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Abstract. We prove that the following problem is complete for the existential
theory of the reals: Given a planar graph and a polygonal region, with some vertices of
the graph assigned to points on the boundary of the region, place the remaining vertices
to create a planar straight-line drawing of the graph inside the region. This establishes
a wider context for the NP-hardness result by Patrignani on extending partial planar
graph drawings. Our result is one of the first showing that a problem of drawing planar
graphs with straight-line edges is hard for the existential theory of the reals. The
complexity of the problem is open in the case of a simply connected region.

We also show that, even for integer input coordinates, it is possible that drawing a
graph in a polygonal region requires some vertices to be placed at irrational coordinates.
By contrast, the coordinates are known to have bounded bit complexity for the special
case of a convex region, or for drawing a path in any polygonal region.

In addition, we prove a Mnëv-type universality result—loosely speaking, that the so-
lution spaces of instances of our graph drawing problem are equivalent, in a topological
and algebraic sense, to bounded algebraic varieties.

1 Introduction

There are many examples of structural results on graphs leading to beautiful and efficient geometric
representations. Two highlights are: Tutte’s polynomial-time algorithm [59] that draws any 3-
connected planar graph with convex faces inside any fixed convex drawing of its outer face; and
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Schnyder’s tree realizer result [55] that provides a straight-line drawing of any n-vertex planar
graph on an n× n grid.

On the other hand, there are geometric representations that are intractable, either in terms of
the required coordinates or in terms of computational complexity. As an example of the former, a
representation of a planar graph as touching disks (Koebe’s theorem) is not always possible with
rational numbers, nor even with roots of low-degree polynomials [11]. As an example of the latter,
Patrignani considered a generalization of Tutte’s theorem and proved that it is NP-hard to decide
whether a graph has a straight-line planar drawing when part of the drawing is fixed [47]. He was
unable to show that the problem lies in NP because of coordinate issues.

This, and many other geometric problems are not known to lie in NP, but lie in a larger class, ∃R,
defined by existentially quantified real (rather than Boolean) variables. Showing that a geometric
representation problem is complete for ∃R is a stronger intractability result, often implying lower
bounds on coordinate sizes. For example, Kang and Müller [33] showed that deciding if a graph can
be represented as intersecting disks is ∃R-complete. The relaxation from touching disks (Koebe’s
theorem) to intersecting disks implies that disk centers and radii can be restricted to integers, but
Kang and Müller show that an exponential number of bits may be required (see also [39]).

In this paper we prove that an extension of Tutte’s problem is ∃R-complete. We call it the
“Graph in Polygon” problem. See Figure 1. The input is a graph G and a polygonal region
R that may be unbounded and may have holes, i.e., is not necessarily simply connected. Some
vertices of G are assigned fixed positions on the boundary of R. The question is whether G has
a straight-line planar drawing inside R respecting the fixed vertices. Boundary points of R may
be used in the drawing. A straight-line planar drawing (see Figure 2(a,b)) means that vertices
are represented as distinct points, and every edge is represented as a straight-line segment joining
its endpoints, and no two of the closed line segments intersect except at a common vertex. (In
particular, no vertex point may lie inside an edge segment, and no two segments may cross.)

Figure 1: The Graph in Polygon problem. Left: a polygonal region with one hole and a graph
to be embedded inside the region. The three vertices on the boundary are fixed; the others are
free. Right: a straight-line embedding of the graph in the region. Note that we allow an edge of
the drawing (in red) to include points of the region boundary.

Furthermore, we give a simple instance of Graph in Polygon with integer coordinates where
a vertex of G may need irrational coordinates in any solution, thus defeating the naive approach
to placing the problem in NP.

More generally, we will prove a “universality” theorem stating that the solution spaces of in-
stances of Graph in Polygon are complicated, in particular, as complicated as bounded algebraic
varieties. This “Mnëv-type” result is described in more detail below.

The Graph in Polygon problem is a very natural one that arises in many practical appli-
cations including dynamic and incremental graph drawing. Questions of the coordinates (or grid
size) required for straight-line planar drawings of graphs are fundamental and well-studied [61]. It
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Figure 2: (a) A planar graph G. (b) A straight-line drawing of G. (c) A partial drawing Γ of G.
(d) Extension of Γ to a straight-line drawing of G. (e) A minimum-link s-t path in a polygonal
region.

is surprising that a problem as simple and natural as Graph in Polygon is so hard and requires
irrational coordinates.

We state our results in Section 1.1 below, but first we give some background on the existential
theory of the reals, Mnëv’s universality result, and relevant graph drawing results. In particular, we
explain that our problem is a generalization of the problem of extending a partial drawing of a pla-
nar graph to a straight-line drawing of the whole graph, called Partial Drawing Extensibility.
See Figure 2(c,d).

Existential Theory of the Reals. In the study of geometric problems, the complexity class
∃R plays a crucial role, connecting purely geometric problems and real algebra. Whereas NP is
defined in terms of existentially quantified Boolean variables, ∃R deals with existentially quantified
real variables.

Consider a first-order formula over the reals that contains only existential quantifiers,

∃x1, x2, . . . , xn : Φ(x1, x2, . . . , xn),

where x1, x2, . . . , xn are real-valued variables and Φ is a boolean quantifier-free formula with poly-
nomial equalities and inequalities as atoms. We assume that the polynomials have integer coef-
ficients. The Existential Theory of the Reals (ETR) problem takes such a formula as an
input and asks whether it is satisfiable. The complexity class ∃R consists of all problems that
reduce in polynomial time to ETR. Note that ETR lies in PSPACE and is therefore decidable [17].
This gives the best known algorithms for Graph in Polygon under worst-case considerations,
and due to ∃R-completeness we cannot hope for better algorithms, unless ∃R = NP.

Many problems in combinatorial geometry and geometric graph representation naturally lie
in ∃R and furthermore, many have been shown to be ∃R-complete. Some of the earlier exam-
ples are: stretchability of pseudoline arrangements [38, 43, 54]; recognition of segment intersection
graphs [35], (recently proved even for bounded vertex degrees [53]); and recognition of disk inter-
section graphs [39].

For straight-line drawings that allow crossings, there are ∃R-completeness proofs for: drawing
graphs with specified edge lengths (even for unit lengths) [50]; drawing a graph so a specified
subset of edges have at most one crossing each [51]; finding the rectilinear crossing number of a
graph [15], or the local rectilinear crossing number (the number of crossings per edge) [52]; and
simultaneous geometric embedding [19,36], even for a fixed number of graphs [53].
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For straight line graph drawings without crossings, there are ∃R-completeness proofs for the
problems of slope number and segment number [22,29,45], and for the problem of drawing “match-
stick” graphs with unit length edges [1]. Recently, Bieker [14] used Theorem 2 to show that finding
a straight-line non-crossing drawing with vertices on specified line segments is ∃R-complete.

For surveys on ∃R, see [18, 38, 49]. The recent thesis of Bieker [14] summarizes ∃R-complete
graph drawing problems.

The recent proof that the Art Gallery Problem is ∃R-complete [4] provides the framework
we follow in our proof. This framework has also been used to establish ∃R-completeness of the
geometric packing problem and training neural networks [6, 8].

Finally, we mention a new characterization of ∃R by Erickson, van der Hoog, and Miltzow [25].
It is based on the equivalent definition of NP in terms of a witness and a verification algorithm:
decision problem X belongs to NP if there is a verification algorithm A such that for any instance
I of X, I is a yes-instance if and only if there is a witness w ∈ {0, 1}∗ for which A(w, I) returns
true. Here the verification algorithm is required to run in polynomial time on the word RAM
model of computation. For the new characterization of ∃R in terms of a real verification algorithm
the witness is allowed to contain real numbers and the verification algorithm runs in polynomial
time on the real RAM model of computation.

Mnëv’s Universality Theorem. The complexity class ∃R is closely linked to Mnëv’s universal-
ity theorem, which provides a deep mathematical connection between simple geometric problems
and semi-algebraic sets [43, 48]. At a very high level, a universality theorem states that we can
represent any object of type A as an object of type B preserving property C. Mnëv’s original
universality theorem included all semi-algebraic sets as objects of type A, but the notion of equiva-
lence was weaker and much more involved. Mnëv’s objects of type B were order types, also known
as oriented matroids, pseudoline arrangements, or chirotopes. They capture basic combinatorial
properties of points in the Euclidean plane.

Although universality results for semi-algebraic sets seemed to be specific to ∃R-complete prob-
lems, such a universality result was recently proved for an NP-complete problem, specifically, the
version of the Art Gallery Problem where the guards only need to see the polygon vertices [12,56].
The underlying idea is that semi-algebraic sets can be triangulated [28], and thus there are also
simplicial complexes with the identical topology. This weakens the apparent link between ∃R and
topological universality.

Planar Graph Drawing. The field of Graph Drawing investigates ways of representing graphs
geometrically [44], but we focus on the most basic representation of planar graphs, with points
for vertices and straight-line segments for edges, such that segments intersect only at a common
endpoint. By Fáry’s theorem [26], every planar graph admits such a straight-line planar drawing.

Tutte, in his famous paper, “How to Draw a Graph” [59], gave a polynomial-time algorithm
for finding a straight-line planar drawing of a graph. More generally, given a combinatorial planar
embedding (a specification of the faces) and given a convex polygon drawing of the outer face of
the graph, his algorithm produces a planar straight-line drawing respecting both. The method is
to augment to a 3-connected planar graph and then reduce the problem to solving a linear system
involving barycentric coordinates for each internal vertex. Tutte proved that the linear system
has a unique solution and that the solution yields a drawing with convex faces (for a 3-connected
graph). The linear system can be solved in polynomial time. For a discussion of coordinate bit
complexity see Section 6.
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There is a rich literature on implications and variations of Tutte’s result. We concentrate on
the aspects of drawing a planar graph in a constrained region, or when part of the drawing is fixed.
(We leave aside, for example, the issue of drawing graphs with convex faces, which also has an
extensive literature.)

Our focus will be on straight-line planar graph drawings, but it is worth mentioning that for
general planar drawings (with curved edges), the problem of drawing a graph in a constrained region
is equivalent to the problem of extending a partial planar drawing, and there is a polynomial-time
algorithm for the decision version of the problem [9] as well as a characterization via forbidden
substructures [31]. Furthermore, there is an algorithm to construct such a drawing in which each
edge is represented by a path with linearly many segments [21].

For the remainder of this paper we assume straight-line planar drawings, which makes the
problems harder. The problem of drawing a graph in a constrained region is formalized as
Graph in Polygon, defined above, and more precisely in Subsection 1.1. The problem of find-
ing a planar straight-line drawing of a graph after part of the drawing has been fixed, is called
Partial Drawing Extensibility in the graph drawing literature, and the complexity of the
problem was formulated as an open question in [16].

Graph in Polygon is more general than Partial Drawing Extensibility, as we now
argue. Given an instance of Partial Drawing Extensibility for graph G with fixed subgraph
H, we construct an instance of Graph in Polygon by making a point hole for each vertex of H and
assigning the vertex to the point. Then an edge of H can only be drawn as a line segment joining
its endpoints, so we have effectively fixed H. The region R is then the (unbounded) punctured
plane. We now have an instance of Graph in Polygon of polynomial size that has a solution if
and only if G has a planar straight-line drawing that extends the drawing of H.

There is no easy reduction in the other direction because Graph in Polygon allows an edge
to be drawn as a segment that touches, or lies on, the boundary of the region, which pre-
vents the natural idea of modelling boundary edges as fixed edges of the graph in the problem
Partial Drawing Extensibility. However, the version of Graph in Polygon where interiors
of edges must lie in the interior of the region is equivalent to Partial Drawing Extensibility.

We now summarize results on Partial Drawing Extensibility, beginning with positive
results. Besides Tutte’s result that a convex drawing of the outer face can always be extended,
there is a similar result for a star-shaped drawing of the outer face [30], and a polynomial-time
algorithm to decide the case when a convex drawing of one cycle in the graph is fixed [40]. Also
Gortler et al. [27] gave an algorithm, extending Tutte’s algorithm, that succeeds in some (not well-
characterized) cases for a simple non-convex drawing of the outer face. In another direction, there
is a characterization of (graph, outer-cycle) pairs that can be be realized for any simple drawing
of the outer cycle [46].

The Partial Drawing Extensibility problem was shown to be NP-hard by Patrignani [47].
This implies that Graph in Polygon is NP-hard. However, there are two natural questions
about partial drawing extensibility that remain open: (a) does the problem belong to the class
NP (discussed in detail by Patrignani [47]), and (b) does the problem remain NP-hard when a
combinatorial embedding of the graph is given and must be respected in the drawing. Our results
shed light on these questions for the more general Graph in Polygon problem: the problem
cannot be shown to lie in NP by means of giving the vertex coordinates, and the problem is
∃R-complete even when a combinatorial embedding of the graph is given.

In addition to Tutte’s result, there is another special case of Graph in Polygon that is well-
solved, namely when the graph is just a path with its two endpoints s and t fixed on the boundary
of the region. See Figure 2(e). In this special case, the problem is equivalent to the Minimum Link
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Path problem, since a path of k edges can be drawn inside the region if and only if the minimum
link distance between s and t is less than or equal to k. Minimum link paths in a polygonal region
can be found in polynomial time [42], and in linear time for a simple polygon [57]. The complexity
of the coordinates is well-understood (see Section 6).

1.1 Our Contributions

Our problem is defined as follows.

Graph in Polygon
Input: A planar graph G and a polygonal region R with some vertices of G assigned to fixed
positions on the boundary of R.
Question: Does G admit a planar straight-line drawing inside R respecting the fixed vertices?

The graph may be given abstractly, or via a combinatorial embedding which specifies the cyclic
order of edges around each vertex, thus determining the faces of the embedding. When a combina-
torial embedding is specified, the final drawing must respect that embedding. Note that we allow
points on the boundary of R to be used in the drawing of G. In particular, an edge of G may be
drawn as a segment that touches, or lies on, the boundary of R. See Figure 1. Note that we still
require the drawing of G to be “simple” in the conventional sense that no two edge segments may
intersect except at a common endpoint.

Our first result, proved in Section 2, is that solutions to Graph in Polygon may involve
irrational points. This will in fact follow from the proof of our main hardness result, but it is
worth seeing a simple example.

Theorem 1 There is an instance of Graph in Polygon with all coordinates given by integers,
in which some vertices need irrational coordinates.

Note that the theorem does not rule out membership of the problem in NP, since it may be
possible to demonstrate that a graph can be drawn in a region without giving explicit vertex
coordinates. We prove Theorem 1 by adopting an example from Abrahamsen, Adamaszek and
Miltzow [3] that proves a similar irrationality result for the Art Gallery problem. Further discussion
of the bit complexity of vertex coordinates for special cases of the Graph in Polygon problem
can be found in Section 6.

Our main result, proved in Section 4, is:

Theorem 2 Graph in Polygon is ∃R-complete.

Our proof holds whether the graph is given abstractly or via a combinatorial embedding.
In the remainder of this section, we first discuss the proof techniques used for the main theorem,

and then discuss an extension of the main theorem that provides our Mnëv-type universality result.

Proof technique. The idea for proving our main theorem is to use a reduction from a problem
called ETR-INV which was introduced and proved ∃R-complete by Abrahamsen, Adamaszek and
Miltzow [4]. Note that this work was generalized to a host of continuous constraint satisfaction
problems [41].
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Definition 3 (ETR-INV) In the problem ETR-INV, we are given a set of real variables {x1, . . . , xn},
and a set of equations of the form

x = 1, x + y = z, x · y = 1,

for x, y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system of equations has a solution
when each variable is restricted to the range [1/2, 2].

Reducing from ETR-INV, rather than from ETR, has several crucial advantages. First, we can
assume that all variables are in the range [1/2, 2]. Second, we do not have to implement a gadget
that simulates multiplication, but only inversion, i.e., x·y = 1. Note that x·x = 1 together with the
range constraints, enforces x = 1, and thus the first type of constraint is not actually needed. For
our purpose of reducing to Graph in Polygon, we will find it useful to further modify ETR-INV
to avoid equality and to ensure planarity of the variable-constraint incidence graph, as follows:

Definition 4 (Planar-ETR-INV∗) In the problem Planar-ETR-INV∗, we are given a set of real
variables {x1, . . . , xn}, and a set of equations and inequalities of the form

x = 1, x + y ≤ z, x + y ≥ z, x · y ≤ 1, x · y ≥ 1, for x, y, z ∈ {x1, . . . , xn}.

Furthermore, we require planarity of the variable-constraint incidence graph, which is the bipartite
graph that has a vertex for every variable and every constraint and an edge when a variable appears
in a constraint. The goal is to decide whether the system of equations has a solution when each
variable is restricted to lie in [1/2, 4].

As a technical contribution, we prove the following.

Theorem 5 Planar-ETR-INV∗ is ∃R-complete.

Universality. Our final contribution is a universality result about the complexity of solution
spaces to instances of Graph in Polygon. As mentioned above, at a very high level, a univer-
sality theorem states that we can represent any object of type A as an object of type B preserving
property C. In particular, for our universality result, the objects of type A are bounded alge-
braic varieties (described below) and the objects of type B are solution spaces of instances of
the Graph in Polygon problem. Finally, the properties we want to preserve are algebraic and
topological properties.

We begin by defining the notion of equivalence that we will use.
Let F be a finite set of polynomials F = {f1, . . . , fk} ⊂ Z[x1, . . . , xn]. (Recall that Z[x1, . . . , xn]

denotes the polynomial ring over the variables x1, . . . , xn with integer coefficients.) The solution
space of F is

V (F ) = {x ∈ Rn : f(x) = 0, ∀f ∈ F}.

We say V (F ) is bounded, if there is a ball B such that V (F ) ⊆ B. In this case, V (F ) is called a
‘bounded algebraic variety’.

For all the algorithmic problems that we consider, there will be a natural way to embed the
solutions into Rn, and for an instance I we will again denote the solution space by V (I) ⊆ Rn.

Two sets V ⊆ Rn and W ⊆ Rm are rationally equivalent if there exists a homeomorphism
f : V → W such that both f and f−1 are given by rational functions. A function f : V → W
is a homeomorphism, if it is bijective, continuous, invertible and its inverse is continuous as well.
The function f is rational, if it can be component-wise described as the ratio of polynomials. We
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denote rational equivalence by V ≃ W . Note that the composition of two homeomorphisms is a
homeomorphism. Similarly, the composition of two rational functions is rational.

Our universality result is the following.

Theorem 6 (Universality of Graph in Polygon) Let F be a finite set of polynomials with inte-
ger coefficients such that V (F ) is bounded. Then there exists an instance I of Graph in Polygon
with all coordinates given by integers such that

V (I) ≃ V (F ).

To prove Theorem 6 we use two results: that Planar-ETR-INV∗ is universal; and that our
reduction from Planar-ETR-INV∗ to Graph in Polygon preserves rational equivalence. The
first result is in Section 3, and the second result and the final proof are in Section 5.

To illustrate the implications of preserving algebraic and topological properties we point out
two consequences of Theorem 6.

Corollary 7 Let Q ⊆ F1 ⊂ F2 ⊂ R be two algebraic field extensions of Q. Then there exists
an instance of Graph in Polygon with all coordinates given by integers that has a solution with
vertex coordinates in F2, but has no solution with vertex coordinates in F1.

This means that we can essentially enforce any irrational number to be required for a solution
of Graph in Polygon.

Proof. Let p ∈ Z[x] be a univariate polynomial with a zero in F2 but not in F1. Then according
to Theorem 6 there is an instance I of Graph in Polygon whose solution space is rationally
equivalent to that of p, i.e., V (I) ≃ V (p). We denote by f the mapping that defines the rational
equivalence.

First, we show that I has a solution with vertex coordinates in F2. Let a ∈ F2 such that
p(a) = 0. By definition f(a) describes a solution to I. Furthermore all coordinates of f(a) are in
F2.

For the reverse direction, let b ∈ V (I) and suppose, for the purpose of contradiction, that all
coordinates of b are in F1. Then it holds that c = f−1(b) ∈ F1 and p(c) = 0, which contradicts the
definition of p. □

Example 8 (Topological Consequences) Let T be a torus. Then there is an instance I of
Graph in Polygon with all coordinates given by integers such that the solution space is homeo-
morphic to T .

Note that the polynomial equation

p(x, y, z) = (x2 + y2 + z2 + 3)2 − 16(x2 + y2) = 0

describes a torus.

To verify the last example, we simply apply Theorem 6 to p.

The polynomial equation x2 − 1 = 0 leads to an example of Graph in Polygon with a
disconnected solution space.
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2 Irrational Coordinates

The purpose of this section is to prove Theorem 1.

Theorem 1 There is an instance of Graph in Polygon with all coordinates given by integers,
in which some vertices need irrational coordinates.

In fact, the result follows from our proof of Theorem 2, but it is interesting to have a simple
explicit example. This section heavily relies on a paper by Abrahamsen et al. [3]. We repeat the
key ideas of their paper and show how to adapt it for our purpose. In their paper, they studied
the Art Gallery Problem. In the Art Gallery Problem, we are given a polygon P and
a number k, and we want to find a set of at most k guards (points) that together see the entire
polygon. We say a guard g sees a point p if the entire line-segment gp is contained inside the polygon
P . Abrahamsen et al. gave a simple polygon with integer coordinates such that there exists only
one way to guard it optimally, with three guards. Those guards have irrational coordinates. See
Figure 3, for a sketch of their polygon.

x

y
z

a

Figure 3: A sketch of the polygon from Abrahamsen et al. The three guards are indicated by black
dots.

The key ingredients of their proof are as follows. First observe that the notches in the polygon
boundary force there to be a guard on each of the three so-called guard segments, indicated by
the dashed lines. Then the left guard and the middle guard together must see the top left pocket
edge and bottom left pocket edge (shown in thick blue). Similarly the middle guard and the right
guard together must see the top right pocket edge and bottom right pocket edge. Abrahamsen et
al. specify precise coordinates for the polygon that force unique positions for the guards, and such
that those positions have irrational coordinates. As shown in Figure 3, the unique guard positions
result in a single point on each pocket edge that is seen by two guards. For example, point a is
the only point on the top left pocket edge that is seen by x and y. In particular, the line segments
xa and ya pass through reflex corners of the polygon.

We adopt this example as follows, see Figure 4. Instead of guard segments we use variable
segments (shown in thick green), and instead of guards we use vertices. We describe variable
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segments in detail in Section 4, see also Figure 6. By placing notches in the polygon boundary
with fixed vertices of the graph in the notches, we can force a vertex on each variable segment.
The pocket edges of the previous example become variable segments. The middle variable segment,
the one that contains vertex y′ in the figure, is determined by a hole in the region. We used this
hole in order to keep our graph drawing planar. Note that, besides the fixed vertices lying on the
boundary of the region, our graph now has 7 vertices, which are forced to lie on 7 distinct variable
segments. To complete the construction of our graph, we add edges between the 7 vertices to
create two cycles: one containing the leftmost four vertices and the other containing the rightmost
four vertices, as illustrated by the dotted lines in Figure 4.

a′

x′
y′

z′
x′ y′ z′

a′

Figure 4: Left: An instance of Graph in Polygon based on Figure 3 that requires vertices at
irrational coordinates. Right: The graph, with small dots indicating the fixed vertices.

Now the constraints on the three vertices x′, y′ and z′, shown with black dots in Figure 4, are
exactly the same as for the guards x, y, and z in Figure 3. All that changes is how the constraints
are described. Let us give an explicit example. The guards x and y together need to see the top
left pocket edge. In our new polygon, the vertices x′ and y′ must both be adjacent to the same
vertex a′, as indicated in Figure 4. This imposes the same constraints on the vertices x′, y′ as was
imposed on the guards x, y. This translation of conditions happens in the same way for all the
other pockets.

As there exists only one position to guard Abrahamsen et al.’s polygon with three guards, there
exists also only one way to place the vertices in the polygon of Figure 4, and those positions have
irrational coordinates.

3 Planar-ETR-INV∗ is ∃R-complete and universal

The purpose of this section is to prove that Planar-ETR-INV∗ is ∃R-complete (Theorem 5)
and to prove that it is universal (Lemma 9). Later on we will use these results to prove that
Graph in Polygon is ∃R-complete and universal.

Theorem 5 Planar-ETR-INV∗ is ∃R-complete.

Lemma 9 (Universality of Planar-ETR-INV∗) Let F be a finite set of polynomials F =
{f1, . . . , fk} ⊂ Z[x1, . . . , xn], such that V (F ) is bounded. There is an instance I of the algorithmic
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problem Planar-ETR-INV∗ such that
V (I) ≃ V (F ).

We prove these two results about Planar-ETR-INV∗ based on the analogous results for ETR-INV.
ETR-INV was introduced and proved ∃R-complete by Abrahamsen, Adamaszek and Miltzow [4].
Universality was already implicit in their reduction, and was shown rigorously by Abrahamsen
et al. [8]. The preprint of Abrahamsen and Miltzow [7] gives a self-contained exposition of the
∃R-completeness of ETR-INV. To summarize, we use the following Theorem.

Theorem A ([4,7, 8]) ETR-INV is ∃R-complete. Furthermore, for every instance Φ of ETR
where V (Φ) is compact, there is an instance Ψ of ETR-INV such that V (Φ) ≃ V (Ψ).

Our reduction from ETR-INV to Planar-ETR-INV∗ builds on the work of Dobbins, Kleist,
Miltzow and Rza↪żewski [24]. They showed that ETR-INV is ∃R-complete even when the variable-
constraint incidence graph is planar. We cannot simply start from their result, because we still
need to eliminate equalities, and the obvious idea of replacing x + y = z (for example) by two
constraints of the form x + y ≤ z and x + y ≥ z will destroy planarity of the variable-constraint
incidence graph.

Proof of Theorem 5. First note that Planar-ETR-INV∗ is in ∃R since it is expressible as ETR.
To prove ∃R-hardness, we reduce from ETR-INV. For this purpose let I be an instance of

ETR-INV. As a first step we replace every equality constraint by the two corresponding inequality
constraints. For the next step, let GI be the variable-constraint graph of I. Let D be a drawing
of GI in the plane with edges drawn as straight line segments and vertices represented by points.
This drawing may have crossing edges, but we assume that no three segments cross in a common
point. We will add constraints and variables to I to obtain a new instance J , which is equivalent to
I and such that the corresponding graph GJ is planar. To compute J , we replace each crossing in
D by a ‘crossing gadget’. Since D has at most a quadratic number of crossings, this construction
takes polynomial time.

x

y

x+ y ≤ z

z

y′

x′
z ≤ x+ y′

z ≤ x′ + y

x x′

y

y′

x x′′

y′′

y

x

y

(a) (b) (d)(c)

Figure 5: A crossing gadget: (a) a crossing; (b) a crossing gadget composed of 4 half-crossing
gadgets that enforces x = x′′ and y = y′′; (c) schematic of a half-crossing gadget; (d) detail of a
half-crossing gadget that ensures x ≤ x′ and y ≤ y′.

We first introduce a half-crossing gadget that almost does the job, by using an idea of Dobbins et
al. [24]. Figure 5(d) illustrates this gadget, and Figure 5(c) illustrates its schematic representation.
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Note that the inequalities x + y ≤ z and z ≤ x′ + y ensure that x ≤ x′. Similarly, we can observe
that y ≤ y′.

To enforce x = x′′ and y = y′′ we use four copies of the half-crossing gadget to build a crossing
gadget. Figure 5(b) illustrates a crossing gadget corresponding to the crossing of Figure 5(a). The
top two half-crossing gadgets (i.e., the pair of gadgets lying on the x-monotone path from x to
x′′) ensure x ≤ x′′. The bottom two half-crossing gadgets ensure x ≥ x′′. Together they ensure
x = x′′. The same works with y and y′′.

Since the variables of ETR-INV are restricted to the range [1/2, 2], the variable z will lie in the
interval [1, 4]. This is why our definition of Planar-ETR-INV∗ involves a larger range for variables.
Accordingly, our final step is to loosen the range restriction of all variables to [1/2, 4]. For any new
variable z introduced in a half-crossing gadget, the larger range does no harm. For any original
variable x, we will enforce the added restriction that x ≤ 2 by adding further constraints. In
particular, add two new variables ax and bx and add the constraints ax = 1, bx = 1, ax + bx ≥ x.
Note that the variable-constraint incidence graph remains planar, since the new constraints and
variables only connect to x in the graph.

The final constructed instance J is equivalent to the original, has a planar variable-constraint
incidence graph, and restricts all variables to the required range. □

Finally, we prove Lemma 9 by showing that the reduction above preserves rational equivalence.

Proof of Lemma 9. We start from the fact that ETR-INV is universal; see Theorem A. Note
that V (F ) is a compact semi-algebraic set. Thus it is sufficient to show the following claim:

Let I be an instance of ETR-INV and J be the instance of Planar-ETR-INV∗ constructed as in
the proof of Theorem 5. Then V (I) ≃ V (J).

To see this, consider a solution (x1, . . . , xn) of I. Now, in the planarity gadget as described
above, some new variables are introduced. By construction, every new variable y, is determined
by an old variable either by the equation:

y = xi + xj , or y = xk, or y = 1

for some i, j, k. Thus the mapping f , which is the identity on x1, . . . , xn and assigns each new
variable y to the corresponding value as described above, is a rational and continuous function.
To see that f is surjective consider a solution to J , say (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m, and note
that all the original variables are a valid solution to I. Thus f−1 is described by

(x1, . . . , xn, y1, . . . , ym) 7→ (x1, . . . , xn).

Thus the inverse exists and is also rational and continuous. □

4 ∃R-completeness

The purpose of this section is to prove our main result:

Theorem 2 Graph in Polygon is ∃R-complete.

Proof. (Use two variables to express the x- and y-coordinates of each vertex. After triangulating
the region, containment of a vertex in the region can be expressed as a disjunction over containment
in the triangles. That graph edges are contained in the region and do not cross can be enforced
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using determinants to test intersections of line segments. For more details, see how Matousek [38]
handles similar issues.)

To prove that the problem is ∃R-hard we give a reduction from Planar-ETR-INV∗. Let I
be an instance of Planar-ETR-INV∗. We build an instance J of Graph in Polygon such that
J admits an affirmative answer if and only if I is satisfiable. The idea is to take the variable-
constraint incidence graph of the instance I and represent it as a planar orthogonal graph drawing.
We then replace the vertices and edges of this drawing by gadgets. In particular, for the vertices
we construct gadgets to represent variables, and gadgets to enforce the addition and inversion
inequalities, x + y ≤ z, x + y ≥ z, x · y ≤ 1, x · y ≥ 1. For the edges, we construct gadgets to copy
and duplicate variables. Finally, we show how to combine all these gadgets to obtain an instance
J of Planar-ETR-INV∗. Look ahead to Figure 13 for the overall plan.

Describing Variables. We will encode the value of a variable in [1/2, 4] as the position of a
vertex that is constrained to lie on a line segment of length 3.5, which we call a variable-segment.
One end of a variable-segment encodes the value 1

2 , the other end encodes the value 4, and linear
interpolation fills in the values between. Figure 6 shows one side of the construction that forces a
vertex to lie on a variable-segment. The other side is similar.

1
2

a

b

p v s

Figure 6: Variable v is represented as a point on variable-segment s (shown in green). The
construction of one end of s is illustrated. In the graph, vertex v is adjacent to fixed vertices a
and b on the boundary of a hole of the region (shaded). Adjacency with a forces v to lie on the
line of s. Adjacency with b forces v to lie at, or to the right of, point p which is associated with
the value 1/2.

By slight abuse of notation, we will identify a variable and the vertex representing it, if there is
no ambiguity. For the description of the remaining gadgets, our figures will show variable-segments
(as thick green lines) without showing the polygonal holes that determine them. Our next gadget
shows how to “transmit” a value by copying variables.

Copying Variables. Given a variable-segment for a variable x, we will need to “transmit” its
value to other locations in the plane. To do this, we will construct a second variable-segment for
a new variable y and enforce x = y. We first show how to construct a gadget that ensures x ≤ x′

for a new variable x′. Then we combine four such gadgets, enforcing

x ≤ z1, z1 ≤ y, x ≥ z2, z2 ≥ y.

This implies x = y.
The gadget enforcing x ≤ x′ is depicted at the left of Figure 7. It consists of two parallel

variable-segments. In general, these two segments need not be vertically aligned. In the graph
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x y
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4

1
2
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1
2
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x

1
2

1
2

4

4

Figure 7: Copying. Left: a gadget to enforce x ≤ x′. Right: The full gadget enforcing x = y.

we connect the corresponding vertices by an edge. The left and the right variables are encoded
in opposite ways, i.e., x increases as the vertex moves up and x′ increases as the corresponding
vertex goes down. We place a hole of the polygonal region (shaded in the figure) with a vertex
at the intersection point of the lines joining the top of one variable-segment to the bottom of the
other. The hole must be large enough that the edge from x to x′ can only be drawn to one side of
the hole. An argument about similar triangles, or the “intercept theorem”, also known as Thales’
theorem, implies x ≤ x′.

We combine four of these gadgets to construct our copy gadget, as illustrated on the right of
Figure 7. We can think of the gadget as a way to transmit a variable along a “wire”.

Duplicate Variables. Since a single variable may appear in several constraints, we need a way
to split a wire into two wires, each holding the correct value of the same variable. Figure 8 shows
a gadget to duplicate the variable x to variables y1 and y2. The gadget consists of two copy
gadgets sharing the variable-segment for x. We can construct the two copy gadgets to avoid any
intersections between them.

Turning. We need to encode a variable both as a vertical and as a horizontal variable-segment.
To transform one into the other we use a turn gadget, as described below.

The key idea is to construct two diagonal variable-segments for variables z1 and z2, and then
transfer the value of the vertical variable-segment to the horizontal variable-segment using z1, z2.
This is in fact very similar to the copy gadget, except that the intermediate variable-segments
are placed on a line of slope 1. We do not know if it is possible to enforce the constraint x ≤ z
directly. However, it is sufficient to enforce x ≤ f(z) for some function f . See the left side of
Figure 9. Interestingly, it is not necessary to know the function f . However, we do know that f
is monotone and we can construct another gadget enforcing y ≥ f(z), for the same function f , by
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x

y1 y2

Figure 8: Duplication. The variables y1, y2 have both the same value as x.

making another copy of the first gadget reflected through the line of the variable-segment for z.

x

y

z1

z2

1
2

4

1
2

4

x

z1
2

4

y

z

1
2

4

Figure 9: Turning. Left: Gadget to encode x ≤ f(z). Middle: Symmetric gadget to encode
y ≥ f(z). Right: Four gadgets of the previous type combined to enforce x = y, for x and y on a
vertical and horizontal variable-segment, respectively.

Combining four such gadgets, as on the right of Figure 9, yields the following inequalities.

x ≤ f1(z1), f1(z1) ≤ y, y ≤ f2(z2), f2(z2) ≤ x

This implies x = y.

Addition. The gadget to encode x + y ≥ z is depicted in Figure 10. Important for correctness
is that the gaps between the dotted auxiliary lines have equal lengths. This is essentially the same
gadget that was used by Abrahamsen et al. [4, Lemma 31]. To keep this work self-contained we
offer a sketch of an alternative correctness proof.
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4 4
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1
2

1
2

1
2

4

Figure 10: Addition. The three vertices x, y, z can only be connected to u if x + y ≥ z holds.

Lemma 10 ([4]) The gadget in Figure 10 enforces x + y ≥ z.

Proof of Lemma 10. This proof is inspired by the following thought experiment. The construc-
tion is made such that x, y = 1 and z = 2 is a valid solution. Now, assume that we choose z always
to be the maximum possible value. Furthermore we assume that while we fix the position of y, we
move x some distance d to the left. What we would expect is that z moves by the same distance
to the left. Actually, showing the last statement also proves the lemma, due to symmetry of x and
y. We denote by ℓ the line that contains the variable segments of x and y. We denote by t half
the distance that z moves. Note that t has a geometric interpretation as indicated in Figure 11.
We need to show d = 2t. The lengths A,A′, B,B′ are defined, by Figure 11. Note that B′ = 2B,
because ∥a− b∥ = ∥b− c∥. Similarly, A′ = 2A. The lemma follows from

d = B′ −A′ = 2(B −A) = 2t.

□

The gadget that enforces x + y ≤ z is just a mirror image of the previous gadget.

Inversion. The inversion gadgets to enforce x · y ≤ 1 and x · y ≥ 1 are depicted in Figure 12.
We use a horizontal variable-segment for x and a vertical variable-segment for y and align them
as shown in the figure, 1.5 units apart both horizontally and vertically. We make a triangular hole
with its apex at point p as shown in the figure. The graph has an edge between x and y.

For correctness, observe that if x and y are positioned so that the line segment joining them
goes through point p, then, because triangles ∆1 and ∆2 (as shown in the figure) are similar, we
have x

1 = 1
y , i.e. x · y = 1. If the line segment goes above point p (as in the left hand side of

Figure 12) then x · y ≥ 1, and if the line segment goes below then x · y ≤ 1.
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Figure 11: An illustration of the correctness of the addition gadget.
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Figure 12: Inversion. Left: Gadget enforcing x · y ≥ 1. Right: Gadget enforcing x · y ≤ 1.
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x1

x3x1+x2≥x4

x1+x2≤x3

x2+x4≤x3

x3x4≥1

x1+x2≥x4

x1+x2≤x3

x2+x4≤x3

x3x4≥1

x2

x4

x1

x2 x3

x4

Figure 13: The overall reduction from Planar-ETR-INV∗ to Graph in Polygon. Left: An
orthogonal drawing D of the variable-constraint graph of I. In this example every variable vertex
has degree at most 3. Right: A schematic representation of the resulting instance. The variable-
segments are placed inside the variable vertices (green). Every edge is replaced by a sequence of
copy gadgets (dotted lines) and turn gadgets (red squares). The constraint vertices are replaced
by the corresponding constraint gadgets. Note that it might be necessary to have one or several
turn and copy gadgets as part of the addition and inversion gadgets.

Putting it all together. It remains to show how to obtain an instance of Graph in Polygon
in polynomial time from an instance of Planar-ETR-INV∗.

Let I be an instance of Planar-ETR-INV∗. As a first step we split every variable, until all
variables have degree at most 3. Then we compute an orthogonal planar drawing D of the planar
variable-constraint incidence graph, which can be done in polynomial time using orthogonal planar
graph drawing algorithms [44]. The edges of D act as wires and we replace each horizontal and
vertical segment by a copy gadget. As a next step, we replace every 90 degree corner, by a turn
gadget. Every constraint will be replaced by the corresponding gadget. Note that the inversion
gadgets may also need a turn gadget. We add a big square to the outside, to ensure that everything
is inside one polygon. See Figure 13.

It is easy to see that this can be done in polynomial time, as every gadget has a constant
size description and can be easily described with rational numbers, although, we did not do it
explicitly. In order to see that we can also use integers, note that we can scale everything with the
least common multiple of all the denominators of all numbers appearing. This can also be done in
polynomial time. □

5 Universality

This section is devoted to proving that Graph in Polygon is universal:

Theorem 6 (Universality of Graph in Polygon) Let F be a finite set of polynomials with in-
teger coefficients such that V (F ) is bounded. Then there exists an instance I of Graph in Polygon
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with all coordinates given by integers such that

V (I) ≃ V (F ).

By Lemma 9 we know that Planar-ETR-INV∗ is universal. Thus it is sufficient to show the
following claim:

Let I be an instance of Planar-ETR-INV∗ and J be the instance of Graph in Polygon constructed
as in the proof of Theorem 2. Then V (I) ≃ V (J).

To see this, consider a solution (x1, . . . , xn) of I. By construction, every variable of I is explicitly
represented in J by a vertex forced to lie in a line segment, or, more precisely, by many vertices
constrained by our gadgets to represent the same value. For those variables, we only need a linear
transformation to read off the exact value. There are two types of vertices, whose coordinates
cannot be derived in this way from the old variables. The first type are the vertices z1 and z2 in
the turn gadget as shown in Figure 9. The second type are the vertices u in the addition gadget
as shown in Figure 10.

In both cases, we need to argue that the new vertices can be described by rational functions of
the variables (x1, . . . , xn). As a preparation, we study specific mappings that are constructed in a
geometric way.

Let ℓ1 and ℓ2 be two lines and p ̸∈ ℓ1 ∪ ℓ2 be a point. Furthermore we denote by ab some
segment with endpoints a ∈ ℓ1, b ∈ ℓ2 and p ∈ ab. Then the position of b is uniquely determined
by the position of a. In other words, b = h(a), for some function h.

`1

`2

a

b

p

a

b

A

p = (1, 1)

A

g(t, 0) = (0, 1/t)A−1

Figure 14: The bijective linear map A transforms the lines to the coordinate axis.

Lemma 11 (Rational Functions) The function h can be described as the fractions of two linear
functions.

.See Figure 14 for an illustration. This is easy to see in case that p = (1, 1) and ℓ1 and ℓ2 are
the x-axis and y-axis respectively. (To be explicit, the point a = (t, 0) is mapped to the point
b = (0, 1/t).)
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Otherwise, consider a linear bijection A, which maps ℓ1 to the x-axis and ℓ2 to the y-axis. This
gives us a function, h′ that maps a′ from the x-axis to b′ on the y-axis. As noted above, h′ can be
described as the fraction of two linear functions. The function h is given by A−1 ◦ h′ ◦A, which is
a rational function, as claimed. □

Now we are ready to show that z1 and z2 can be described as rational functions of the original
variables. As both cases are the same, we do the proof only for z = z1. Note that z is uniquely
defined by the position of the vertex x, see Figure 9. And the coordinates of the vertex x are
defined linearly in terms of the original variables of I. By Lemma 11, the coordinates of z can be
described by a rational function of the original variables. This is because x and z both lie on a
line and the connecting segment contains a fixed vertex.

Let us now turn our attention to the vertex u, as in Figure 10. Note that we know that u is
already determined by x and y, as the position of z is determined by x and y globally. Denote
by g the function that determines the position of u depending on x and y. Note that g restricted
to x is rational by Lemma 11. Similarly, g restricted to y is rational. Thus g must be a rational
function globally.

We are now ready to describe the mapping

f : V (I) → V (J).

Note that the coordinates of each vertex of J is either described in a linear way, or it is a vertex
in the turn or addition gadgets as discussed above. Those vertices can be described by rational
functions as shown above. Thus f is a rational, continuous and injective function.

Now, we want to show that f is also surjective. Assume we have a valid drawing of J . Then we
can read off a solution to I, from the position of certain vertices. We can forget about the positions
of all other vertices. This gives an implicit description of f−1 as a linear continuous function. This
finishes the proof.

6 Vertex Coordinates

Since we have shown that Graph in Polygon may require irrational coordinates for vertices
in general, it is interesting to examine bounds on coordinates for special cases. In this section
we discuss the bit complexity of vertex coordinates needed for two well-solved special cases of
Graph in Polygon.

Tutte’s algorithm [58] finds a straight-line planar drawing of a graph inside a fixed convex
drawing of its outer face. Suppose the graph has n vertices and each coordinate of the convex
polygon uses t bits. Tutte’s algorithm runs in polynomial time, but the number of bits used to
express the vertex coordinates is a polynomial function of t and n. The dependence on n means
that the drawing uses “exponential area.” Chambers et al. [20] gave a different algorithm that uses
polynomial area—the number of bits for the vertex coordinates is bounded by a polynomial in t
and log n.

The other well-solved case of Graph in Polygon is the minimum link path problem, as dis-
cussed in Section 1. In this case we have a general polygonal region with holes, but the graph
is restricted to be a path with endpoints s and t fixed on the boundary of the polygonal region.
Based on a lower bound result of Kahan and Snoeyink [32], Kostitsyna et al. [34] proved a tight
bound of Θ(n log n) bits for the coordinates of the bends on a minimum link path. Note that
the dependence on n means that this bound is exponentially larger than the bound for drawing a
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graph inside a convex polygon. Problem 3 below asks about the complexity of drawing a tree in a
polygonal region.

7 Conclusions and Open Questions

In this paper, we studied the problem of finding a planar straight-line drawing of a graph inside
a polygonal region, and showed that it is ∃R-complete. Previous ∃R-hardness results for graph
drawing involved other representations, such as disk or segment intersection [38, 39], or involved
straight-line drawings of non-planar graphs [51]. Our result is one of the first ∃R-hardness results
about drawing planar graphs with straight-line edges—along with recent results about drawings
with extra conditions: prescribed face areas [24]; and drawings on few lines [22].

We conclude with some open questions:

1. Our proofs of Theorems 1 and 2 used the fact that the polygonal region may have holes and
may have collinear vertices. Is Graph in Polygon polynomial-time solvable for a simple
polygon (a polygonal region without holes) whose vertices lie in general position (without
collinearities)?

2. Our proofs also used the assumption that points on the boundary of the region may be used in
the graph drawing. If we disallow that, then Graph in Polygon is equivalent to Partial
Drawing Extensibility. Is this problem ∃R-hard? There are two versions, depending
whether the graph is given abstractly or via a combinatorial embedding. In the first case the
problem is known to be NP-hard [47], but in the second case even that is not known.

3. What is the complexity of Graph in Polygon when the graph is a tree? Can vertex
coordinates still be bounded as for the minimum link path problem? When the tree is a
caterpillar, the problem might be related to the minimum link watchman tour problem,
which is known to be NP-hard [10].

4. Recently, two ∃R-complete problems were shown to be contained in NP “under the lens
of smoothed analysis” [23, 60]. It would be interesting to see if the same is true for the
Graph in Polygon problem. In particular, can we build an Integer Program in an efficient
way that decides with high probability if a solution exists, under a reasonable model of
perturbation?
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Combinatoire, B34h, 1995.

[49] Marcus Schaefer. Complexity of some geometric and topological problems. In Proceedings
of the 17th International Symposium on Graph Drawing (GD), volume 5849 of LNCS, pages
334–344. Springer, 2010. doi:10.1007/978-3-642-11805-0_32.

[50] Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric Graph
Theory, pages 461–482. Springer, 2013. doi:doi.org/10.1007/978-1-4614-0110-0.

[51] Marcus Schaefer. Picking planar edges; or, drawing a graph with a planar subgraph. In
Proceedings of the 22nd International Symposium on Graph Drawing (GD), volume 8871 of
LNCS, pages 13–24. Springer, 2014. doi:10.1007/978-3-662-45803-7_2.

[52] Marcus Schaefer. Complexity of geometric k-planarity for fixed k. Journal of Graph Algorithms
and Applications, 25(1):29–41, 2021. doi:10.7155/jgaa.00548.

[53] Marcus Schaefer. On the complexity of some geometric problems with fixed parameters.
Journal of Graph Algorithms and Applications, 25(1):195–218, 2021. doi:10.7155/jgaa.

00557.
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