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Drawing outer-1-planar graphs revisited
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Abstract. In a recent article (Auer et al., Algorithmica 2016) it was claimed that
every outer-1-planar graph has a planar visibility representation of area O(n log n). In
this paper, we show that this is wrong: There are outer-1-planar graphs that require
Ω(n2) area in any planar drawing. Then we give a construction (using crossings, but
preserving a given outer-1-planar embedding) that results in an orthogonal box-drawing
with O(n log n) area and at most two bends per edge.

1 Introduction

A 1-planar graph is a graph that can be drawn in the plane such that every edge has at most one
crossing. Many graph-theoretic and graph-drawing results are known for 1-planar graphs, see for
example [12]. One subclass of 1-planar graphs is the class of outer-1-planar (o1p) graphs, which
have a 1-planar drawing such that additionally every vertex is on the outer face (the unbounded
region of the drawing).

Outer-1-planar graphs were introduced by Eggleton [10] and studied by many other researchers
[1, 2, 8, 11]. Of particular interest here is a paper by Auer, Bachmeier, Brandenburg, Gleißner,
Hanauer, Neuwirth and Reislhuber [2]. Among many results, they characterize the forbidden
minors of outer-1-planar graphs, give a recognition algorithm, and give bounds on various graph
parameters such as the number of edges, treewidth, stack number and queue number. Finally they
turn to drawing algorithms for outer-1-planar graphs, and here claim the following result: “Every
o1p graph has a planar visibility representation in O(n log n) area.” (Theorem 8).

In this paper, we show that this result is incorrect. Specifically, we construct an n-vertex
outer-1-planar graph such that in any planar embedding there are Ω(n) nested triangles (we give
detailed definitions below). It is known [7] that any planar graph drawing with k nested cycles
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requires width and height at least 2k in any planar poly-line drawing. Since any planar visibility
representation can be converted into a poly-line drawing of asymptotically the same width and
height (see also Figure 3), any planar visibility representation of our graph uses Ω(n2) area and
the claim by Auer et al. is incorrect.

Then we give a drawing algorithm for outer-1-planar graphs that achieves area o(n2). The
resulting drawings have crossings, but reflect exactly the given outer-1-planar embedding. Our
construction gives orthogonal box-drawings with area O(n log n) and at most two bends per edge;
they can be converted to poly-line drawings of the same area.

To our knowledge, the only prior result on orthogonal drawings of outer-1-planar drawings
(other than the one by Auer et al. that we disprove) is by Argyriou et al. [1]: they showed that
every outer-1-planar graph with maximum degree 4 has a point-orthogonal drawing with O(n2)
area and at most 2 bends per edge such that the given outer-1-planar embedding is respected.
In follow-up to the current work, the author (with co-authors) also studied embedding-preserving
visibility representations of outer-1-planar graphs; for these area O(n1.5) can always be achieved
and this is tight for some graphs [6]. The same paper also proves that outer-1-planar graphs have
so-called bar-1-visibility representations of area O(n log n), albeit not embedding-preserving.

2 Definitions

We assume familiarity with graphs, see e.g. [9]. A planar graph is a graph that can be drawn in
the plane without any crossing. Such a planar drawing Γ defines the cells, which are the connected
regions of R2 \Γ. 1 The infinite cell is called the outer face, the other cells are called inner cells. A
planar drawing defines the planar embedding consisting of the rotation scheme (the clockwise order
of edges at each vertex) and the outer face (described via the circuit that bounds it). A graph is
called outer-planar if it has a planar embedding where all vertices are on the outer face.

A 1-planar graph is a graph that can be drawn in the plane such that every edge has at most
one crossing. As above, such a 1-planar drawing defines cells and the outer face. An outer-1-planar
graph is a graph with a 1-planar drawing where additionally all vertices are on the outer face. Any
such drawing is described via an outer-1-planar embedding, consisting of the rotation scheme, the
outer face, and information as to which pair of edges cross.

A graph is called maximal (within a graph class) if no edge can be added while staying in the
same graph class and having no duplicate edges or loops. In a maximal outer-planar graph the
outer face is a cycle of length n and all inner faces are triangles. In a maximal outer-1-planar
graph the outer face is a cycle of length n where no edges have crossings [10]. We only draw graphs
that are maximal (within their class); one can always make a graph maximal by adding edges, and
delete those edges from the obtained drawing later.

A poly-line drawing of a graph is a drawing where vertices are points and edges are polygonal
curves; a bend is the transition-point between segments of the polygonal curve. An orthogonal point-
drawing is a poly-line drawing where edge-curves are orthogonal, i.e., use only only horizontal and
vertical segments. We also consider orthogonal box-drawings, where vertices are represented by
axis-aligned boxes and edges are orthogonal curves. A special kind of orthogonal box-drawing is
a visibility representation where edges have no bends. In the orthogonal box-drawings studied in
this paper the vertices are flat: they are represented by horizontal line segments (in the figures, we
show them thickened into a thin rectangle). We call such a vertex-box a bar and such an orthogonal

1For planar drawings the term “face” is more common, but we use “cells” here since we soon also study drawings
with crossings.
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box-drawing an orthogonal bar-drawing.
We assume (without further mentioning) that all our drawings are grid-drawings, i.e., all defin-

ing features (vertex-points, endpoints of vertex-bars, bends) are placed at points with integer
coordinates. A row [column] is a horizontal [vertical] grid-line that intersects the smallest axis-
aligned rectangle that encloses the drawing. The height [width] of a drawing is the number of rows
[columns]; the area is the width times the height. We call a drawing embedding-preserving if it
exactly reflects a given (planar or 1-planar) embedding of the graph.

In what follows, we usually identify the graph-theoretic object (vertex, edge) with the geometric
object (bar, point, poly-line) used to represent it, and so for example say “s occupies the top right
corner” rather than “the bar of s occupies the top right corner”.

3 Lower bound

In this section, we construct an outer-1-planar graph that requires Ω(n2) area in any planar poly-
line drawing. For this we need a graph GL (for L ≥ 2 even) that consists of a 2 × L-grid with a
crossing in every second inner cell. Clearly this is an outer-1-planar graph, see Figure 1. Enumerate
the vertices of GL as in the figure.

v1 v2

w1 w2

vL

wL

vL−2

wL−2
vL wL

x

y

GL\K

T

Figure 1: The outer-1-planar graph G8, and how to find nested triangles.

It is known that all outer-1-planar graphs are planar [2], but they can have many different
planar embeddings. However, we can show that for GL, all planar embeddings are bad in some
sense.

Call a set of disjoint triangles T1, . . . , Tℓ nested (in a fixed planar embedding) if for i = 2, . . . , ℓ
the vertices on the outer-face of the embedding induced by T1 ∪ · · · ∪ Ti are those of triangle Ti.

Lemma 1 Fix L ≥ 2 even. Any planar embedding ΓL of GL with {vL, wL} on the outer face
contains L/2 nested triangles.

Proof: Set K := {vL, wL, vL−1, wL−1}. These four vertices form a K4; its induced planar embed-
ding ΓK is hence unique up to renaming. By assumption the outer face T of ΓK contains vL, wL

and one vertex y ∈ {vL−1, wL−1}; set x = {vL−1, wL−1} \ y.
If L = 2, then we are done (use triangle T ). If L > 2, then graph G′ := GL \K is connected,

so must reside entirely within one cell f of ΓK . Graph G′ contains neighbours of x and y, so cell
f must contain both x and y. Since x is not on the outer face of ΓK , cell f is not the outer face
of ΓK . So no vertex of GL \K is within the infinite region of ΓK , making T the outer face of the
entire drawing ΓL.

Observe that GL \K is a copy of GL−2. Since both vL−2 and wL−2 have neighbours in {x, y},
vertices {vL−2, wL−2} are on the outer face of the induced drawing ΓL−2 of GL \K. By induction,
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ΓL−2 contains L/2 − 1 nested triangles T1, . . . , TL/2−1. Adding the outer face T to this gives the
desired set of nested triangles for G since GL−2 resides within the region bounded by T . □

We now give two lower bounds. The second one is slightly weaker, but it holds even for IC-planar
graphs, i.e., 1-planar graphs where no two crossings have an endpoint in common. Furthermore, the
graph has maximum degree 4, so the lower bound holds even for planar orthogonal point-drawings.

Theorem 1 Fix an arbitrary integer N ≥ 1.

(a) There exists an outer-1-planar graph with n ≥ N vertices that requires width and height at
least (n+ 2)/4 in any planar poly-line grid-drawing.

(b) There exists an IC-planar outer-1-planar graph with n ≥ N vertices and maximum degree 4
that requires width and height at least n/4 in any planar poly-line grid-drawing.

Proof: Set L = 2N . Take two copies of GL; we use primed names (i.e., G′
L, v

′
L, w

′
L) for the

second copy and its vertices. For (a), let Ga be the graph obtained by identifying vL with v′L
and identifying wL with w′

L. For (b), let Gb be the graph obtained by inserting edges (vL, v
′
L)

and (wL, w
′
L). See Figure 2. Clearly the graphs are outer-1-planar, and Gb is IC-planar and has

maximum degree 4.

G′
L

vL=v′L

wL=w′
L

GL
vL

wL

GL
v′L

w′
L

G′
L

Figure 2: Using GL to find lower-bound graphs Ga and Gb.

Fix an arbitrary drawing Γa of Ga, and consider the induced drawings ΓL and Γ′
L of GL and

G′
L. In at least one of ΓL and Γ′

L, edge (vL, wL) must be on the outer-face of the induced drawing.
Up to renaming, drawing ΓL hence has L/2 nested triangles by Lemma 1. It is known [7] that ℓ
nested triangles require width and height 2ℓ in any planar poly-line drawing, which implies (a) by
n = 4L− 2.

The proof for Gb is almost exactly the same. Fix a drawing of Gb and let ΓL,Γ
′
L be the induced

drawings of GL and G′
L. Either ΓL has (vL, wL) on the outer-face or Γ′

L has (v′L, w
′
L) on the outer-

face, so one of them contains L/2 nested triangles and hence requires width and height L = n/4.
□

Thus Theorem 1 shows that the area-bound of O(n log n) for a planar visibility representation
claimed by Auer et al. [2] is not correct. Readers familiar with [2] might be curious to know where
exactly their approach went wrong. We will discuss this briefly later (in Section 4.6) since the tools
from our own construction will be useful for explaining how their construction works.

4 Constructions

We now turn towards constructing orthogonal bar-drawings of outer-1-planar graphs withO(n log n)
area and O(1) bends per edge. This is very easy to achieve if we do not care about the constants
in the O-bounds.
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Observation 2 Any outer-1-planar graph has an embedding-preserving orthogonal bar-drawing
with O(1) bends per edge and O(n log n) area.

Proof: After adding edges, we may assume that the input graph G is maximal outer-1-planar.
Remove all edges that are crossed; the resulting skeleton S is outer-planar and all inner cells contain
three or four vertices [8].

S has an embedding-preserving planar orthogonal bar-drawing ΓS with area O(n log n) and at
most two bends per edge [3, 4]. To turn this into a drawing of G, we need to re-insert the edges
that had crossings. To have space to do this, insert first four new grid-lines each before and after
each grid-line of ΓS ; the area remains O(n log n).

Let e = (u, v) and e′ = (w, x) be two edges that crossed each other in G, and let f be the inner
cell of S that results from removing e, e′. The boundary of f has four vertices and four edges since
G is maximal outer-1-planar. Each edge has at most two bends in ΓS . So the boundary of f in ΓS

has O(1) bends. Pick a grid-point c inside f , and connect it via disjoint orthogonal paths inside
f to u, v, w, x; this then draws e and e′ with a crossing at c. Each orthogonal path requires only
O(1) bends and can be drawn along grid-lines, since we can trace along the boundary of f and
use the four new grid-lines inserted next to it. Repeating for all pairs of crossing edges gives the
desired drawing of G. □

We now work on reducing the constants in the O-bounds and show:

Theorem 3 Any outer-1-planar graph has an embedding-preserving orthogonal bar-drawing with
at most two bends per edge and O(n log n) area.

It is straight-forward to convert any orthogonal bar-drawing into a poly-line drawing while
keeping the width the same and at most tripling the height, see also Figure 3. Every edge re-
ceives at most one more bend at each endpoint. (Even better conversion-results are known for
planar drawings [5], but it is not clear whether those also apply to 1-planar drawings.) Therefore
Theorem 3 implies:

Figure 3: Converting a bar-drawing into a poly-line drawing.

Corollary 4 Any outer-1-planar graph has an embedding-preserving poly-line drawing with at most
four bends per edge and O(n log n) area.

4.1 Drawing types

Now we prove Theorem 3 with a recursive drawing algorithm. Since we have a constant number of
bends per edge, and any outer-1-planar graph has O(n) edges [2], we have O(n) vertical segments
in the orthogonal bar-drawing of Theorem 3. As such, after deleting empty columns if needed,
the width is automatically in O(n). It will be immediately obvious from the figures illustrating
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the constructions that every edge is drawn with at most 2 bends. Therefore the analysis of our
algorithm is focused on the height of the drawing, which we prove to be in O(log n).

Our drawing algorithm borrows many ideas from our previous result on how to draw outer-
planar graphs (see [3] for the original version and [4] for a different and more detailed exposition).
We need some notations. Throughout, G denotes an outer-1-planar graph with a fixed embedding.
After adding edges we may assume that G is maximal outer-1-planar. We define the size |G| of G
to be n−1, i.e., one less than the number of vertices; this may be rather unusual but will help keep
later equations simpler. Fix a reference-edge (s, t) on the outer face of G. The endpoints of (s, t)
are called the poles, and (after possible renaming) we assume that s comes before t in clockwise
order along the outer-face.

The crucial idea in [3, 4] was to fix the location of the poles in the drawing. We use the same
idea, but allow more types of drawings (see also Figure 4) to achieve fewer bends overall. An
orthogonal bar-drawing Γ of G is called

� a drawing of type A if s and t occupy the top right and bottom right corner of Γ, respectively
(this is the drawing type that was used in [3, 4]);

� a drawing of type B if s occupies the top right corner of Γ, and t occupies the point one row
below this corner;

� a drawing of type B if t occupies the bottom right corner of Γ, and s occupies the point one
row above this corner;

� a drawing of type C if s and t occupy the bottom left and bottom right corner of Γ, respec-
tively.

All drawings that we create are embedding-preserving. In particular edge (s, t) must be drawn
clockwise along the boundary of the drawing; Figure 4 shows how it will typically be drawn.

A

s

t

B

s

t

B
s

t

C

s t
C

s t

A = B = B
s

t

Figure 4: The drawing-types, and the base cases.

Let α ≈ 0.59 be such that α5 = (1 − α)3. Let ϕ :=
√
5−1
2 ≈ 0.618 be such that ϕ2 = 1 − ϕ.

Define γ := max{− 2
log ϕ ,−

3
logα} ≈ max{2.88, 3.94} = 3.94, we hence know

γ logα ≤ −3, γ log(1−α) = γ log(α5/3) = 5
3γ logα ≤ −5

γ log ϕ ≤ −2, γ log(1−ϕ) = γ log(ϕ2) = 2γ log ϕ ≤ −4,

Also set δ = 2. We define three functions that bound the heights that we want to achieve in
drawings of various types:

hA(x) = γ log x+ δ ≈ 3.94 log(x) + 2, hB(x) = hA(x)+2, hC(x) = hA(x)+3
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Finally we denote the height of a drawing Γ by h(Γ). Theorem 3 now holds if we show the following
result.

Lemma 2 Let G be a maximal outer-1-planar graph with reference-edge (s, t). Then G has
embedding-preserving orthogonal bar-drawings A,B,B, C that each have at most two bends per edge
and for which the following holds:

� A is of type A and h(A) ≤ hA(|G|),

� B is of type B and h(B) ≤ hB(|G|),

� B is of type B and h(B) ≤ hB(|G|),

� C is of type C and h(C) ≤ hC(|G|).

Furthermore, min{h(B), h(B)} ≤ hA(|G|).

We prove Lemma 2 by induction on |G| (recall that |G| = n−1). In the base case, G consists of
only edge (s, t), and one easily constructs suitable drawings. See Figure 4. The height is at most
2 in all cases. Since |G| = 1, we have log |G| = 0 and the bounds hold by δ = 2.

4.2 Subgraphs and tools

Now assume that n ≥ 3, so G has at least one inner cell. The idea is to split G into subgraphs,
recursively obtain their drawings, and put them together suitably. The subgraphs will all be
“hanging subgraphs”, defined as follows. For any uncrossed edge (u, v) ̸= (s, t), the hanging
subgraph Huv is the graph induced by the vertices on the path between v and u on the outer-face,
using the path from v to u that does not include edge (s, t). This hanging subgraph uses edge
(u, v) as its reference-edge.

We have two cases, depending on whether the cell at the reference-edge (s, t) contains a crossing
or not; see also Figure 5. In Case ∆, the inner cell at (s, t) has no crossing; by maximality it is
hence a triangle, say {s, t, x}. We will recurse on the two hanging subgraphs Hs,x and Hx,t, and
use HL := Hs,x and HR := Hx,t as convenient shortcuts. Observe that |HL| + |HR| = |G| since
we define the size to be one less than the number of vertices. In Case × the inner cell at (s, t)
is incident to a crossing, say edge (s, y) crosses edge (t, x). By maximality the edges (s, x), (x, y)
and (y, t) exist and have no crossing. We will recurse on the three hanging subgraphs HL := Hs,x,
HM := Hx,y and HR := Hy,t. Observe that |HL| + |HM | + |HR| = |G|. These (two or three)
subgraphs are smaller, and we assume that they have been drawn recursively, giving drawings
AL,BL,BL, CL for subgraph HL, and similarly for the other subgraphs. In Figures 7-11, we use

AL

for drawing AL rotated by 180 degrees, and similarly for other drawing-types and subgraphs.
To put drawings together, we frequently use two tools from [3, 4]:

� If we have a drawing Γ of some subgraph, then we can insert empty rows to increase the
height since the drawing is orthogonal. If we choose the place to add these rows suitably,
then this does not change the type of the drawing.

� If we have a drawing Γ of some subgraph, with vertex s in the top row, then we can release s:
add a new row above Γ, let s occupy all of this row, and re-route the edges at s. Specifically,
edges that end vertically at s can simply be extended. At most one edge can end horizontally
at s; we re-route its last segment to become vertical (this can only decrease the number of
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s t

x
HL = Hs,x HR = Hx,t

s t

x

HL = Hs,x HR = Hy,t

y

HM=Hx,y

Figure 5: Splitting a subgraph.

bends). See Figure 6. Releasing vertex s increases the height by 1, and achieves that s now
occupies both the top left and top right corner in the resulting drawing Γ′.

Similarly we can release vertex t to occupy the bottom-left and bottom-right corner, presum-
ing it was in the bottom row. In the figures, we use a “prime” (e.g. A′

L as opposed to AL)
to indicate that one pole has been released, and a dotted box for the prior location of this
pole.

s
s

s
s

Figure 6: Releasing vertex s.

4.3 Induction step—Case ×
We start with Case × where the cell incident to (s, t) has a crossing, and study the three different
types of drawings that we want to achieve.

Case ×.A: We want a type-A drawing of height hA(|G|). We distinguish sub-cases by the size of
the hanging subgraph HM .

Sub-case ×.A.1: |HM | ≤ α|G| (recall that α ≈ 0.59). We know that |HL|+ |HR| ≤ |G|, hence
we may assume |HR| ≤ |G|/2 and use construction ×.A.(a) from Figure 7. (The case |HL| ≤ |G|/2
is symmetric and uses construction ×.A.(b).)

We will (for this case only) explain in detail how Figure 7 is to be interpreted; for later cases we
hope that the figures alone suffice. We use drawingsAL,AM andAR of the subgraphsHL, HM , HR.
The primes in the figure indicate that we should release y in both AM and AR to get A′

M and
A′

R. Rotate A′
M by 180◦ to get

A′
M

. Increase the height of drawings, if needed, such that A′
R and

A′
M

have the same height; then combine the two bars of y into one. Increase the height of AL, if
needed, so that it is at least two rows taller than the other two drawings. Then we combine these
drawings and route the edges (s, y), (x, t) and (s, t) as shown in Figure 7(a).

One can easily verify that the result is an embedding-preserving drawing with at most two
bends per edge. To argue that its height is sufficiently small, the general procedure is as follows.
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AL
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A′
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x

y

(a)

AR

A′
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x

y

(b)

BM A′
L CR

t

s

x

y

(c)

BM A′
R

CL

t

s
x

y

(d)

Figure 7: Constructions for ×.A.

The drawing is obtained by combining drawings of three (later two) subgraphs. At each subgraph,
analyze the height demand, i.e., the number of rows needed in the x-range spanned by the subgraph-
drawing. (In case ×.A.1 we must show that the height demand at each subgraph-drawing is at
most hA(|G|)). For this, study the height needed for the subgraph-drawing itself and add more
rows (if needed) for releasing vertices and/or routing edges and/or other bars. (For case ×.A.3 we
add three rows at each of AM and AR and so need them to have height at most hA(|G|)− 3).

In the specific case here, the height-analysis is done as follows. Since |HL| ≤ |G|, we have
h(AL) ≤ hA(|HL|) ≤ hA(|G|). We have |HM | ≤ α|G|, so

h(AM ) ≤ hA(|HM |) = γ log |HM |+ δ ≤ γ log(α · |G|) + δ

= γ log |G|+ δ + γ logα = hA(|G|) + γ logα ≤ hA(|G|)− 3

by γ logα ≤ −3. Since |HR| ≤ 1
2 |G| < α|G|, likewise AR has height at most hA(|G|)− 3. We need

three more rows above AM and AR: one to release y, one for edge (x, t) and one for s. So the
height demand is at most hA(|G|) at all subgraphs as desired.
Sub-case ×.A.2: |HM | > α|G|. We know that one of BM or BM has height at most hA(|HM |).
Let us assume that this is BM , and we then use construction ×.A.(c) from Figure 7 (the other case
uses construction ×.A.(d) and is similarly analyzed).

We have h(BM ) ≤ hA(|HM |) ≤ hA(|G|) by assumption. Since |HR| ≤ |G| − |HM | ≤ (1−α)|G|,
we have

h(CR) ≤ hC(|HR|) ≤ γ log((1− α)|G|) + δ + 3

= hA(|G|) + γ log(1− α) + 3 ≤ hA(|G|)− 2

by γ log(1 − α) ≤ −5. We need two more rows above CR (for (x, t) and s). Drawing AL has
height at most hA(|HL|), which by |HL| ≤ (1−α)|G| is similarly shown to be at most hA(|G|)− 5.
We need two rows below AL (for releasing x and for y). Therefore the height demand is at most
hA(|G|) at all subgraphs.
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Case ×.B: We want two drawings, of type B and B. Both must have height at most hB(|G|),
and one must have height at most hA(|G|).

Consider first constructions ×.B.(a) for a type-B drawing, and ×.B.(b) for a type-B drawing,
see Figure 8. In both, the drawing of HM has height at most hB(|HM |) ≤ hB(|G|). Drawings AL

and AR have height at most hA(|G|), and we need two more rows at them (one to release a pole,
one for a bar of a vertex not in the subgraph). By hB(|G|) = hA(|G|) + 2 the height demand is at
most hB(|G|) at all subgraphs as desired.

But we must distinguish cases (and perhaps use a different construction) to achieve that one
of the drawings has height at most hA(|G|).

BM A′
L

A′
R

x

y

t
s

(a)

BM A′
R

A′
L

x

y

t
s

(b)

AL

A′
M B′

R
xx

y

t
s

(c)

AR

A′
M B

′
L

x

y

t
s

(d)

Figure 8: Constructions for ×.B and ×.B.

Sub-case ×.B.1: |HL|, |HR| ≤ ϕ|G| (recall that ϕ = (
√
5 − 1)/2 ≈ 0.618). We know that one

of BM or BM has height at most hA(|HM |). Let us assume that this is BM , and consider again
construction ×.B.(a) (in the other case one similarly analyzes construction ×.B.(b)).

Drawing BM by assumption has height at most hA(|HM |). Also for i ∈ {L,R} we have |Hi| ≤
ϕ|G| and therefore

h(Ai) ≤ hA(|Hi|) ≤ hA(|G|) + γ log ϕ ≤ hA(|G|)− 2

since γ log ϕ ≤ −2. We need two further rows at each of AL and AR, so the height demand is at
most hA(|G|) at all subgraphs.

Sub-case ×.B.2: |HL| > ϕ|G|. Use construction ×.B.(c) to obtain a type-B drawing, see
Figure 8. We know that |HR| ≤ (1− ϕ)|G| and hence

h(BR) ≤ hB(|HR|) ≤ hB(|G|) + γ log(1− ϕ) ≤ hB(|G|)− 4 = hA(|G|)− 2

since γ log(1 − ϕ) ≤ −4. We need two more rows above BR (one to release t and one for s), so
the height demand at BR is at most hA(|G|). Similarly the height of AM is at most h(|HM |) ≤
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hA(|G|)− 4. We need four more rows above it: one row for releasing y, one row because B′
R has a

row between y and the (released) t, one row for (x, t) and one row for s. So the height demand is
at most hA(|G|) at all subgraphs.
Sub-case ×.B.3: |HR| > ϕ|G|. Symmetrically construction ×.B.(d) gives a type-B drawing of
height hA(|G|).
Case ×.C: We want a type-C drawing of height hC(|G|).
Sub-case ×.C.1: |HM | ≥ 1

2 |G|. We know that one of HL, HR has size at most 1
2 (|G| − |HM |) ≤

1
4 |G|. Let us assume that |HL| ≤ 1

4 |G|, and we then use construction ×.C.(a) from Figure 9 (the
other case uses construction ×.C.(b) and is similarly analyzed).
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(a)
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x

y ts

(b)
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M

A′
L

x

y

ts

(c)

A′
L B′

M

A′
R

x

y

ts

(d)

Figure 9: Constructions for ×.C.

Drawings AM and AR both have height at most hA(|G|), and we need three more rows (one to
release y, one for (x, t) and one for (s, t)) so the height demand here is at most hA(|G|)+3 = hC(|G|).
By |HL| ≤ 1

4 |G|, we have

h(CL) ≤ hC(|HL|) ≤ hC(|G|) + γ log( 14 ) < hC(|G|)− 4

by γ > 2. We require three more rows above CL: one for (s, y), one row that was used for (x, t)
elsewhere, and one row for (s, t). So the height demand here is less than hC(|G|).
Sub-case ×.C.2: |HM | ≤ 1

2 |G|. We know that one of HL, HR has size at most 1
2 |G|. Let us

assume that this is HR, and we then use construction ×.C.(c) from Figure 9 (the other case uses
construction ×.C.(d) and is similarly analyzed).

Drawing AL has height at most hA(|G|), and we need three more rows (for releasing x, edge
(s, y) and edge (s, t)), so the height demand here is at most hA(|G|) + 3 = hC(|G|). Also,

h(BM ) ≤ hB(|HM |) ≤ hB(|G|) + γ log( 12 )< hB(|G|)− 2 = hC(|G|)− 3

by γ > 2. Again we need three more rows, so the height demand is at most hC(|G|). Similarly
by |HR| ≤ 1

2 |G| we have h(AR) ≤ hA(|HR|) < hA(|G|) − 2. We need five more rows at AR: one
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row for releasing y, one row because B′
M had one row between y and the (released) x, one row for

(x, t), one row that was used for (s, y) elsewhere, and one row for (s, t). So the height demand is
less than hA(|G|) + 3 = hC(|G|) here and at most hC(|G|) at all subgraphs.

4.4 Induction step—Case ∆

Now we turn our attention to the (much simpler) case ∆ where the cell incident to edge (s, t) has
no crossing. We again distinguish cases by the drawing-type that we want to achieve.

Case ∆.A: We want a type-A drawing of height hA(|G|).

Sub-case ∆.A.1: |HL|, |HR| ≤ ϕ|G|. Then use construction ∆.A.(a) from Figure 10. We have

h(BL) ≤ hB(|HL|) ≤ hB(|G|) + γ log ϕ ≤ hB(|G|)− 2 = hA(|G|)

since γ log ϕ ≤ −2. Similarly h(AR) ≤ hA(|HR|) ≤ hA(|G|)− 2 and we need two more rows above
it (for releasing x and for s). So the height demand is at most hA(|G|) at all subgraphs.

BL A′
R

t

s

x

(a)

AL CR

t

s

x

(b)

AR

CL

t

s
x

(c)

Figure 10: Constructions for ∆.A.

Sub-case ∆.A.2: |HL| > ϕ|G|. Then use construction ∆.A.(b). We have h(AL) ≤ hA(|G|), and
by |HR| ≤ |G| − |HL| ≤ (1− ϕ)|G|,

h(CR) ≤ hC(|HR|) ≤ hC(|G|) + γ log(1− ϕ) ≤ hC(|G|)− 4 = hA(|G|)− 1

since γ log(1 − ϕ) ≤ −4. We require one more row above CR (for s), so the height demand is at
most hA(|G|) at all subgraphs.

Sub-case ∆.A.3: |HR| > ϕ|G|. Symmetrically one proves that construction ∆.A.(c) has height
at most hA(|G|).

Case ∆.B: We want two drawings, of type B, B. Both have height at most hB(|G|), and one
has height at most hA(|G|).

The construction for the type-B drawing is in Figure 11(a). Since AL and AR have height at
most hA(|G|), and we need two further rows aboveAR, the height demand is at most hA(|G|) + 2 = hB(|G|)
at all subgraphs. If |HR| ≤ 1

2 |G| then

h(AR) ≤ hA(|HR|) ≤ hA(|G|) + γ log( 12 )< hA(|G|)− 2

by γ > 2 and so the height demand is at most hA(G) at all subgraphs.
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Figure 11: Constructions for ∆.B and ∆.B, as well as for ∆.C.

Likewise, the construction of a type-B drawing in Figure 11(b) has height at most hA(|G|)+2,
and if |HL| ≤ 1

2 |G| then the height is at most hA(|G|). Since one of HL and HR has size at most
1
2 |G|, one of the drawings has height at most hA(|G|).

Case ∆.C: We want a type-C drawing of height at most hC(|G|). The construction is shown in
Figure 11(c). Since AL and AR have height at most hA(|G|), and we need two more rows above
them (to release x and for edge (s, t)), the height is actually at most hA(|G|) + 2 < hC(|G|).

4.5 Putting it all together

We have given suitable constructions in all cases, so by induction Lemma 2 holds. Using the type-A
drawing, we get a drawing of height 3.94 log(n − 1) + 2, width O(n), and at most two bends per
edge. Therefore Theorem 3 holds. Following the proof, one also sees that the drawing can easily
be found in linear time, since we can construct the four drawings of each hanging subgraph in
constant time from the drawings of its subgraphs.

4.6 The approach of [2]

We now briefly review the construction by Auer et al. [2] to explain what they overlooked. Their
algorithm (just like ours) mimicked the approach of drawing outer-planar graphs from [3, 4], i.e.,
they fix a reference-edge (s, t), and aim to create a planar visibility representation of type A. To
do so, they split the graph into hanging subgraphs depending on the configuration at the cell at
(s, t), draw these hanging subgraphs recursively, and merge.

t
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x

y1

Hs,x H ′
x,y1

H ′
y1,t

(a)

Hs,x H ′
x,y1

H ′
y1,t

t

s

x

y1

(b)

Figure 12: (a) Putting drawings together in [2]. (d) A variation of (a).
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Figure 12(a) shows how Auer et al. [2] put drawings together in case ×, and assuming (up to
symmetry) that |Hs,x| ≥ |Hx,t|. (We use y1, rather than y, to mirror the notation in [2].) Their
construction is somewhat like our case ×.A.1 (Figure 7(a)), but they release other poles, mirror
drawings rather than rotate them, and therefore can route edge (x, t) without bend. However,
there are a few issues with this construction:

� First, to achieve a logarithmic height bound it is crucial that the constructed drawing is no
bigger than the drawing of the biggest subgraph. This is violated in Figure 12(a) (where
the biggest subgraph is Hs,x), though the issue can easily be fixed by drawing one edge
horizontally instead, see Figure 12(b).

� Second, Auer et al. silently assume that case × always applies, i.e., the cell incident to (s, t)
has a crossing. This issue probably could have been fixed by studying more cases (and/or
using more drawing types), since most of our constructions in case ∆ do not have bends
anyway, and the construction for ∆.C could be modified to have no bends by releasing other
poles and mirroring rather than rotating.

� Finally, even if case × applies, the construction by Auer et al. does not cover all sub-cases.
Specifically, the construction of Figure 12(b) leads to logarithmic height if Hs,x contains a
constant fraction of the vertices, and a symmetric construction works if Hy1,t contains a
constant fraction of the vertices. But Auer et al. did not consider the case where nearly all
vertices belong to Hx,y1 .

This issue is the one that led to our counter-example, constructed such that (s, t) is incident
to a crossing, subgraph Hx,y1

contains all remaining vertices and is built in the same way
recursively.

5 Conclusion

In this paper, we pointed out an error in a result by Auer et al., and show that for some outer-
1-planar graphs, any poly-line drawing without crossings requires Ω(n2) area. We then studied
orthogonal box-drawings of outer-1-planar graphs where crossings are permitted. We created such
drawings (using bars to represent vertices) that have O(n log n) area and at most 2 bends per edge,
and exactly reflect the given outer-1-planar embedding.

We believe that reducing the number of bends per edge should be possible, and in particular,
conjecture that we can achieve O(n log n) area with at most one bend per edge, perhaps at the
expense of modifying the 1-planar embedding. (Very recently, embedding-preserving drawings with
one bend per edge and O(n1.48) area have been found [6].)

Straight-line drawings of outer-1-planar graphs are also of interest. It is known that there are
embedding-preserving outer-1-planar straight-line drawings of area O(n2) [2]. Are there straight-
line drawings of sub-quadratic area (again perhaps at the expense of not respecting the 1-planar
embedding)?
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