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Abstract. We introduce and study the 1-planar packing problem: Given k graphs
with n vertices G1, . . . , Gk, find a 1-planar graph that contains the given graphs as
edge-disjoint spanning subgraphs. We mainly focus on the case when each Gi is a tree
and k = 3. We prove that a triple consisting of three caterpillars or of two caterpillars
and a path may not admit a 1-planar packing, while two paths and a special type of
caterpillar always have one. We then study 1-planar packings with few crossings and
prove that three paths (resp. cycles) admit a 1-planar packing with at most seven (resp.
fourteen) crossings. We finally show that a quadruple consisting of three paths and a
perfect matching with n ≥ 12 vertices admits a 1-planar packing, while such a packing
does not exist if n ≤ 10.
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1 Introduction

In the graph packing problem we are given a collection of n-vertex graphs G1, . . . , Gk and we are
requested to find a graph G that contains the given graphs as edge-disjoint spanning subgraphs.
Various settings of the problem can be defined depending on the type of graphs that have to be
packed and on the restrictions on the packing graph G. The most general case is when G is the
complete graph on n vertices and there is no restriction on the input graphs. Sauer and Spencer [17]
prove that any two graphs with at most n−2 edges can be packed into Kn; Woźniak and Wojda [19]
give sufficient conditions for the existence of a packing of three graphs. The setting when G is Kn

and each Gi is a tree (i = 1, 2, . . . , k) has been intensively studied. Hedetniemi et al. [9] show that
two non-star trees can always be packed into Kn. Notice that, the condition that the trees are not
stars is necessary for the existence of the packing because each vertex must have degree at least
one in each tree, which is not possible if a vertex is adjacent to all other vertices as it is the case
for a star. Wang and Sauer [18] give sufficient conditions for the existence of a packing of three
trees into Kn, while Mahéo et al. [13] characterize the triples of trees that admit such a packing.

Garćıa et al. [6] consider the planar packing problem, that is the case when the graph G is
required to be planar. They conjecture that the result of Hedetniemi et al. extends to this setting,
i.e., that every pair of non-star trees can be packed into a planar graph. Notice that, when G is
required to be planar, two is the maximum number of trees that can be packed (because three
trees have more than 3n− 6 edges). Garćıa et al. prove their conjecture for some restricted cases,
namely when one of the trees is a path and when the two trees are isomorphic. In a series of
subsequent papers the conjecture has been proved true for other pairs of trees. Oda and Ota [14]
prove it when one tree is a caterpillar or it is a spider of diameter four. Frati et al. [5] extend the
last result to any spider, while Frati [4] considers the case when both trees have diameter four.
Geyer et al. show that a planar packing always exists for a pair of binary trees [7] and for a pair
of non-star trees [8], thus finally settling the conjecture.

In the present paper we initiate the study of the 1-planar packing problem, i.e., the problem of
packing a set of graphs into a 1-planar graph. A 1-planar graph is a graph that can be drawn so
that each edge has at most one crossing. 1-planar graphs have been introduced by Ringel [16] and
have received increasing attention in the last years in the research area called beyond planarity (see,
e.g., [10, 3]). Since any two non-star trees admit a planar packing, a natural question is whether
we can pack more than two trees into a 1-planar graph. On the other hand, since each 1-planar
graph has at most 4n−8 edges [15], it is not possible to pack more than three trees into a 1-planar
graph. Thus, our main question is whether any three trees with maximum vertex degree n − 3
admit a 1-planar packing. The restriction to trees of degree at most n − 3 is necessary because
a vertex of degree larger than n − 3 in one tree cannot have degree at least one in the other two
trees. Our results are as follows.

� We show that there exist triples of structurally simple trees that do not admit a 1-planar
packing (Section 3). These triples consist of three caterpillars with at least 10 vertices and
of two caterpillars and a path with 7 vertices.

� Motivated by the above results, we study triples consisting of two paths and a caterpillar
(Section 4). We characterize the triples consisting of two paths and a 5-legged caterpillar (a
caterpillar where each vertex of the spine has no leaves attached or it has at least five leaves)
that admit such a packing. We also characterize the triples that admit a 1-planar packing
and which consist of two paths and a caterpillar whose spine has exactly two vertices.
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� The packing technique of the results above is constructive and it gives rise to 1-plane graphs
(i.e., 1-planar embedded graphs) with a linear number of crossings. This naturally raises
the question about the number of edge crossings required by a 1-planar packing. We show
that any three paths with at least six vertices can be packed into a 1-plane graph with seven
edge crossings in total (Section 5). We also extend this technique to three cycles obtaining
1-plane graphs with fourteen crossings in total.

� We finally consider the 1-planar packing problem for quadruples of acyclic graphs (Section 6).
Since, as already observed, four paths cannot be packed into a 1-planar graph, we consider
three paths and a perfect matching. We show that when n ≥ 12 such a quadruple admits a
1-planar packing and that when n ≤ 10 a 1-planar packing does not exist.

The rest of the paper is organized as follows. Preliminary definitions are given in Section 2.
Instances for which a 1-planar packing does not exist are described in Section 3. Section 4 contains
results about packing two paths and a caterpillar, while Section 5 describes 1-planar packings with
a constant number of crossings. Results about three paths and a perfect matching are presented
in Section 6. Conclusions and open problems are reported in Section 7.

2 Preliminaries

Given a graph G and a vertex v of G, degG(v) denotes the vertex degree of v in G. Let G1, . . . , Gk

be k graphs with n vertices; a packing of G1, . . . , Gk is an n-vertex graph G that has G1, . . . , Gk

as edge-disjoint spanning subgraphs. We consider the case when G is a 1-planar graph, that is a
graph that admits a drawing in the plane such that each edge has at most one crossing. Such a
drawing is called a 1-planar drawing of G. In this case we say that G is a 1-planar packing of
G1, . . . , Gk. If G1, . . . , Gk admit a (1-planar) packing G, we also say that G1, . . . , Gk can be packed
into G. We mainly concentrate on the case when each Gi is a tree (1 ≤ i ≤ k). In this case (and
generally when each Gi is connected), we have restrictions on the values of k and n for which a
packing exists.

Property 1 A 1-planar packing of k connected n-vertex graphs G1, . . . , Gk exists only if k ≤ 3
and n ≥ 2k. Moreover, degGi

(v) ≤ n− k for each vertex v.

Proof: If each Gi is connected, then it has at least n − 1 edges and therefore any packing of

G1, . . . , Gk has at least k(n− 1) edges; since the complete graph with n vertices has n(n−1)
2 edges

it holds that k(n− 1) ≤ n(n−1)
2 , that is n ≥ 2k. On the other hand, a 1-planar graph has at most

4n − 8 edges, and therefore it holds that k(n − 1) ≤ 4n − 8, which implies k ≤ 3. Moreover, if

each Gi is connected then degGi
(v) ≥ 1 for each v, and since

∑k
i=1 degGi

(v) ≤ n− 1 it holds that
degGi

(v) ≤ n− k. 2

A caterpillar T is a tree such that removing all the leaves results in a path called the spine.
A backbone of T is a path v0, v1, v2, . . . , vl, vl+1 of T where v1, v2, . . . , vl is the spine of T and v0
and vl+1 are two leaves in T adjacent to v1 and vl, respectively. T is h-legged if every vertex of its
spine has degree either 2 or at least h+ 2 in T .

3 Trees That Do Not Admit 1-planar Packings

In this section we describe triples of trees that do not admit a 1-planar packing.
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Theorem 1 For every n ≥ 10, there exists a triple of caterpillars that does not admit a 1-planar
packing.

Proof: The triple consists of three isomorphic caterpillars T1, T2, T3 with n ≥ 10 vertices. Each Ti

has a backbone of length 5 and n−5 leaves all adjacent to the middle vertex of the spine, which we
call the center of Ti. Notice that each Ti is such that degTi

(v) ≤ n− 3 for each vertex v, since the
vertex with largest degree in Ti is its center, which has degree n−3. Thus, the necessary condition
on the degree stated in Property 1 is verified.

Let G be any packing of T1, T2, and T3 and let v1, v2, and v3 be the three vertices of G
where the three centers of T1, T2, T3, respectively, are mapped. The three vertices v1, v2, and
v3 must be distinct because otherwise they would have degree larger than n − 1 in G, which
is impossible. For each vi we have degTi

(vi) = n − 3 and degTj
(vi) ≥ 1, for j ̸= i. Hence,

degG(vi) = degT1
(vi) + degT2

(vi) + degT3
(vi) ≥ n− 1. Since degG(vi) cannot be larger than n− 1,

it must be degG(vi) = n−1 for each vi. In other words, each vi is adjacent to all the other vertices
of G. Thus, G contains K3,n−3 as a subgraph. Since n ≥ 10 and K3,7 is not 1-planar [2], G is not
1-planar. 2

Motivated by Theorem 1, we consider triples where one of the caterpillars is a path. Also in
this case there exist triples that do not have a 1-planar packing.

Theorem 2 There exists a triple consisting of a path and two caterpillars with n = 7 vertices that
does not admit a 1-planar packing.

Proof: Let Ti (i = 1, 2) be a caterpillar with a backbone of length four such that one of the
two internal vertices has degree three and the other one has degree four. Let G be a packing of
T1, T2 and a path P of 7 vertices. Let v1, v2, v3, and v4 be the four vertices of G where the
internal vertices of the backbones of T1 and T2 are mapped to. We first observe that v1, v2, v3,
and v4 must be distinct. Suppose, as a contradiction, that two of them coincide, say v1 and v2;
then degT1

(v1) + degT2
(v1) ≥ 6. On the other hand degP (v1) ≥ 1, and therefore degG(v1) ≥ 7,

which is impossible (since G has only 7 vertices). Denote by G1,2 the subgraph of G containing
only the edges of T1 and T2. Two vertices among v1, v2, v3, and v4, say v1 and v2, have degree
5 in G1,2, while the other two have degree 4 in G1,2. Consider now the edges of P . Since the
maximum vertex degree in a graph of seven vertices is six, v1 and v2 must be the end-vertices of
P , while v3 and v4 are internal vertices. This means that they all have degree 6 in G. The vertices
distinct from v1, v2, v3, and v4 have degree 2 in G1,2 and degree 4 in G. Thus in G there are
four vertices of degree 6 and three vertices of degree 4. The only graph of seven vertices with this
degree distribution is the graph obtained from K7 by deleting all the edges of a 3-cycle, which is
known to be non-1-planar [11]. 2

4 1-planar Packings of Two Paths and a Caterpillar

In this section we prove that a triple consisting of two paths P1 and P2 and a 5-legged caterpillar
T with at least six vertices admits a 1-planar packing. In order to obtain this result, stated in
Theorem 4, we need to prove intermediate lemmas. The high-level idea of our approach can be
described as follows. Let P be the backbone of T and let P ′

1 and P ′
2 be two paths with the same

length as P . We first show how to construct a 1-planar packing of P , P ′
1 and P ′

2. We then modify
the computed packing to include the leaves of the caterpillar so to obtain a 1-planar packing of
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Figure 1: A 5-leaf addition operation. The cutting curve is shown with a zig-zag pattern on it.

P1, P2 and T ; this requires transforming some edges of P ′
1 and P ′

2 to sub-paths that pass through
the added leaves.

Let e be an edge of a given 1-planar drawing Γ, possibly with parallel edges. If e has one
crossing c, then each of the two parts in which e is divided by c are called sub-edges of e; if e has
no crossing, e itself is called a sub-edge of e. Let v be a vertex of Γ; a cutting curve of v is a simple
open curve γ such that: (i) γ has v as an end-point; (ii) γ intersects two edges e1 = (u1, v1) and
e2 = (u2, v2) (possibly u1 = u2 and/or v1 = v2); (iii) γ does not intersect any other edge of Γ; (iv)
e1 and e2 do not cross each other; (v) if e1 and e2 are parallel edges (i.e., u1 = u2 and v1 = v2),
they have no crossings. The stub of ei with respect to γ is the sub-edge of ei intersected by γ
(i = 1, 2).

Given a cutting curve γ of a vertex v, and an integer ℓ ≥ 5, an ℓ-leaf addition operation adds
ℓ vertices w1, w2, . . . , wℓ and the edges (v, w1), (v, w2), . . . , (v, wℓ) to Γ in such a way that: (i) the
added vertices subdivide the stubs of both e1 and e2 with respect to γ; (ii) the subgraph induced
by u1, u2, v1, v2, w1, w2, . . . , wℓ has no parallel edges (see Figure 1 for an example). In other words,
a leaf addition adds a set of vertices adjacent to v and replaces the stubs of e1 and e2 with two
edge-disjoint paths. This operation will be used to modify the 1-planar packing of P , P ′

1 and P ′
2

to include the leaves of the caterpillar. When the value of ℓ is not relevant, an ℓ-leaf addition will
be simply called a leaf addition.

Lemma 1 Let Γ be a 1-planar drawing possibly with parallel edges, let v be a vertex of Γ and let
γ be a cutting curve of v. It is possible to execute an ℓ-leaf addition for every ℓ ≥ 5 in such a way
that the resulting drawing is still 1-planar.

Proof: Denote by e1 and e2 the two edges crossed by γ. If one of them or both are crossed in Γ
replace their crossing points with dummy vertices. Let e′i be the stub of ei with respect to γ (if ei
is not crossed in Γ, e′i coincides with ei). After the replacement of the crossings with the dummy
vertices the two stubs e′1 and e′2 have no crossing. Since γ does not cross any edge distinct from
e1 and e2, the drawing Γ′ obtained by removing e′1 and e′2 has a face f whose boundary contains
the vertex v and all the end-vertices of e′1 and of e′2 (there are at least two and at most four such
vertices).
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v

a ≡ b c ≡ d

(a) ℓ = 5

v

a ≡ b c ≡ d

(b) ℓ = 6

v

a ≡ b c ≡ d

(c) ℓ = 7

. . .

v

a ≡ b c ≡ d

(d) ℓ > 6 even

. . . . . .

v

a ≡ b c ≡ d

(e) ℓ > 7 odd

Figure 2: Gadgets used for parallel edges in the proof of Lemma 1.

The idea now is to insert into the face f , without creating any crossing, a gadget that realizes
the ℓ-leaf addition for the desired value of ℓ ≥ 5. A gadget has ℓ vertices that will be added to Γ, a
vertex that will be identified with v, and four vertices a, b, c, and d that will be identified with the
end-vertices of e′1 and e′2. The four vertices a, b, c, and d will be called attaching vertices and the
edges incident to them will be called attaching edges. In order to guarantee that the leaf addition is
valid and that the drawing Γ′′ obtained by the insertion of the gadget inside f is 1-planar, we have
to pay attention to two aspects: (i) if an attaching edge is crossed in the gadget, then its attaching
vertex cannot be identified with a dummy vertex (otherwise when we remove the dummy vertex we
obtain an edge that is crossed twice); (ii) if two attaching vertices of the gadget coincide (because
e′1 and e′2 have a vertex in common), then the corresponding attaching edges must not have the
second end-vertex in common in the gadget (otherwise the leaf addition is not valid because it
creates parallel edges).

We use different gadgets depending on whether e1 and e2 are parallel edges or not. If they are
parallel edges, we use the gadgets of Figure 2. Notice that in this case, e1 and e2 are not crossed by
definition of cutting curve. It follows that f has no dummy vertex and (i) is guaranteed. On the
other hand, both end-vertices of e1 and e2 coincide and therefore the end-vertices of the attaching
edges that are not attaching vertices must be distinct. This is true for the gadgets used in this
case. If e1 and e2 are non-parallel, we use the gadgets of Figure 3. All these gadgets have only
one attaching edge that is crossed (the one incident to vertex d in the figure); also, vertex d can
be identified with vertex c without creating parallel edges. If e1 and e2 are non-parallel, at most
two end-vertices of e′1 and e′2 are dummy; they cannot belong to the same stub, and they cannot
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Figure 3: Gadgets used for non-parallel edges in the proof of Lemma 1.

coincide (because e1 and e2 do not cross each other). Thus we can identify d with a non-dummy
vertex and we can identify c and d if needed. 2

It is worth remarking that the leaf addition operation is not guaranteed to work with less than
five leaves. Namely, in order to perform an ℓ-leaf addition operation, we have to add m = 2(ℓ− 1)
edges, each connecting two of the leaves. Since the number of possible edges connecting pairs of

leaves is m′ = ℓ·(ℓ−1)
2 , the operation is possible only if m ≤ m′.

Figure 4

For ℓ ≤ 3 we have m′ < m and the construction is not possible. If
ℓ = 4, m′ = m and the number of available edges would be enough.
However, it can be seen that, no matter how we draw the edges, two of
the four dangling edges have a crossing (see, for example, the red dashed
edges in Figure 4). This makes the leaf addition operation not working
for specific instances.

We are now ready to describe our construction of a 1-planar packing
of P1, P2, and T . We use different techniques for different lengths of the
backbone of T .

Lemma 2 Two paths and a 5-legged caterpillar whose backbone contains n′ ≥ 6 vertices admit a
1-planar packing.

Proof: We start with the construction of a 1-planar packing of the three paths P ′
1, P

′
2 and P . Let

n′ be the number of vertices of P ′
1, P

′
2 and P , assume first that n′ ≥ 8 and n′ ≡ 0 (mod 4). A
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(a) n′ = 4h (b) n′ = 4h+ 1

(c) n′ = 4h+ 2 (d) n′ = 4h+ 3

Figure 5: 1-planar packings of three paths with n′ ≥ 8 vertices (case h=3); A cutting curve is
shown (zig-zag pattern) for each internal vertex of the black path.

1-planar packing of P ′
1, P

′
2 and P for this case is shown in Figure 5(a) for n′ = 12 and it is easy

to see that it can be extended to any n′ multiple of 4. Assume that the backbone P of T is the
path shown in black in Figure 5(a). To add the leaves of T to the construction we define a cutting
curve for each vertex v that has some leaves attached; we then execute a leaf addition operation
for each such vertex. By Lemma 1, it is possible to execute each leaf addition so to guarantee the
1-planarity of the resulting drawing. The cutting curve for each internal vertex of P is shown in
Figure 5(a) with a zig-zag pattern. Note that, regardless of the order in which the leaf additions
are executed, the cutting curves remain valid.

Suppose now that n′ ≥ 8 and n′ ̸≡ 0 (mod 4). In this case we first construct a 1-planar packing

of three paths with n′′ = 4h vertices (with h = ⌊n′

4 ⌋) using the same construction as in the previous
case and then we add one, two or three vertices as shown in Figures 5(b)-5(d), where we also show
the cutting curves for each internal vertex of P . If n′ is equal to 6 or 7, we use the same approach;
the only difference is in the construction of the 1-planar packing of P ′

1, P
′
2 and P . The construction

for such a packing and the cutting curves for the internal vertices of P are shown in Figures 6(a)
and 6(b). 2
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(a) n′ = 7 (b) n′ = 6

a

b

c

(c) n′ = 5

Figure 6: 1-planar packings of three paths with n′ ∈ {5, 6, 7} vertices, with a cutting curve (zig-zag
pattern) for each internal vertex of the black path.

Lemma 3 Two paths and a 5-legged caterpillar T whose backbone contains n′ = 5 vertices admit
a 1-planar packing, unless T is a path.

Proof: If T is a path, then P1, P2 and T are all paths of length five, and by Property 1, a 1-planar
packing of P1, P2 and T does not exist. Suppose therefore that at least one internal vertex of the
backbone P of T has some leaves attached. We use an approach similar to the one of Lemma 2.
However, as just explained, a 1-planar packing of P ′

1, P
′
2 and P does not exist in this case. We

start with a 1-planar packing with two pairs of parallel edges. For each pair, one edge belongs to
P ′
1 and the other one to P ′

2. We will remove the parallel edges by performing the leaf addition
operations. To this aim we must guarantee that there is a cutting curve for each pair of parallel
edges. The 1-planar packing P ′

1, P
′
2 and P and the cutting curves for the internal vertices of P

are shown in Figure 6(c), for the case when at least two vertices have leaves attached. Indeed, if
only two vertices have leaves attached, they are either consecutive along the backbone or not. In
the first case, these two vertices are mapped to the vertices labeled a and b in Figure 6(c) and
the depicted cutting curves will remove the parallel edges; in the second case, the two vertices are
mapped to the vertices labeled a and c and also in this case the depicted cutting curves will remove
the parallel edges.

If only one vertex of P has leaves attached, we have only one cutting curve and thus it is not
possible to intersect both pairs of parallel edges. To handle this case we distinguish two cases.
If the only vertex with leaves attached is the middle vertex of the backbone, then we can adapt
the technique used above as follows. Consider the 1-planar packing of P ′

1, P
′
2 and P shown in

Figure 7(a), where we have two parallel edges (a, b) and two parallel edges (b, c). Consider now
the cutting curve γ shown in Figure 7(a). This curve intersects the two parallel edges (a, b), thus,
performing a leaf addition operation using that curve, we obtain a 1-planar packing of P1, P2 and
T with the two parallel edges (b, c) (see Figure 7(b)). These two parallel edges can be removed
by modifying the drawing as follows (see also Figure 7(c) for an illustration). Since the two edges
crossed by γ are parallel edges, the leaf addition operation used must be one of those shown in
Figures 2(a)–2(d) and 2(e). No matter which of the cases applies, one of the two edges incident
to vertex a is non-crossed and can be disconnected from a and connected to c without introducing
any crossing. Call this edge e. The parallel edge (c, b) with the same color as e can be disconnected
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Figure 7: Illustration for the proof of Lemma 3.

from c and connected to a only crossing e. With this modification we obtain the desired 1-planar
packing. If the only vertex with leaves attached is the second (or fourth) vertex of the backbone,
we need an ad-hoc technique to compute a 1-planar packing of P1, P2 and T , which is shown in
Figures 7(d) and 7(e) for an even or an odd number of leaves, respectively. The caterpillar T and
the path P1 (shown red dashed in the figures) are drawn without crossings. The path P2 (shown
green solid in the figures) is drawn such that the leaves of T alternately belong to the sub-path
π(b, a) from vertex b to vertex a and to the sub-path π(d, c) from vertex d to vertex c (note that
π(b, a) is drawn so to cross some of the edges connecting the backbone of T to the leaves, while
π(d, c) is drawn without crossing the edges of T ). Depending on whether the number of leaves is
even or odd, the last leaf of T belongs to π(b, a) or to π(d, c), and the last but one leaf belongs to
the other sub-path. This creates a crossing between two different edges of P2. 2

The next theorem gives a complete characterization for the case in which the backbone of T
has length four.

Theorem 3 Two paths and a caterpillar T whose backbone contains n′ = 4 vertices admit a
1-planar packing if and only if n ≥ 6 and degT (v) ≤ n− 3 for every vertex v.

Proof: Since the length of the backbone is four, we have exactly two non-leaf vertices v1 and v2.
Denote by ni the number of leaves adjacent to vi (i = 1, 2) and assume n1 ≤ n2. We distinguish
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(a) even-even

. .
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.

...

(b) odd-odd

...

..
.

...

(c) even-odd

Figure 8: Illustration for the proof of Theorem 3.

different cases depending on the values of n1 and n2. If n1 = 1, then we have degT (v2) = n − 1
and by Property 1 a 1-planar packing of P1, P2 and T does not exist. Assume now that n1 ≥ 2.

We start with the case when n1 ≥ 5. In this case we construct a 1-planar packing according to
different techniques depending on the parity of n1 and n2. Figures 8(a), 8(b), and 8(c) show the
construction for the cases when n1 and n2 are both even, when they are both odd, and when they
have different parity, respectively. If n1 < 5 we have different ad-hoc constructions that depend
on the values of n1 and n2. All cases are shown in Figure 9. 2

Lemmas 2 and 3, together with Theorem 3 imply the next theorem.

Theorem 4 Two paths and a 5-legged caterpillar T with n vertices admit a 1-planar packing if
and only if n ≥ 6 and degT (v) ≤ n− 3 for every vertex v.

5 1-planar Packings with Constant Edge Crossings

The technique described in the previous section constructs 1-planar drawings that have a linear
number of crossings. A natural question is whether it is possible to compute a 1-planar packing
with a constant number of crossings. In this section we prove that seven (resp. fourteen) crossings
suffice for packing three paths (resp. cycles). It is worth remarking that a 1-planar packing of
three paths has at least three crossings (because it has 3n− 3 edges), while a 1-planar packing of
three cycles has at least six crossings (because it has 3n edges).

Theorem 5 Three paths with n ≥ 6 vertices can be packed into a 1-plane graph with at most 7
edge crossings.
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(a) (2, 2) (b) (2, 3) (c) (2, 4) (d) (2, 5+)

(e) (2, 6+) (f) (3, 3) (g) (3, 4) (h) (3, 5+)

(i) (3, 6+) (j) (4, 4) (k) (4, 5+) (l) (4, 6+)

Figure 9: Illustration for the proof of Theorem 3. Constructions for the cases when n1 < 5. For
each case the values (n1, n2) are indicated; 5+ means n2 ≥ 5 with n2 odd, while 6+ means n2 ≥ 6
with n2 even.
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Figure 10: Illustration for the proof of Theorem 5.

Proof: We prove the statement by showing how to construct a 1-planar drawing with at most 7
crossings of a graph that is the union of three paths. Suppose first that n = 7 + 3δ for δ ∈ N. If
δ = 0, we draw the union of the three paths with 7 vertices as shown in Figure 6(a). The drawing
is 1-planar and has three crossings in total. Suppose now that δ > 0. We consider three rays
r0, r1, r2 with a common origin pairwise forming a 120◦ angle and we place δ vertices on each line.
We denote by ui,1, ui,2, . . . , ui,δ the vertices of line ri (i = 0, 1, 2) in the order they appear along
ri starting from the origin (see Figure 10(a)). In the following, indices will be taken modulo 3
when working with the indices of the rays ri. To draw path Pi (i = 0, 1, 2) we draw the edges
(ui,1, ui+1,1), (ui,j , ui+1,j−1), and (ui,j , ui+1,j) (for j = 2, . . . , δ) as straight-line segments. Notice
that, these edges form a zig-zagging path between the vertices of rays ri and ri+1, so Pi passes
through all vertices of ri and ri+1 but not through the vertices of ri+2. To include these missing
vertices in Pi, we add to Pi edges (ui+2,j , ui+2,j+1) (for j = 1, 2, . . . , δ − 1).

In this way we draw two disjoint sub-paths for each path Pi, namely a zig-zagging path between
ri and ri+1 and a straight-line path along ri+2. Moreover, we only draw 3δ edges and therefore
there are still 7 missing vertices (and 8 missing edges) in each path. To add the missing vertices
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G2G1

(a)

G2G1

(b)

G2G1

(c)

Figure 11: Illustration for the proof of Theorem 6.

and edges and to connect the two sub-paths of each path, we construct a drawing Γ0 of three paths
P ′
0, P

′
1, P

′
2 with seven vertices as the one shown in Figure 6(a) (the same used when δ = 0). Denote

with vi and wi the end-vertices of P ′
i in Γ0. We place Γ0 inside the triangle u0,1, u1,1, u2,1 and add

the edges (vi, ui,1) and (wi, ui+2,1). It is easy to see (see also Figure 10(b)) that these six edges
can be added so that the drawing is still 1-planar and the total number of crossings is 6. This
concludes the proof for n = 7 + 3δ.

If n = 7 + 3δ + 1 we start with the same construction as in the previous case and then add an
extra vertex v outside the triangle u1,δ, u2,δ, u3,δ. Notice that each of these three vertices is the
end-vertex of two of the three paths with 7+3δ vertices. Thus we can extend each path to include
v by connecting it to each of the three vertices u1,δ, u2,δ, u3,δ without creating any crossing (see
Figure 10(c) ignoring vertex w). Hence, the resulting drawing has still six crossings.

If n = 7+3δ+2, then we add two extra vertices outside the triangle u0,δ, u1,δ, u2,δ and connect
both of them to the three vertices u0,δ, u1,δ, u2,δ (recall that each of these three vertices is the
end-vertex of two distinct paths with 7+3δ vertices). In this case however the addition of the two
extra vertices causes the creation of one crossing. Thus the final drawing is 1-planar and the total
number of crossings is at most 7 (see Figure 10(c)). This concludes the proof for n ≥ 7.

If n = 6 we construct a 1-planar packing of three paths with three crossings in total as shown
in Figure 6(b). 2

The construction of Theorem 5 can be extended to three cycles.

Theorem 6 Three cycles with n ≥ 20 vertices can be packed into a 1-plane graph with at most 14
edge crossings.

Proof: Suppose first that n ≡ 2 (mod 3). In this case, we partition the set V of the n vertices
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in two groups V1 and V2 of size 7 + 3δ and 7 + 3λ, with δ, λ ≥ 1. We compute a 1-planar packing
of G1 and a 1-planar packing of G2 as described in the proof of Theorem 5, so to obtain three
edge-disjoint paths for each Gi (i = 1, 2) with 7+ 3δ and 7+ 3λ vertices respectively. Each Gi has
6 crossings and is embedded so that each path has both end-vertices on the external face (each
of the three vertices of the external face is the end-vertex of two distinct paths). We create a
1-planar packing of three cycles with n vertices by connecting the two end-vertices of each path in
G1 with the two end-vertices of a path in G2. This requires the addition of six edges that can be
embedded so to form two crossings (see Figure 11(a)). Thus, the total number of crossings in the
final 1-planar packing is 14.

Note that, if δ or λ are equal to 0, the technique of Theorem 5 produces a 1-planar packing of
G1 or G2 like the one shown in Figure 6(a). In this case, the property that each path has both
end-vertices on the external face does not hold. Thus, our technique does not work for δ or λ equal
to 0.

In the cases when n ≡ 0 (mod 3) or n ≡ 1 (mod 3), we proceed in a way similar to the previous
case. If n ≡ 0 (mod 3), we create two 1-planar packings G1 and G2 with 7+3δ and 7+3λ vertices
(δ, λ ≥ 1) leaving out one vertex. When G1 and G2 are connected to create the 1-planar packing of
three cycles we also add the missing vertex as shown in Figure 11(b). Similarly, if n ≡ 1 (mod 3)
we create two 1-planar packings G1 and G2 leaving out two vertices, and then we connect G1 and
G2 to create the 1-planar packing of three cycles by adding the two missing vertices as shown in
Figure 11(c). Also in these cases, when connecting G1 and G2 we have two additional crossings
and a total of 14 crossings in the final 1-planar packing. 2

6 From Triples to Quadruples

In this section we extend the study of 1-planar packings from triples of graphs to quadruples of
graphs. By Property 1, a 1-planar packing of four graphs does not exist if all graphs are connected,
because the number of edges of the four graphs is higher than the number of edges allowed in a 1-
planar graph. We consider therefore a quadruple consisting of three paths and a perfect matching.
Notice that, in this case the number of vertices n has to be even.

Theorem 7 Three paths and a perfect matching with n ≥ 12 vertices admit a 1-planar packing.
If n ≤ 10, the quadruple does not admit a 1-planar packing.

Proof: Three paths and a perfect matching have a total of 3(n− 1) + n
2 = 7n

2 − 3 edges. Since a
1-planar graph has at most 4n− 8 edges, a 1-planar packing of three paths and a perfect matching
exists only if 7n

2 −3 ≤ 4n−8, i.e., if n ≥ 10. If n = 10, we have 7n
2 −3 = 32 and 4n−8 = 32, which

means that any 1-planar packing of three paths and a perfect matching with n = 10 vertices is an
optimal 1-planar graph. It is known that every optimal 1-planar graph has at least eight vertices
of degree exactly six [1]. On the other hand, in any 1-planar packing of three paths and a perfect
matching all vertices, except the at most six end-vertices of the three paths, have degree seven,
which implies that a 1-planar packing of three paths and a perfect matching does not exist.

We now prove that a 1-planar packing exists if n ≥ 12. All instances having 12 ≤ n ≤ 22
are pictorially proved by Figure 12. Concerning the remaining cases (i.e., n ≥ 24) we proceed as
follows. Based on the fact that in any 1-planar packing of three paths and a perfect matching at
least n − 6 vertices have degree seven, we construct the desired 1-planar packing starting from a
1-planar graph G such that at least n − 6 vertices have degree at least seven; we then partition
the edges of G into five sets; three of these sets form a spanning path each, the fourth one forms
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(a) n = 12 (b) n = 14

(c) n = 16 (d) n = 18

(e) n = 20 (f) n = 22

Figure 12: 1-planar packing of three paths and a perfect matching.
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Figure 13: (a) Graph G′ used in the proof of Theorem 7 (n = 8h, h = 3). (b)–(e) 1-planar packings
of three paths and a perfect matching obtained starting from G′.
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a perfect matching, and the fifth one contains edges that will not be part of the 1-planar packing.
For every n = 8h and h ≥ 3 it is possible to construct a 1-planar graph with n vertices each
having degree at least seven as follows. We start with h − 1 cycles C1, C2, . . . , Ch−1. Each cycle
Ci (1 ≤ i ≤ h− 1) has eight vertices vi,j with 0 ≤ j ≤ 7. Cycle Ci, for 1 ≤ i ≤ h− 2, is embedded
inside cycle Ci+1 and is connected to it with edges (vi,j , vi+1,j) for each 0 ≤ j ≤ 7. We have a cycle
with four vertices u0, u1, u2, u3 embedded inside C1 and connected to it with edges (uj , v1,2j) and
(uj , v1,2j+1). Finally, we have a cycle with four vertices w0, w1, w2, w3 embedded outside Ch−1 and
connected to it with edges (wj , vh−1,2j) and (wj , vh−1,2j+1). The graph G′ described so far has
n vertices, is planar, all its vertices have degree four, and each vertex is incident to at most one
face of size three (see Figure 13(a)). By adding two crossing edges inside each face of size four, we
obtain a 1-planar graph G with n vertices where each vertex has degree at least seven. The graph
G and the partition of the edges of G in five sets defining three paths and a matching is shown in
Figure 13(b). If n is not a multiple of 8, then it will be n = 8h + r, with 0 < r < 8 and r even
(because n is even). In this case we construct G′ as explained above and then we extend the paths
u0, v1,1, . . . , vh−1,1 and u1, v1,2, . . . , vh−1,2 to the left with 1, 2 or 3 vertices each; we then suitably
rearrange the edges of G′. The graph G is then obtained, as in the previous case, by adding a pair
of crossing edges inside each face of size four. The resulting graph G and a partition of its edges in
five sets defining three paths and a matching is shown in Figures 13(c), 13(d), and 13(e), for the
cases when r = 2, r = 4, and r = 6, respectively. 2

7 Conclusions and Open Problems

We find that the 1-planar packing problem is a fertile and still largely unexplored research subject.
We conclude the paper with a list of open problems.

� Theorems 1 and 2 show that not all triples admit a 1-planar packing if at most one of the
three trees is a path. This motivated us to study triples when two of the trees are paths. On
the other hand, the result of Theorem 2 holds only for n = 7. It is natural to ask whether
two caterpillars, or even two more complex trees, and a path can always be packed if they
have more than 7 vertices.

� In Section 4, we proved that two paths and a 5-legged caterpillar always admit a 1-planar
packing (provided that they satisfy Property 1). A natural open problem is to extend Theo-
rem 4 to general caterpillars. As already explained in Section 4, our technique, based on the
leaf addition operation, cannot be extended to work with less than five leaves.

� In Section 5, we proved that seven crossings are sufficient for a 1-planar packing of three
paths, and that fourteen crossings are sufficient for a 1-planar packing of three cycles. Is it
possible to compute a 1-planar packing of three paths or cycles with the minimum number of
crossings (three and six, respectively)? Can we compute 1-planar packings with few crossings
for triples of other types of trees?

In Section 6, we studied the 1-planar packing problem by considering quadruples of graphs
consisting of three paths and a perfect matching. It would be interesting to investigate what
happens if one considers a different number of paths and perfect matchings. In this direction,
we report some preliminary observations: (i) Two paths and four perfect matchings do not
admit a 1-planar packing, since they have 4n− 2 edges (recall that a 1-planar graph has at
most 4n− 8 edges [15]); (ii) two paths and three perfect matchings have 7

2n− 2 edges, hence
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they may admit a 1-planar packing if n ≥ 12; (iii) one path and six perfect matchings do
not admit a 1-planar packing, since they have 4n − 1 edges; (iv) one path and five perfect
matchings have 7

2n− 1 edges, hence they may admit a 1-planar packing if n ≥ 14.

� We also point at the more general research direction of extending the packing problem to
other families of beyond planar graphs [3].
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