function.

To the best of our knowledge, the problem of finding an MMST and MBMST (a single tree
that does not change during the movement of points) has not been investigated.

2 Preliminaries

In this section we formally define a minimum moving spanning tree and a minimum bottleneck
moving spanning tree of a set of moving points. We also prove that the distance between two
linearly moving points is maximized at time t = 0 or t = 1.

2.1 Convex Distance Functions

In this section, we recall the notion of a convex distance function as appeared in [8, 12, 28].
Let C be a convex body (i.e., a convex compact set with nonempty interior) in Rdim, where dim

is a constant. We assume that the origin is contained in the interior of C and that C is centrally
symmetric with respect to the origin. For any real number λ ≥ 0, the λ-scaled copy of C is the set

λC = {λz : z ∈ C}.

For any two points p and q in Rdim, we define their convex distance, with respect to C, as

distC(p, q) = min{λ ≥ 0 : q − p ∈ λC}.

4 Akitaya et al. Minimum Moving Sapnning Tree

We can visualize this as follows: First, we translate C by the vector p (thus, the origin is translated
to p). Then, we scale this translate, by increasing λ, until it “hits” the point q.

Chew and Drysdale [12] have shown that distC is a metric on Rdim. Throughout this paper, we
assume that dim is constant and distC(p, q) can be computed in O(1) time.

2.2 Definitions

A moving point p in the plane is described by a continuous function p : [0, 1] → Rdim. We assume
that p moves on a straight line segment in Rdim. We say that p is at p(t) at time t. We are
given a set S = {p1, ..., pn} of moving points as well as a centrally symmetric convex body C in
Rdim. Throughout this paper, we shall use w for weight functions of moving points and w for
weight functions of ordinary graphs. A moving spanning tree T of S is a spanning tree of S and
has weight function wT : [0, 1] → R defined as wT (t) =

∑
pq∈T distC(p(t), q(t)). Let T (S) denote

the set of all moving spanning trees of S. Let w(T) = maxt wT (t) be the weight of the moving
spanning tree T . A minimum moving spanning tree (MMST) of S is a moving spanning tree of S
with minimum weight. In other words an MMST is in

argmin
T∈T (S)

(w(T)) .

Let bT (t) = maxpq∈T distC(p(t), q(t)) denote the bottleneck of a tree T at time t. Let b(T) =
maxt bT (t) be the bottleneck of the moving spanning tree T . A minimum bottleneck moving
spanning tree (MBMST) of S is a moving spanning tree of S that minimizes the bottleneck over
all t ∈ [0, 1]. In other words an MBMST is in

argmin
T∈T (S)

(b(T)) .

The upper bound graph. Throughout this paper, we shall use a graph whose edge weights are
upper bounds for distances between points. We define GS , as the upper bound graph of a set S of
moving points, to be the complete graph on points of S where the weight w(pq) of every edge pq
is the largest distance between p and q during time interval [0, 1]; see Figure 1(b).

2.3 Maximizing the distance between two moving points

Let p and q be two linearly moving points in Rdim. Thus, for any real number t, we can write the
positions of p and q at time t as

p(t) = a+ tu

and
q(t) = b+ tv,

where a and b are the positions of p and q at time t = 0, and u and v are the velocity vectors of p
and q, respectively.

Below, we will prove that the distance distC(p(t), q(t)), for 0 ≤ t ≤ 1, is maximized at time
t = 0 or t = 1.

We first consider the case when the point p is stationary, i.e., u is the zero vector, so that
p(t) = a for all t.

Lemma 1 Assume that the point p is stationary. Then, the distance distC(p(t), q(t)), for 0 ≤ t ≤
1, is maximized at time t = 0 or t = 1.

JGAA, 27(1) 1–18 (2023) 5

Proof: We may assume without loss of generality that a is the origin and, thus, the point p is at
the origin at all times. We observe that

max
0≤t≤1

distC(p(t), q(t)) = min{λ ≥ 0 : λC contains the line segment q(0)q(1)}.

We may assume without loss of generality that distC(p(0), q(0)) ≤ distC(p(1), q(1)). Set λ =
distC(p(1), q(1)). Then λC contains both q(0) and q(1), with q(1) being on the boundary. Since
λC is convex, it contains the entire line segment q(0)q(1). Therefore, for all t with 0 ≤ t ≤ 1,
distC(p(t), q(t)) ≤ distC(p(1), q(1)). □

Lemma 2 Let p and q be two linearly moving points in Rdim. Then, the distance distC(p(t), q(t)),
for 0 ≤ t ≤ 1, is maximized at time t = 0 or t = 1.

Proof: We write p(t) = a+ tu and q(t) = b+ tv, and observe that

q(t)− p(t) = (b+ t(v − u))− a.

Thus, if we define the stationary point p′(t) = a and the moving point q′(t) = b+ t(v − u), then

distC(p(t), q(t)) = min{λ ≥ 0 : q(t)− p(t) ∈ λC}
= min{λ ≥ 0 : q′(t)− p′(t) ∈ λC}
= distC(p

′(t), q′(t)).

By Lemma 1, distC(p
′(t), q′(t)) is maximized at time t = 0 or t = 1. □

3 Minimum bottleneck moving spanning tree

Since by Lemma 2 the largest length of an edge is attained either at time 0 or at time 1, it might
be tempting to think that the MBMST of S is also attained at times 0 or 1. However the example
in Figure 1(a) shows that this may not be true. In this example we have four points a, b, c, and d
that move from time 0 to time 1 as depicted in the figure. The MBST of these points at time 0 is
the red tree R, and their MBST at time 1 is the blue tree B. Recall that bT (t) is the bottleneck of
tree T at time t, and that b(T) = maxt bT (t) be the bottleneck of T . In R the weight of ab at time
0 is 1 while its weight at time 1 is 3, and thus b(R) = 3. In B the weight of ad at time 1 is 1 while
its weigh at time 0 is 3, and thus b(B) = 3. However, for this point set the tree T = {ac, cb, cd}
has bottleneck 2.

a0 b0 c0 d0

a1 d1 c1 b1

1 1 1R

B

a b c d3 1 1

2

2

3

(a) (b)

Figure 1: Four points that move from time 0 to time 1. (a) R is the MBST at time 0, and B is
the MBST at time 1. (b) The graph GS ; green edges form an MBST of this graph.

6 Akitaya et al. Minimum Moving Sapnning Tree

Although the above example shows that the computation of an MBMST is not straightforward,
we present a simple algorithm for finding an MBMST. Let GS be the upper bound graph of S as
defined in Section 2.2.

Lemma 3 The bottleneck of an MBMST of S is not smaller than the bottleneck of an MBST of
GS.

Proof: Our proof is by contradiction. Let T ∗ be an MBMST of S and let T be an MBST of GS

of minimum weight. For the sake of contradiction assume that b(T ∗) < b(T), where we abuse the
notation for simplicity making b(T) = maxpq∈T w(pq) the bottleneck of T . Let pq be a bottleneck
edge of T , that is b(T) = w(pq). Denote by Tp and Tq the two subtrees obtained by removing pq
from T , and denote by Vp and Vq the vertex sets of these subtrees. Since the vertex set of T is
the same as that of T ∗, there is an edge, say rs, in T ∗ that connects a vertex of Vp to a vertex
of Vq. Since the bottleneck of T ∗ is its largest edge-length in time interval [0, 1], we have that
w(rs) ⩽ b(T ∗). Thus w(rs) ⩽ b(T ∗) < b(T) = w(pq). Let T ′ be the spanning tree of GS that is
obtained by connecting Tp and Tq by rs. Then b(T ′) ⩽ b(T) and w(T ′) < w(T). Then, T ′ is an
MBST of GS with smaller weight than T , contradicting its definition. □

It follows from Lemma 3 that any MBST of GS is an MBMST of S. Since an MBST of a graph
can be computed in time linear in the size of the graph [10], an MBST of GS can be computed in
O(n2) time. The following theorem summarizes our result in this section.

Theorem 1 A minimum bottleneck moving spanning tree of n moving points in Rdim under any
convex distance function can be computed in O(n2) time, provided that dim is a constant.

4 Minimum moving spanning tree

In this section we study the problem of computing an MMST of moving points. First we prove
that this problem is NP-hard, even in R2 under the Euclidean distance metric. Then we propose
a simple a simple O(n2)-time 2-approximation algorithm. We also show that our analysis of the
approximation ratio is tight. Then in Section 4.5 we improve the running time to O(n log n) but
obtain a (2 + ε)-approximation.

4.1 NP-hardness of MMST

Inspired by Arkin et al. [6], we reduce the Partition problem, which is known to be weakly NP-
hard [19], to the MMST problem in the Euclidean plane. In one formulation of the Partition
problem, we are given n > 0 positive integers a0, . . . , an−1 and must decide whether there is a
subset S ⊆ {0, . . . , n− 1} such that ∑

i∈S

ai =
1

2

n−1∑
i=0

ai.

Construction. We construct an instance of a decision version of the MMST problem defined
as follows. First we let ℓ = max{a0, . . . , an−1} and then, for each i ∈ {0, . . . , n − 1}, we put the
following points into our set P of moving points (Figure 2):

� Ai, stationary at (iℓ, 0);

JGAA, 27(1) 1–18 (2023) 7

A0 A1 A2 A3

D0

E0C0

B0

D1

D2

D3

E1C1

B1 B2 B3

E2C2
E2C2

Figure 2: Initial position of the reduction for n = 4 and (a0, a1, a2, a3) = (1, 2, 4, 3). The moving
are indicated with arrows and their final position is indicated with a white dot. For clarity, the
x-coordinates of points Ci and Ei are slightly shifted so that there is no overlap.

� Bi, stationary at (iℓ, ℓ);

� Ci, moving from (iℓ, ℓ) to (iℓ, ℓ+ ai);

� Di, stationary at (iℓ, ℓ+ ai); and

� Ei, moving from (iℓ, ℓ+ ai) to (iℓ, ℓ).

We then ask whether there is a moving spanning tree T with

w(T) ≤ (2n− 1)ℓ+
3

2

n−1∑
i=0

ai.

Theorem 2 The decision version of the MMST problem is weakly NP-hard.

Proof: Let T be a moving spanning tree on vertex set P . Recall that wT (t) denotes the weight
of T at time t. The distance function between two moving points in the plane is convex (this is
implied by the result of Alt and Godau [5] that the free space diagram of any two line segments
is convex). Thus the weight of each edge of T is attained at time 0 or 1 (this is also implied by
Lemma 2). Indeed w(T) = max

{
wT (0), wT (1)

}
, i.e., the maximum weight of T is also attained at

time 0 or 1, because the sum of convex functions is convex.
Let K0 be the set of edges AiBi for i ∈ {0, . . . , n− 1} and AiAi+1 for i ∈ {0, . . . , n− 2} and let

K1 be the set of edges among Bi, Ci, Di and Ei for each i ∈ {0, . . . , n−1} together with K0 (Figure

8 Akitaya et al. Minimum Moving Sapnning Tree

A0

B0

C0

D0

E0

A1 A2 A3

B1

C1

D1

E1

B2

C2

D2

E2

B3

C3

D3

E3

Figure 3: The (topological) edges in K0 (dashed) and in K1 \K0 (solid).

3). We claim that there is a moving spanning tree T ∗ of minimum cost, i.e., an optimal solution
to the MMST problem, whose edges are all in K1. Assume the contrary for contradiction. Let
T be an MMST whose intersection with K1 is maximum. By assumption, T has at least an edge
e ̸∈ K1. We now consider the two components obtained from deleting e from T . There must be at
least one edge e′ ∈ K1 between the two components, since K1 spans P . However, at any point in
time, every edge in K1 weights at most ℓ while every edge outside of K1 weights at least ℓ, so if
we bridge the two components with e′, we will be left with a spanning tree T ′ with w(T ′) ≤ w(T)
and with a larger intersection with K1, contradicting the definition of T .

As every edge in K0 is a bridge in the graph (P,K1), the spanning tree T ∗ must contain K0,
so T ∗ consists of K0 and, for each i ∈ {0, . . . , n − 1}, of a subtree Ti spanning {Bi, Ci, Di, Ei}.
The weights wTi(0) and wTi(1) must both be a multiple of ai since so are the Euclidean distances
between the vertices of Ti at these two times. There are two notable ways to build Ti: one is
Ti = {BiCi, CiDi, DiEi}, which satisfies wTi

(0) = ai and wTi
(1) = 2ai and is thus called the

(1, 2)-tree; and the other is Ti = {BiEi, EiDi, DiCi}, which satisfies wTi
(0) = 2ai and wTi

(1) = ai
and is thus called the (2, 1)-tree.

We shall show that the (1, 2)-tree or the (2, 1)-tree have minimum weight among all moving
spanning trees of {Bi, Ci, Di, Ei}. Indeed, Ti is made of three edges and, since there are no three
edges with weight zero at time 0, as can be seen in Figure 4. Since the diameter of {Bi, Ci, Di, Ei}
is ai for all i ∈ {0, . . . , n− 1} at t ∈ {0, 1}, wTi

(0) ≥ ai and, similarly, wTi
(1) ≥ ai. Furthermore,

each edge between Bi, Ci, Di and Ei adds up to at least ai in terms of their weight at time 0 or at
time 1. Therefore, wTi

(0) +wTi
(1) ≥ 3ai, so (i) wTi

(0) ≥ 2ai or (ii) wTi
(1) ≥ 2ai. Then, given an

optimal solution T ∗, we can replace T1 by the (1, 2)-tree in case (i) is true, or by the (2, 1)-tree in
case (ii) is true, without affecting the maximum weight or local connectivity. As a result, we may
assume, without loss of generality, that Ti is either the (1, 2)-tree or the (2, 1)-tree.

Let now S∗ ⊆ {0, . . . , n− 1} be the set of indices i such that Ti is the corresponding (2, 1)-tree.
As |K0| = 2n− 1, we have

wT∗(0) = (2n− 1)ℓ+

n−1∑
i=0

ai +
∑
i∈S∗

ai,

while

wT∗(1) = (2n− 1)ℓ+

n−1∑
i=0

ai +
∑

i∈{0,...,n−1}\S∗

ai.

JGAA, 27(1) 1–18 (2023) 9

Bi

Ci Ei

Di

0, ai ai, 0

ai, ai

ai, 0 0, ai

ai, ai

Figure 4: Edges between Bi, Ci, Di and Ei labeled with their weights at times 0 and 1.

Therefore, the cost of T ∗ is

(2n− 1)ℓ+

n−1∑
i=0

ai +max

∑
i∈S∗

ai,
∑

i∈{0,...,n−1}\S∗

ai

 .

Because ∑
i∈S∗

ai ≥
1

2

n−1∑
i=0

ai or
∑

i∈{0,...,n−1}\S∗

ai ≥
1

2

n−1∑
i=0

ai,

then the following holds

w(T ∗) ≥ (2n− 1)ℓ+
3

2

n−1∑
i=0

ai. (1)

We claim that (1) holds with equality if and only if our instance of the Partition problem has
a solution, i.e., there is a set S ⊆ {0, . . . , n − 1} such that the sum of ai for i ∈ S is half of
a0 + · · · + an−1. Indeed, if the equality holds, we can simply let S = S∗. To show the converse,
we build a tree T from the solution S of the Partition problem. This tree contains K0, the
corresponding (2, 1)-trees for i in S and the corresponding (1, 2)-trees for i ∈ {0, . . . , n − 1} \ S,
resulting in a weight of

w(T) = (2n− 1)ℓ+
3

2

n−1∑
i=0

ai.

Because T ∗ is an MMST, w(T ∗) ≤ w(T), so the equality holds. □

4.2 A 2-approximation algorithm

Our algorithm is very simple and just computes an MST of the upper bound graph GS defined in
Section 2.2.

10 Akitaya et al. Minimum Moving Sapnning Tree

Lemma 4 The weight of any MST of GS is at most two times the weight of any MMST of S.

Proof: Let T be any MST of GS and let T ∗ be any MMST of S. Recall that w(T ∗) = maxt wT∗(t)
is the weight of the moving spanning tree T ∗. Let w(T) =

∑
pq∈T w(pq) be the weight of the

spanning tree T . We are going to show that w(T) ⩽ 2 · w(T ∗). Let T ′ be a spanning tree of GS

isomorphic to T ∗. Similar to GS , each edge pq of T ′ has weight w(pq) which is the maximum
distance between p and q in the time interval [0, 1]. Since T is an MST of GS , we have w(T) ⩽
w(T ′).

By Lemma 2 the largest distance between two points is achieved at time 0 or at time 1. Let
E∗

0 be the set of edges of T ∗ whose endpoints achieve their largest distance at time 0. Define
E∗

1 analogously. Then
∑

pq∈E∗
0
w(pq) ⩽ wT∗(0) ⩽ w(T ∗) and

∑
pq∈E∗

1
w(pq) ⩽ wT∗(1) ⩽ w(T ∗).

Moreover, w(T ′) =
∑

pq∈E∗
0
w(pq) +

∑
pq∈E∗

1
w(pq) by definition. By combining these inequalities

we get

w(T) ⩽ w(T ′) =
∑

pq∈E∗
0

w(pq) +
∑

pq∈E∗
1

w(pq) ⩽ w(T ∗) + w(T ∗) = 2 · w(T ∗).

□

A minimum spanning tree of GS can be computed in O(n2) time using Prim’s MST algorithm
using Fibonacci heaps [14]. The following theorem summarizes our result in this section.

Theorem 3 There is an O(n2)-time 2-approximation algorithm for computing the minimum mov-
ing spanning tree of n moving points in Rdim under any convex distance function, provided that
dim is a constant.

4.3 The approximation factor 2 is tight

In this section, we build a set of moving points showing that the approximation factor of our
2-approximation algorithm can be arbitrarily close to 2.

Let ϵ > 0. Consider the point set S = {p1, p2, p3} ⊂ R2, where p1, p2 and p3 are defined as
follows. The points p1 = (0, 0) and p2 = (1, 0) are stationary. The point p3 moves from (−ϵ, 0)
at time t = 0 to (1 + ϵ, 0) at time t = 1 (refer to Figure 5). We now describe the spanning tree
produced by our 2-approximation algorithm on S. In GS , the edge p1p2 has weight 1, and the
weights of p1p3 and p2p3 are 1+ ε. Hence, when we compute an MST of GS , we get the edges p1p2
and (due to symmetry) p1p3. The moving spanning tree of S defined by the edges p1p2 and p1p3
has weight 2 + ϵ.

Now consider the moving spanning tree of S defined by the edges p1p3 and p2p3. The weight
of this moving spanning tree of S is 1 + 2ϵ. Hence, the approximation factor is at least

2 + ϵ

1 + 2ϵ
= 2− 3ϵ

1 + 2ϵ
,

which can be made arbitrarily close to 2 by taking ϵ small enough. In other words, for every δ > 0
there exists a point set for which our algorithm has an approximation ratio of 2− δ.

4.4 Metric spaces and their doubling dimension

Let (V, dist) be a metric space. For any point u in V and any real number ρ > 0, the ball with
center u and radius ρ is the set

balldist(u, ρ) = {v ∈ V : dist(u, v) ≤ ρ}.

JGAA, 27(1) 1–18 (2023) 11

p1 p2

p3

p1 p2

p3

1

1 + ε 1 + ε

S GS

Figure 5: Tightness of the approximation ratio 2.

Let τ be the smallest integer such that for every real number ρ > 0, every ball of radius ρ can be
covered by at most τ balls of radius ρ/2. Note that all balls must be centered at points of the set
V . The doubling dimension of (V, dist) is defined to be log τ .

As an example, for any two points u = (u1, . . . , udim) and v = (v1, . . . , vdim) in Rdim, their
L∞-distance is defined as

∥uv∥∞ = max
1≤i≤dim

|ui − vi|.

The following lemma gives an upper bound on the doubling dimension of the metric space induced
by this metric; this lemma will be used in Section 4.5.2.

Lemma 5 Let V be a finite set of points in Rdim. Then, the doubling dimension of the metric
space (V, ∥ · ∥∞) is at most dim · log 5.

Proof: Let u be a point in V and let ρ > 0 be a real number. Let B = ball∞(u, ρ) be the L∞-ball
of radius ρ that is centered at u. To prove the claim, we have to show that B can be covered by
at most 5dim L∞-balls of radius ρ/2. Note that these balls must be centered at points of V .

Consider the following algorithm:

1. Set X = B. (Note that X ⊆ V .)

2. Set k = 0.

3. While X ̸= ∅:

(a) Set k = k + 1.

(b) Let vk be an arbitrary point in X.

(c) Set X = X \ ball∞(vk, ρ/2).

The points v1, v2, . . . , vk that are computed by this algorithm have the properties that

∥vivj∥∞ > ρ/2 for all i ̸= j

and

B ⊆
k⋃

i=1

ball∞(vk, ρ/2).

12 Akitaya et al. Minimum Moving Sapnning Tree

For each i with 1 ≤ i ≤ k, let

Hi = {z ∈ Rdim : ∥viz∥∞ ≤ ρ/4}.

Note that Hi is a hypercube centered at vi with sides of length ρ/2. These hypercubes are pairwise
disjoint. Finally, let

H = {z ∈ Rdim : ∥uz∥∞ ≤ 5ρ/4}.

Then all hypercubes Hi, for 1 ≤ i ≤ k, are contained in the hypercube H. By considering their
volumes, it follows that

k ≤ (10ρ/4)dim

(ρ/2)dim
= 5dim.

□

4.5 An O(n log n)-time (2 + ε)-approximation algorithm

Let S be a set of n linearly moving points in Rdim. Section 4.2 showed that the weight of a minimum
spanning tree of the upper bound graph GS gives a 2-approximation to the MMST. Since GS has
Θ(n2) edges, it takes Θ(n2) time to compute its minimum spanning tree.

In this section, we prove that a (1 + ε)-approximation to the minimum spanning tree of GS

can be computed in O(n log n) expected time. Thus, if we replace ε by ε/2, we obtain a (2 + ε)-
approximation to computing an MMST of a set S of linearly moving points.

4.5.1 The fatness of the convex set C

Recall that C is a compact and convex set in Rdim that contains the origin in its interior. We
assume that C is centrally symmetric with respect to the origin. Let

H = {z ∈ Rdim : ∥oz∥∞ ≤ 1}

denote the L∞-ball of radius one that is centered at the origin o. Note that H is a hypercube with
sides of length two.

We define the real numbers

d−∞ = min{∥oz∥∞ : z ∈ ∂C}

and
d+∞ = max{∥oz∥∞ : z ∈ ∂C}.

Let H− and H+ denote the L∞-balls centered at the origin with radii d−∞ and d+∞, respectively.
Note that H− is the largest hypercube centered at the origin that is contained in C, and H+ is
the smallest hypercube centered at the origin that contains C. In particular,

H− ⊆ C ⊆ H+.

Moreover, we have
H− = d−∞H

and
H+ = d+∞H.

JGAA, 27(1) 1–18 (2023) 13

We define the fatness of C to be

f(C) =
d+∞
d−∞

.

The following lemma states that the convex distance function distC and the L∞-metric are
related by the fatness f(C).

Lemma 6 Let p and q be two points in Rdim. Then

d−∞ · distC(p, q) ≤ ∥pq∥∞ ≤ d+∞ · distC(p, q).

Proof: Since

{λ ≥ 0 : q − p ∈ λC} ⊆ {λ ≥ 0 : q − p ∈ λH+} = {λ ≥ 0 : q − p ∈ λd+∞H},

we have

min{λ ≥ 0 : q − p ∈ λd+∞H} ≤ min{λ ≥ 0 : q − p ∈ λC}.

Observe that the minimum on the right-hand side is equal to distC(p, q), whereas the minimum on
the left-hand side is equal to

min{µ/d+∞ ≥ 0 : q − p ∈ µH} =
1

d+∞
min{µ ≥ 0 : q − p ∈ µH} =

1

d+∞
∥pq∥∞.

This proves the second inequality in the lemma. The proof of the first inequality follows by a
symmetric argument. □

4.5.2 The approximation algorithm

Let S be a set of n linearly moving points in Rdim. For any point p in S, define the point

P = (p(0), p(1))

in R2·dim. Doing this for all points in S, we obtain a set S′ of n points in R2·dim. For any two
points P and Q in S′, define their distance to be

dist(P,Q) = max(distC(p(0), q(0)), distC(p(1)q(1))).

Since dist(P,Q) = w(pq), a minimum spanning tree of our graph GS has the same weight as a
minimum spanning tree (under dist) of the point set S′.

Corollary 4 below states that dist satisfies the properties of a metric. Its proof uses the following
lemma.

Lemma 7 Let V be an arbitrary set and let d1 : V ×V → R and d2 : V ×V → R be two functions,
such that both (V, d1) and (V, d2) are metric spaces. Define the function d : V × V → R by

d(a, b) = max(d1(a, b), d2(a, b))

for all a and b in V . Then (V, d) is a metric space.

14 Akitaya et al. Minimum Moving Sapnning Tree

Proof: It is clear that, for all a and b in V , d(a, a) = 0, d(a, b) > 0 if a ̸= b, and d(a, b) = d(b, a).
It remains to prove that the triangle inequality holds.

Let a, b, and c be elements of V . Then

d(a, b) = max(d1(a, b), d2(a, b))

≤ max(d1(a, c) + d1(c, b), d2(a, c) + d2(c, b)).

Using the inequality

max(α+ β, γ + δ) ≤ max(α, γ) + max(β, δ),

it follows that

d(a, b) ≤ max(d1(a, c), d2(a, c)) + max(d1(c, b), d2(c, b))

= d(a, c) + d(c, b).

□

Corollary 4 The pair (S′, dist) is a metric space.

Proof: The proof follows from Lemma 7 and the definition of dist. □

In Lemma 9, we will prove that the doubling dimension of (S′, dist) is bounded from above by
a function of the dimension dim and the fatness f(C) of the convex set C. Our strategy will be
as follows. First, in Lemma 8, we use Lemma 6 to obtain upper and lower bounds on the ratio
∥PQ∥∞/dist(P,Q). Then we use these bounds, together with Lemma 5, to obtain an upper bound
on the doubling dimension of (S′, dist).

Lemma 8 Let P and Q be two points in S′. Then

d−∞ · dist(P,Q) ≤ ∥PQ∥∞ ≤ d+∞ · dist(P,Q).

Proof: Observe that

∥PQ∥∞ = max(∥p(0)q(0)∥∞, ∥p(1)q(1)∥∞)

and

dist(P,Q) = max(distC(p(0), q(0)), distC(p(1)q(1))).

The claim follows from Lemma 6. □

Lemma 9 The doubling dimension of the metric space (S′, dist) is O(dim · log(f(C))).

Proof: Let P be a point in S′, let ρ > 0 be a real number, and let Bdist = balldist(P, ρ). We will
prove that Bdist can be covered by f(C)O(dim) dist-balls of radius ρ/2.

Let H be the L∞-ball with center P and radius d+∞ρ. It follows from Lemma 8 that

Bdist ⊆ H.

Using Lemma 5, with dimension 2 · dim, by applying the definition of doubling dimension

ℓ := 1 + ⌈log(f(C))⌉

JGAA, 27(1) 1–18 (2023) 15

times, we can cover H by k := 52ℓ dim L∞-balls, each of radius

d+∞ρ/2ℓ ≤ d−∞ρ/2.

Let these balls have centers C1, . . . , Ck. For each i with 1 ≤ i ≤ k, define Bi,dist = balldist(Ci, ρ/2).
It follows from Lemma 8 and our choice of ℓ that

ball∞(Ci, d
+
∞ρ/2ℓ) ⊆ Bi,dist.

Thus,

Bdist ⊆ H ⊆
k⋃

i=1

ball∞(Ci, d
+
∞ρ/2ℓ) ⊆

k⋃
i=1

Bi,dist,

i.e., we have covered the ball Bdist by

k = 52ℓ dim = f(C)O(dim)

dist-balls of radius ρ/2. □

Lemma 10 Let 0 < ε < 1 be a real number. In (1/ε)O(dim · log(f(C)))n log n expected time, we can
compute a (1 + ε)-approximation to the minimum spanning tree of the metric space (S′, dist).

Proof: Har-Peled and Mendel [21] have shown that for any n-point metric space of doubling
dimension ddim, a (1 + ε)-spanner with (1/ε)O(ddim)n edges can be computed in 2O(ddim)n log n +
(1/ε)O(ddim)n expected time. Their algorithm assumes that any distance in the metric space can
be computed in O(1) time; this is the case for our distance function dist.

It is known that a minimum spanning tree of a (1 + ε)-spanner is a (1 + ε)-approximation to
the minimum spanning tree. (See, e.g., [30, Theorem 1.3.1].)

Since the spanner has (1/ε)O(ddim)n edges, its minimum spanning tree can be computed in
(1/ε)O(ddim)n log n time using Prim’s MST algorithm combined with a binary min-heap.

Thus, the total expected running time is

2O(ddim)n log n+ (1/ε)O(ddim)n+ (1/ε)O(ddim)n log n = (1/ε)O(ddim)n log n.

By Lemma 9, in our case, we have ddim = O(dim · log(f(C))). □

As a consequence of Lemma 10 and the fact that dist(P,Q) = w(pq), we have the following
theorem.

Theorem 5 Let 0 < ε < 1 be a real number, and let distC be a convex distance function in Rdim,
where dim is a constant. For any set S of n linearly moving points in Rdim, we can compute,
in (1/ε)O(dim · log(f(C)))n log n expected time, a (2 + ε)-approximation for the minimum moving
spanning tree of S.

Acknowledgements

This research was carried out at the Eighth Annual Workshop on Geometry and Graphs, held at the
Bellairs Research Institute in Barbados, January 31 – February 7, 2020. The authors are grateful
to the organizers and to the participants of this workshop. We thank Günther Rote for pointing us
to the work of Arkin et. al. [6]. We are grateful to anonymous reviewers who meticulously verified
our proofs, and provided valuable feedback that improved the clarity of the paper, simplified our
construction in Section 4.3, and led to the generalization of our results to higher dimensions and
to any convex distance function.

16 Akitaya et al. Minimum Moving Sapnning Tree

References

[1] Mohammad Ali Abam, Zahed Rahmati, and Alireza Zarei. Kinetic pie delaunay graph and its
applications. In Scandinavian Workshop on Algorithm Theory, pages 48–58. Springer, 2012.
doi:https://doi.org/10.1007/978-3-642-31155-0_5.

[2] Pankaj K. Agarwal, David Eppstein, Leonidas J. Guibas, and Monika Rauch Henzinger. Para-
metric and kinetic minimum spanning trees. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science (FOCS), pages 596–605, 1998. doi:10.1109/SFCS.1998.

743510.

[3] Hugo A Akitaya, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Anil Maheshwari,
Lúıs Fernando Schultz Xavier da Silveira, and Michiel Smid. The minimum moving spanning
tree problem. In Workshop on Algorithms and Data Structures, pages 15–28. Springer, 2021.
doi:https://doi.org/10.1007/978-3-030-83508-8_2.

[4] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design study of linesets, a novel set visual-
ization technique. IEEE Transactions on Visualization and Computer Graphics, 17(12):2259–
2267, 2011. doi:10.1109/TVCG.2011.186.

[5] Helmut Alt and Michael Godau. Computing the fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995. doi:https://doi.org/10.1142/S0218195995000064.

[6] Esther M Arkin, Joseph Mitchell, and Christine D Piatko. Bicriteria shortest path problems
in the plane. In Proc. 3rd Canad. Conf. Comput. Geom, pages 153–156, 1991.

[7] Mikhail J. Atallah. Some dynamic computational geometry problems. Computers & Math-
ematics with Applications, 11(12):1171 – 1181, 1985. doi:https://doi.org/10.1016/

0898-1221(85)90105-1.

[8] T. Bonnesen and W. Fenchel. Theory of Convex Bodies. Translated from the German and
edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, Idaho, 1987.

[9] Juri Buchmüller, Dominik Jäckle, Eren Cakmak, Ulrik Brandes, and Daniel A Keim. Motion-
rugs: Visualizing collective trends in space and time. IEEE transactions on visualization and
computer graphics, 25(1):76–86, 2018. doi:10.1109/TVCG.2018.2865049.

[10] Paolo M. Camerini. The min-max spanning tree problem and some extensions. Informa-
tion Processing Letters, 7(1):10–14, 1978. doi:https://doi.org/10.1016/0020-0190(78)

90030-3.

[11] Timothy M. Chan. Finding the shortest bottleneck edge in a parametric minimum span-
ning tree. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 917–918, 2005. doi:https://dl.acm.org/doi/abs/10.5555/

1070432.1070561.

[12] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance functions. In
Proceedings of the 1st ACM Symposium on Computational Geometry, pages 235–244, 1985.
doi:https://doi.org/10.1145/323233.323264.

https://doi.org/https://doi.org/10.1007/978-3-642-31155-0_5
https://doi.org/10.1109/SFCS.1998.743510
https://doi.org/10.1109/SFCS.1998.743510
https://doi.org/https://doi.org/10.1007/978-3-030-83508-8_2
https://doi.org/10.1109/TVCG.2011.186
https://doi.org/https://doi.org/10.1142/S0218195995000064
https://doi.org/https://doi.org/10.1016/0898-1221(85)90105-1
https://doi.org/https://doi.org/10.1016/0898-1221(85)90105-1
https://doi.org/10.1109/TVCG.2018.2865049
https://doi.org/https://doi.org/10.1016/0020-0190(78)90030-3
https://doi.org/https://doi.org/10.1016/0020-0190(78)90030-3
https://doi.org/https://dl.acm.org/doi/abs/10.5555/1070432.1070561
https://doi.org/https://dl.acm.org/doi/abs/10.5555/1070432.1070561
https://doi.org/https://doi.org/10.1145/323233.323264

JGAA, 27(1) 1–18 (2023) 17

[13] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets: Revealing set
relations with isocontours over existing visualizations. IEEE Trans. on Visualization and
Computer Graphics (Proc. of the IEEE Conf. on Information Visualization), 15(6):1009 –
1016, 2009. doi:10.1109/TVCG.2009.122.

[14] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

[15] Kasper Dinkla, Marc J. van Kreveld, Bettina Speckmann, and Michel A. Westenberg. Kelp
diagrams: Point set membership visualization. Computer Graphics Forum, 31(3pt1):875–884,
2012. doi:https://doi.org/10.1111/j.1467-8659.2012.03080.x.

[16] David Eppstein. A stronger lower bound on parametric minimum spanning trees. In Proceed-
ings of the 17th International Symposium on Algorithms and Data Structures (WADS), pages
343–356, 2021. doi:https://doi.org/10.1007/s00453-022-01024-9.

[17] Sara Irina Fabrikant, Silvia Miksch, and Alexander Wolff. Visual Analytics for Sets over Time
and Space (Dagstuhl Seminar 19192). Dagstuhl Reports, 9(5):31–57, 2019. doi:10.4230/

DagRep.9.5.31.

[18] David Fernández-Baca and Giora Slutzki. Linear-time algorithms for parametric minimum
spanning tree problems on planar graphs. Theor. Comput. Sci., 181(1):57–74, 1997. doi:

https://doi.org/10.1007/3-540-59175-3_94.

[19] Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

[20] Dan Gusfield. Bounds for the parametric minimum spanning tree problem. In Proceedings of
the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State
Univ., Arcata, Calif., 1979), pages 173–181, 1980.

[21] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006. doi:https:

//doi.org/10.1145/1064092.1064117.

[22] Ferran Hurtado, Matias Korman, Marc van Kreveld, Maarten Löffler, Vera Sacristán, Akiyoshi
Shioura, Rodrigo I Silveira, Bettina Speckmann, and Takeshi Tokuyama. Colored spanning
graphs for set visualization. Computational Geometry, 68:262–276, 2018. doi:https://doi.
org/10.1016/j.comgeo.2017.06.006.

[23] Shan Jaffry, Rasheed Hussain, Xiang Gui, and Syed Faraz Hasan. A comprehensive survey
on moving networks. IEEE Communications Surveys & Tutorials, 23(1):110–136, 2020. doi:
10.1109/COMST.2020.3029005.

[24] Naoki Katoh, Takeshi Tokuyama, and Kazuo Iwano. On minimum and maximum spanning
trees of linearly moving points. Discret. Comput. Geom., 13:161–176, 1995. doi:https:

//doi.org/10.1007/BF02574035.

[25] Menno-Jan Kraak. The space-time cube revisited from a geovisualization perspective. In
Proc. 21st International Cartographic Conference, pages 1988–1996, 2003.

https://doi.org/10.1109/TVCG.2009.122
https://doi.org/https://doi.org/10.1111/j.1467-8659.2012.03080.x
https://doi.org/https://doi.org/10.1007/s00453-022-01024-9
https://doi.org/10.4230/DagRep.9.5.31
https://doi.org/10.4230/DagRep.9.5.31
https://doi.org/https://doi.org/10.1007/3-540-59175-3_94
https://doi.org/https://doi.org/10.1007/3-540-59175-3_94
https://doi.org/https://doi.org/10.1145/1064092.1064117
https://doi.org/https://doi.org/10.1145/1064092.1064117
https://doi.org/https://doi.org/10.1016/j.comgeo.2017.06.006
https://doi.org/https://doi.org/10.1016/j.comgeo.2017.06.006
https://doi.org/10.1109/COMST.2020.3029005
https://doi.org/10.1109/COMST.2020.3029005
https://doi.org/https://doi.org/10.1007/BF02574035
https://doi.org/https://doi.org/10.1007/BF02574035

18 Akitaya et al. Minimum Moving Sapnning Tree

[26] W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer. Kelpfusion: A hybrid
set visualization technique. IEEE Transactions on Visualization and Computer Graphics,
19(11):1846–1858, 2013. doi:10.1109/TVCG.2013.76.

[27] Wouter Meulemans, Bettina Speckmann, Kevin Verbeek, and Jules Wulms. A framework
for algorithm stability and its application to kinetic Euclidean msts. In Latin American
Symposium on Theoretical Informatics, pages 805–819. Springer, 2018. doi:https://doi.

org/10.1007/978-3-319-77404-6_58.

[28] Hermann Minkowski. Geometrie der Zahlen. B. G. Teubner, Leipzig und Berlin, 1896/1910;
reprinted by Chelsea, 1953.

[29] Clyde Monma and Subhash Suri. Transitions in geometric minimum spanning trees. Discrete &
Computational Geometry, 8(3):265–293, 1992. doi:https://doi.org/10.1007/BF02293049.

[30] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
Cambridge, UK, 2007. doi:https://doi.org/10.1017/CBO9780511546884.

[31] Zahed Rahmati and Alireza Zarei. Kinetic Euclidean minimum spanning tree in the plane.
Journal of Discrete Algorithms, 16:2 – 11, 2012. Selected papers from the 22nd International
Workshop on Combinatorial Algorithms (IWOCA 2011). doi:https://doi.org/10.1016/

j.jda.2012.04.009.

[32] H. Wang and Y. Zhao. Computing the Minimum Bottleneck Moving Spanning Tree. In 47th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2022),
volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1–82:15,
2022.

[33] Jules Wulms, Juri Buchmüller, Wouter Meulemans, Kevin Verbeek, and Bettina Speckmann.
Stable visual summaries for trajectory collections. In 14th IEEE Pacific Visualization Sym-
posium, pages 61–70, 2021. doi:10.1109/PacificVis52677.2021.00016.

[34] Dengpan Zhou and Jie Gao. Maintaining approximate minimum Steiner tree and k-center for
mobile agents in a sensor network. In Proceedings of the 29th International Conference on
Computer Communications (INFOCOM), pages 511–515, 2010. doi:10.1109/INFCOM.2010.
5462182.

https://doi.org/10.1109/TVCG.2013.76
https://doi.org/https://doi.org/10.1007/978-3-319-77404-6_58
https://doi.org/https://doi.org/10.1007/978-3-319-77404-6_58
https://doi.org/https://doi.org/10.1007/BF02293049
https://doi.org/https://doi.org/10.1017/CBO9780511546884
https://doi.org/https://doi.org/10.1016/j.jda.2012.04.009
https://doi.org/https://doi.org/10.1016/j.jda.2012.04.009
https://doi.org/10.1109/PacificVis52677.2021.00016
https://doi.org/10.1109/INFCOM.2010.5462182
https://doi.org/10.1109/INFCOM.2010.5462182

	Introduction
	Preliminaries
	Convex Distance Functions
	Definitions
	Maximizing the distance between two moving points

	Minimum bottleneck moving spanning tree
	Minimum moving spanning tree
	NP-hardness of MMST
	A 2-approximation algorithm
	The approximation factor 2 is tight
	Metric spaces and their doubling dimension
	An O(n log n)-time (2+eps)-approximation algorithm
	The fatness of the convex set C
	The approximation algorithm

