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Abstract

This paper proposes a 3-dimensional visibility representation of graphs
G = (V, E) in which vertices are mapped to rectangles floating in R3

parallel to the x, y-plane, with edges represented by vertical lines of sight.
We apply an extension of the Erdős-Szekeres Theorem in a geometric
setting to obtain an upper bound of n = 56 for the largest representable
complete graph Kn. On the other hand, we show by construction that
n ≥ 22. These are the best existing bounds. We also note that planar
graphs and complete bipartite graphs Km,n are representable, but that
the family of representable graphs is not closed under graph minors.
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1 Introduction

The problem of drawing or representing graphs has been studied extensively
in the literature (see the paper of Di Battista et al. [11] for a survey of graph
drawing research and its applications). In particular, determining a visibility
representation of a graph, where the vertices of the graph map to disjoint sets
or objects in the plane and the edges are expressed as visibility relations be-
tween these sets, has received considerable attention recently due to the large
number of applications in areas such as VLSI wire routing, algorithm animation,
CASE tools, and circuit board layout. However, visibility representations in 3-
dimensions have received less attention. In this paper, we define a 3-dimensional
visibility representation and study its properties. This paper combines experi-
mental results with the results of two conference papers [4, 14] and a technical
report [5], which have motivated a number of other conference papers such as
[2, 7, 15, 17, 21]. Closely related questions have been examined in [10, 19]. This
paper introduces the basic concepts and fundamental results in this area.

1.1 Previous results

We begin by reviewing some of the results in 2-dimensional visibility represen-
tations. To do this, we first discuss in more detail the most common types of
visibility representations that have been studied.

A visibility representation is defined by specifying a class of objects to repre-
sent the vertices and the visibility relation between the objects. In two dimen-
sions, common choices for objects are axis-aligned line segments or rectangles.
Two visibility relations that have been considered previously are defined as fol-
lows:

• Two objects are (mutually) visible if and only if they can be joined by a
line segment that does not intersect any other object. Often, the direction
of the line segment is restricted to be axis-parallel.

• Two objects are ε-visible if and only if they can be joined by a family of
parallel line segments such that no segment intersects any other objects,
and the union of the segments covers a region of positive area, i.e., positive
“width” ε. Again, the direction of the line segments is often restricted to
be axis-parallel.

For example, in Figure 1, line segments 1 and 2 are visible but not ε-visible.
Line segments 2 and 3 as well as line segments 1 and 3 are ε-visible. However,
line segments 1 and 3 are not vertically ε-visible. Line segments 2 and 4 are not
visible by either of the above notions of visibility. Although these two different
types of visibility seem closely related, the restrictions imposed by ε-visibility
often radically change the class of graphs that admit visibility representations.
See [22] for a discussion of the different definitions of visibility and the sensitivity
of results to the choice of visibility definition.

Now we can describe some previous results concerning 2-dimensional visibil-
ity representations. Wismath [24] and Tamassia and Tollis [22] independently
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Figure 1: An illustration of visibility relations.

showed that every 2-connected planar graph admits a visibility representation
where the vertices are represented by closed disjoint horizontal line segments in
the plane and where two vertices are adjacent if and only if their correspond-
ing segments are vertically ε-visible. (More precisely, they showed that such
a representation exists for a graph if and only if the graph is planar and has
an embedding with all cut vertices on the exterior face.) For the same model,
Kant et al. [18] studied the visibility representations of trees. When the vertices
are represented by disjoint axis-aligned rectangles in the plane and visibility
is defined as ε-visibility in the horizontal and vertical directions, Wismath [24]
showed that every planar graph admits a visibility representation. Dean and
Hutchinson [10] proved that K8 is the largest complete graph that admits a
visibility representation in this model. For an overview of the various visibility
representations studied, see [11].

1.2 3-Dimensional visibility representation

This paper studies a 3-dimensional visibility representation for graphs G =
(V, E). First we define this representation. Consider an arrangement of closed,
disjoint rectangles in R3 such that the planes determined by the rectangles are
perpendicular to the z-axis, and the sides of the rectangles are parallel to the x-
or y-axes. Two rectangles Ri and Rj are z-visible if and only if between the two
rectangles there is a closed cylinder C of positive length and radius such that
the ends of C are contained in Ri and Rj , the axis of C is parallel to the z-axis,
and the intersection of C with any other rectangle in the arrangement is empty.
Througout this paper, a given graph G = (V, E) is said to be representable if
and only if its n vertices can be associated with n disjoint rectangles parallel to
the x, y-plane in R3 such that vertices vi and vj are adjacent in G if and only if
their corresponding rectangles Ri and Rj are z-visible.

One motivation for considering this type of 3-dimensional representation is
the fact that, in addition to all planar graphs, many non-planar graphs can also
be represented. Indeed we will exhibit a representation of K22, but prove that
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complete graphs of size n ≥ 56 are not representable.
The fact that a clique as large as K22 is representable may prove useful for

graph visualization purposes. Given an arbitrary graph on n ≤ 22 vertices, one
can take a visibility representation (as defined above) of Kn as defined above
and, for each edge e ∈ E(G), draw in z-axis parallel lines of sight between
the rectangles corresponding to the endpoints of e. This gives what is called a
weak visibility representation, as G cannot be recovered from the positions of
the rectangles1. However, weak representation is entirely appropriate when, for
example, the purpose is to visualize the graph or to produce a VLSI layout.

Figure 2: The structure of a software package, as drawn by one of its users.

Figures 2 and 3 suggest that for visualizing diagrams involving graphs whose
vertices are associated with text and various other properties, a 3-dimensional
visibility representation may prove useful. Figure 2 gives a hand-drawn diagram
of a software package. (This package is used for analyzing and forecasting the
savings of millions of customers of the German public loan banks. See [3].)
Figure 3 gives a view from the top of a 3-dimensional visibility representation;
in addition to the adjacency information, the size of a rectangle corresponds
approximately to the importance of the files and routines it represents; input
files are black, whereas output files are white. Furthermore, this type of repre-
sentation permits taking advantage of the fact that the given directed graph is

1When the graph can be recovered from the geometry of its representation, the represen-
tation is sometimes called strong.
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Figure 3: Top view of a representation of the software package.

acyclic: the edges are directed from lower rectangles to higher rectangles.
Alternatively, instead of viewing the representation from the top, on a work-

station one could view the rectangles as boxes that have thickness in the z
direction, so that text could be written on the sides of the box. The represen-
tation could then be examined from multiple viewpoints and could be explored
by travelling around inside the picture.

We make no claim that the top view of the 3-dimensional representation
shown in Fig. 3 is easier to understand than the handmade drawing of Fig. 2.
However, we believe that the interplay between geometry and combinatorics de-
monstrated by the type of visibility representation defined in this paper makes
such representations interesting in their own right. Furthermore, we believe that
the possibility of drawing graphs in 3 dimensions, with vertices represented as
solid objects such as boxes, is well worth further investigation.

The rest of this paper is organized as follows: In Section 2, we show that
Kn does not have a representation for n ≥ 56. On the other hand, we show in
Section 3 that Kn has a representation for values of n ≤ 22. In Section 4, we
note that all planar graphs and all complete bipartite graphs are representable,
but that the family of representable graphs is not closed under graph minors.
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Section 5 concludes the paper.

2 An upper bound

In this section, we provide an upper bound on the size of the largest clique that
can be represented. We show that Kn does not have a representation for any
n > 55. This result, based on [14], improves the previous best known result of
n > 102 from [4, 5].

2.1 Sequences of 4-tuples

We consider sequences of n rectangles lying parallel to the x, y-plane in R3, and
ordered by increasing z-coordinate. We call a sequence valid if its associated
visibility graph is Kn. Consider the projections of all the rectangles in a valid
sequence onto the x, y-plane. Because each two must intersect and the objects
are axis-aligned rectangles, application of a Helly-type argument shows that the
intersection of all the projections must be non-empty [9]. Thus we can choose a
common point O (henceforth regarded as the origin) belonging to the interior of
each of the projections. To simplify the notation, we do not distinguish between
a rectangle and its projection onto the x, y-plane; the meaning will be clear from
the context. Without loss of generality, we may assume that all rectangles in a
representation have distinct, non-negative integer z-coordinates.

Each rectangle R in a valid sequence can be described in terms of the per-
pendicular distances from O to each of its sides. Instead of giving the x, y
coordinates of the vertices of R, we describe R as a 4-tuple (Er , Nr, Wr, Sr)
whose coordinates give, respectively, the distances from O ∈ R to the east,
north, west and south sides of R.

We can assume without loss of generality that no two rectangles of a valid
sequence share the same value on any of the four coordinates E,N ,W ,S. Hence
we can assume that each coordinate value of each of the n rectangles is an
integer in the range [1, n] without changing the visibility relationships among
the rectangles.

Consider two rectangles A = (Ea, Na, Wa, Sa) and B = (Eb, Nb, Wb, Sb) in
a valid sequence, and denote by A∩B the intersection of their projections onto
the x, y-plane. Then A∩B contains O, and the coordinates of A∩B are EA∩B

= min{Ea, Eb}, NA∩B = min{Na, Nb}, WA∩B = min{Wa, Wb} and SA∩B =
min{Sa, Sb}. We say that a corner of A∩B is free if it is not covered by any of
the projections of rectangles occuring between A and B in the sequence.

Suppose A and B are rectangles in a valid sequence. Then since O belongs
to all the rectangles, at least one of the corners of A ∩ B must be free. This is
because any rectangle that covers a corner also covers O and hence an entire
quadrant of A ∩ B. Thus if A ∩ B had no free corner, it would be covered by
the union of the intervening rectangles that cover at least one corner of A ∩ B.

The northeast corner of A ∩ B is not covered by a particular rectangle R =
(Er, Nr, Wr , Sr) between A and B if and only if the boolean expression Er <
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min{Ea, Eb} OR Nr < min{Na, Nb} is true. Similar conditions hold for the
other three corners.

We summarize: the rectangles A and B can see each other if and only if at
least one of the following free corner conditions FC holds simultaneously for all
the rectangles R between A and B:

FCne(A, B) northeast is free: (Er < min{Ea, Eb} OR Nr < min{Na, Nb});

FCnw(A, B) northwest is free: (Nr < min{Na, Nb} OR Wr < min{Wa, Wb});

FCsw(A, B) southwest is free: (Wr < min{Wa, Wb} OR Sr < min{Sa, Sb});

FCse(A, B) southeast is free: (Sr < min{Sa, Sb} OR Er < min{Ea, Eb}).

Now we give a definition that is needed in the following discussions. Given a
valid sequence of n rectangles (E1, N1, W1, S1), . . . , (En, Nn, Wn, Sn), we define
the sequences VE = (E1, ...En), VN = (N1, ...Nn), VW = (W1, ...Wn), and
VS = (S1, ...Sn).

2.2 Unimaximal sequences

The next definition and lemma provide a key tool in our analysis.

Definition 2.1 A sequence x1, x2, . . . of distinct integers is called unimaximal
if it has exactly one local maximum, i. e., for all i, j, k with i < j < k, we have
xj > min{xi, xk} for i < j < k.

Lemma 2.2 For all m > 1, in every sequence of
(

m
2

)
+ 1 distinct integers,

there exists at least one unimaximal subsequence of length m. On the other
hand, there exists a sequence of

(
m
2

)
distinct integers that has no unimaximal

subsequence of length m.

This result arises from the Erdős-Szekeres Theorem [13], whose pigeon-hole
proof was given by [16]. Lemma 2.2 is attributed by F. P. K.Chung [6] to
V. Chvátal and J. M. Steele, among others.

Lemma 2.3 In a representation of K5 by five rectangles, with no other rectan-
gles present, it is impossible that both sequences VN and VS are unimaximal.

Proof: Suppose both VN and VS are unimaximal. Then the relations Nr >
min{Na, Nb} and Sr > min{Sa, Sb} must hold for all rectangles A, B, and R
between A and B. Now consider the conditions FCne, FCnw, FCsw, FCse. For
FCne(A, B) to be true, it must be the case that Er < min{Ea, Eb} for all R
between A and B. The same is true for FCse(A, B). Similarly, for FCnw(A, B)
or FCsw(A, B) to be true, Wr must be less than min{Wa, Wb}. Hence the free
corner conditions reduce to the following. One of the two possibilities (Wr <
min{Wa, Wb}) or (Er < min{Ea, Eb}) holds simultaneously for all rectangles R
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between A and B. This means that all rectangles A and B can see each other
along a line of sight with y-coordinate 0. By intersecting the arrangement of
five rectangles with the x, z-plane, we get an arrangement of 5 line segments in
this plane that all see each other. This contradicts the fact that only planar
graphs can be represented by vertical visibility of horizontal line segments in a
plane. (See [22, 24] for results on such representations in the plane.) 2

2.3 The bound

Theorem 2.4 No complete graph Kn has a z-visibility representation for n ≥
56.

Proof: Suppose we had a representation of Kn with n ≥ 56. Lemma 2.2 implies
that VN has a unimaximal sequence V ′

N of length 11. Consider the associated
subsequence V ′

S of length 11. It follows again from Lemma 2.2 that there is
a subsequence V ′′

S of length 5 that is unimaximal. Remove the rectangles not
associated with the subsequence. This destroys no visibility lines, so the five
remaining rectangles represent K5. However, both V ′′

S and its corresponding
subsequence V ′′

N are unimaximal. This contradicts Lemma 2.3. 2

3 A lower bound

In this section we show by construction that the complete graph on 22 vertices
is representable. This improves the previous lower bound of 20 in [5].

3.1 The construction

Figure 4 gives the representation of K22 discovered by the algorithm. At each
stage, a new rectangle is added; each white dot indicates a corner of visibility
for a rectangles at a lower level.

The following table shows the coordinates of the 22 rectangles in the notation
of the previous section.
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Figure 4: A representation of K22.
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Rectangle North South West East
1 22 22 22 22
2 11 13 15 16
3 9 6 18 15
4 8 2 12 20
5 7 19 9 8
6 5 17 8 11
7 1 18 7 12
8 17 14 5 1
9 16 12 4 2
10 4 20 1 14
11 15 15 3 3
12 19 16 2 4
13 14 1 19 6
14 6 3 6 18
15 3 4 10 17
16 2 5 11 19
17 20 7 16 5
18 13 8 14 7
19 10 9 20 9
20 18 10 13 10
21 12 11 17 13
22 21 21 21 21

3.2 How the representation was found

The representation of K22 was found using simulated annealing, a general ran-
domized heuristic approach for finding good solutions for optimization prob-
lems. By starting with a randomly-generated candidate solution and applying
local modifications, other candidate solutions are generated. The choice of local
transformation is guided by an objective function which the procedure attempts
to minimize. See [1, 20, 23] for more information regarding simulated annealing
techniques.

For a given n, the algorithm tries to find a realization of Kn. As described
in the previous section, any configuration can be assumed to consist of a list
of 4-tuples of numbers between 0 and n − 1, where all numbers for the same
coordinate are distinct. Two configurations I and J are regarded as adjacent if
the configuration J is obtained from I by swapping one of the edge coordinates of
two rectangles in I. For a configuration I, the set of all configurations adjacent
to I shall be called the neighborhood of I.

The objective function that we want to minimize is defined as follows: for
every pair of rectangles A and B in the collection, we assign a score equal to
the minimum number of rectangles needed to be removed from the collection in
order for A and B to become mutually visible. This score can be determined
in a straightforward manner from the free corner conditions FC stated in the
previous section, in linear time. The objective function is obtained by summing
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these scores over all pairs of rectangles; this function is zero for any feasible
realization of Kn and is positive otherwise.

Simulated annealing generates a random element J in the neighborhood of
the current solution I and compares their two objective values. If J is better
than I, then J is accepted as the new current solution; otherwise, J is accepted
with a probability that depends on the difference in the objective functions and
on a parameter T , which is called the temperature. The higher the temperature,
the more likely it is to accept worse solutions. The initial temperature should
be of the same order of magnitude as the average change of objective function
for a random swap. The temperature is gradually decreased until it is so low
that no changes are accepted and the algorithm gets stuck at a local minimum.

After some experimentation we chose to decrease T by a factor of 0.96 after
every 100-th iteration. When spending more than 160 iterations in the same
solution, the algorithm decides that it is caught in a local minimum, generates a
new random configuration, and restarts. The program stops when the objective
function reaches zero.

Initially, we determined the neighboring solution by selecting two rectangles
uniformly at random and swapping one of the four edge coordinates, again cho-
sen randomly, in accordance with the general principles of simulated annealing.
However, in order to accelerate the algorithm, we changed to a non-uniform
selection. We defined a penalty function for each rectangle R in the collection,
whose value is based on

1. the number of rectangle pairs whose visibility is blocked by R.

2. the number of rectangles not visible to R.

If these numbers are large, the rectangle R is likely to be important for the
objective function, and hence it is favored in the selection. We also considered an
enlargement of the neighborhood by defining two configurations to be adjacent
if one can be obtained from the other by swapping two, three, or all four edge
coordinates between two of the rectangles.

After experimenting with the choices of T and the size of the neighborhood
for approximately one month, a z-visibility representation for K22 was found.
The search for a representation of K23 was run more or less continuously on
various workstations and personal computers for almost a year, without success.

4 Additional Results

The section presents some simple, additional representability results, most no-
tably, that all planar graphs are representable.

4.1 Representations for planar graphs

In this section, we show that all planar graphs have a representation. There are
two main ingredients in the proof. The first is the result due independently to



P. Bose et al., 3-D Visibility Representation, JGAA, 2(3) 1–16 (1998) 12

Wismath [24] and to Tamassia and Tollis [22] that any 2-connected planar graph
has what [22] calls an ε-visibility representation. (Vertices correspond to closed,
disjoint, horizontal line segments in the plane, and two vertices are adjacent
in the graph if and only if their corresponding segments are ε-visible in the
vertical direction.) The second ingredient is the use of the third dimension to
deal with cut vertices. This is similar to an idea of [24] for obtaining a visibility
representation for all planar graphs by rectangles in R2 that have ε-visibility in
both the x and y directions. For ease of notation, let P−∞ represent the plane
z = −∞ and let P∞ represent the plane defined by z = +∞.

Theorem 4.1 Every planar graph admits a z-visibility representation.

Proof: We will prove, by induction on the number of 2-connected components,
the following stronger result:

Claim: Let G be a connected planar graph and let v be a vertex of G. Then
G has a z-visibility representation such that each rectangle is visible from P∞,
but only the rectangle representing v is visible from P−∞.

Base case for the induction: G is 2-connected. We say a line segment is a
y-segment if it is parallel to the y-axis and lies in the y,z-plane. By the result
of Wismath [24] and Tamassia and Tollis [22], G can be represented by (planar)
ε-visibility restricted to the z direction of y-segments, with only the segment
representing the vertex v visible from below. Place the y,z-plane containing this
configuration in 3-space at x = 0. Number the segments in order of decreasing
z-coordinate. Expand each segment to an x,y-rectangle by pulling it out until
its x-length is equal to its number. The rectangles then form a “staircase”
shape. Each rectangle is visible from P∞, and only the rectangle repesenting v
is visible from P−∞.

Now assume the result is true for graphs with at most k 2-connected com-
ponents. Let the number of 2-connected components of G be k + 1. Let x be a
cut vertex of G, and break G at x into two subgraphs G1 ∪ {x} and G2 ∪ {x}.
(Vertex x may still be a cut vertex in these subgraphs.) Suppose that v lies in
G1. By induction G1 has a z-visibility representation with all rectangles visible
from P∞ and only the rectangle representing v visible from P−∞. Identify a
rectangular area A of the rectangle corresponding to the vertex x, such that A
is visible from P∞. By induction G2 has a z-visibility representation with all
rectangles visible from P∞ and only the rectangle representing x visible from
P−∞. Scale the representation for G2, so that it can be placed upward of the
rectangular area A in the z-direction. After the representation of G2 is in place,
remove the rectangle corresponding to x from the representation of G2. The
result is a z-visibility representation of G; all rectangles are visible from P∞,
and only the rectangle representing v is visible from P−∞. This completes the
proof. 2
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4.2 Representations for bipartite graphs

As Figure 5 illustrates, every complete bipartite graph Km,n admits a z-visibility
representation.

Figure 5: A z-visibility representation of Km,n

4.3 Nonclosure under graph minors

The family of representable graphs is not closed under graph minors. To prove
this, consider the complete bipartite graph K56,56, which has a z-visibility rep-
resentation as illustrated in Figure 5. When an edge of a complete bipartite
graph is contracted, it yields a vertex that is adjacent to all the vertices of the
graph. If we contract the 56 edges of a perfect matching in K56,56, then we ob-
tain the complete graph K56, which does not have a z-visibility representation
by Theorem 2.4. This gives us the following result:

Theorem 4.2 The class of graphs admitting a z-visibility representation is not
closed under graph minors.

5 Conclusions and open problems

We have shown that for the 3-dimensional z-visibility representation introduced
in this paper, all planar graphs have a representation, Kn has a representation
for n ≤ 22, and Kn does not have a representation for n ≥ 56. Concerning
bipartite graphs, we showed that Km,n is representable for all m and n. Finally,
we showed that the family of graphs with a representation is not closed under
graph minors.

¿From the point of view of pure discrete geometry and combinatorics, the
problem of finding the exact upper upper bound for the representability of
Kn remains a tantalizing one. The lower bound was found by computation
(simulated annealing), and the upper bound was found by pushing the Erdős-
Szekeres approach hard, using an extended version of the original theorem.
However, from the point of view of graph visualization, it is already interesting
that K22 has a z-visibility representation, as this means that all graphs with at
most 22 vertices have a weak representation.



P. Bose et al., 3-D Visibility Representation, JGAA, 2(3) 1–16 (1998) 14

It was shown in [5] that K5,5 minus a perfect matching has a representation.
We conjecture that K6,6 minus a perfect matching does not have a representa-
tion. It was also shown in [5] that the complete tripartite graphs Km,n,2 and
Km,4,3 can be represented.

What is the smallest graph that does not have a z-visibility representation?
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