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Abstract. We study the planar orthogonal drawing style within the framework of
partial representation extension. Let (G,H,ΓH) be a partial orthogonal drawing, i.e.,
G is a graph, H ⊆ G is a subgraph, ΓH is a planar orthogonal drawing of H, and |ΓH |
is the number of vertices and bends in ΓH .

We show that the existence of an orthogonal drawing ΓG of G that extends ΓH

can be tested in linear time. If such a drawing exists, then there is also one that uses
O(|ΓH |) bends per edge. On the other hand, we show that it is NP-complete to find
an extension that minimizes the number of bends or has a fixed number of bends per
edge.

1 Introduction

One of the most popular drawing styles are orthogonal drawings, where vertices are represented
by points and edges are represented by chains of horizontal and vertical segments connecting their
endpoints. Such a drawing is planar if no two edges share an interior point. An interior point
of an edge where a horizontal and a vertical segment meet is called a bend. The main aesthetic
criterion for planar orthogonal drawings is the number of bends on the edges.

A large body of literature is devoted to optimizing the number of bends in planar orthogonal
drawings. The complexity of the problem strongly depends on the particular input. If the com-
binatorial embedding can be chosen freely, then it is NP-complete to decide whether there exists
a drawing without bends [18]. If the input graph comes with a fixed combinatorial embedding,
then a bend-optimal drawing that preserves the given embedding can be computed efficiently by
a classical result of Tamassia [27]. A recent trend has been to investigate under which conditions
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Figure 1: An instance of the partial representation extension problem (G,H,ΓH) is given. The
graph H is solid black and the edges of E(G) \ E(H) are dashed red. (a) (G,H,ΓH) admits a
planar extension, but not an orthogonal extension. (b) (G,H,ΓH) admits an orthogonal extension
with no bends (c) An orthogonal representation of G (the curved part of the dashed edge has no
bends) that extends the description of the solid black drawing of H. There exists no drawing of G
with this representation that extends the given drawing of H.

the variable-embedding case becomes tractable. For maxdeg-3 graphs a bend-optimal drawing can
be computed efficiently [10], which has recently been improved to linear time [12]. The problem
is also FPT with respect to the number of degree-4 vertices [11], and if one discounts the first
bend on each edge, an optimal solution can be computed even for individual convex cost functions
on the edges [4, 5]. We refer to the survey [13] for further references. In light of this popularity
and the existence of a strongly developed theory, it is surprising that planar orthogonal drawings
have not been investigated within the framework of partial representation extension. Especially
so, since it has been considered in the related context of simultaneous representations [1].

In the partial representation extension problem, the input graph G comes together with a
subgraph H ⊆ G and a representation (drawing) ΓH of H. One then seeks a drawing ΓG of G that
extends ΓH , i.e., whose restriction to H coincides with ΓH . The partial representation extension
problem has recently been considered for a large variety of different types of representations. For
planar straight-line drawings, it is NP-complete [26], whereas for topological drawings there exists
a linear-time algorithm [2], as well as a characterization via forbidden substructures [19]. Moreover,
it is known that, if a topological drawing extension exists, then it can be drawn with polygonal
curves such that each edge has a number of bends that is linear in the complexity of ΓH [6]. Here
the complexity of ΓH is the number of vertices and bends in ΓH . Most recently the problem
has been investigated in the context of 1-planarity [14]. Besides classical drawing styles, it has
also been studied for contact representations [7] and for geometric intersection representations,
e.g., for (proper/unit) interval graphs [20, 22], chordal graphs [21], circle graphs [8], and trapezoid
graphs [24].

In this paper, we provide an in-depth study of partial representation extension problems for the
planar orthogonal drawing style. Since the aesthetics are of particular importance for the quality
of such a drawing, we put a major emphasis on extension questions in relation to the number
of bends. It is worth noting that even the seminal work of Tamassia [27] already mentions the
idea of preserving the shape of a given subgraph by maintaining its orthogonal representation, i.e.,
a description of the angles around each vertex and the directions of the bends along each edge,
via modifications in his flow network. However, this approach only preserves the shape of the
subgraph as described by an orthogonal representation, and not necessarily its drawing. Fig. 1
shows that there are partial planar orthogonal drawings that can be extended in a planar way, but
not orthogonally (Fig. 1a). We also provide an example that can be extended orthogonally while
maintaining planarity (Fig. 1b). Moreover, even if an orthogonal representation OG of G preserves
a given orthogonal representation OH of a drawing ΓH of H, as in the formulation of Tamassia, a
planar drawing ΓG of G realizing OG that extends ΓH does not necessarily exist (Fig. 1c).
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Contribution and Outline. After presenting preliminaries in Section 2, we give a linear-time
algorithm for deciding the existence of an orthogonal drawing extension in Section 3. Then, we
consider the realizability problem, where we are given an orthogonal extension in the form of
a suitable planar embedding, and we seek an orthogonal drawing extension that optimizes the
number of bends. Along the lines of a result by Chan et al. [6], we show that there always exists
an orthogonal drawing extension such that each edge has a number of bends that is linear in the
complexity of ΓH in Section 4. We complement these findings in Section 5 by showing that it
is NP-hard to minimize the number of bends and NP-complete to test whether there exists an
orthogonal drawing extension with a fixed number of bends per edge.

2 Preliminaries

We call the circular clockwise ordering of the edges around a vertex v in an embedding the rotation
at v. Let G = (V,E) be a simple undirected graph and let H ⊆ G be a subgraph. We refer to the
vertices and edges of H as H-vertices and H-edges, respectively. Similarly, we refer to the vertices
of V (G) \ V (H) and to the edges of E(G) \ E(H) as G-vertices and G-edges, respectively. We
denote |ΓH | by the number of vertices and bends in ΓH . For a connected graph, the facial walk of
a face is the closed walk that consists of all the vertices and edges incident to the face.

Let (G,H,ΓH) be a triple composed of a graph G, a subgraph H ⊆ G, and a planar orthogonal
drawing ΓH of H. We denote by RepExt(ortho) (RepExt stands for representation extension)
the problem of testing whether G admits a planar orthogonal drawing ΓG that extends ΓH . In
ΓH , we say that an H-edge is attached to one of the four ports (top, bottom, left, right) of its end
vertices. If there is no H-edge attached to a port of a vertex, then this port is free; note that the
free ports are those at which the G-edges can be attached in ΓG. For two H-edges e and e′ that
are consecutive in the rotation at a vertex v in ΓH , we denote by PH(e, e′) = k the fact that there
exist exactly k free ports of v when moving from e to e′ in clockwise order around their common
endvertex. For example, in Fig. 2(c), the left and right ports are free, while the others are not, and
we have PH(e1, e2) = 1 and PH(e2, e1) = 1. We call PH(e, e′) = k a port constraint, and we denote
by PH the set of all port constraints in ΓH . Note that, for a vertex v with rotation e1, . . . , eh in
ΓH , with h ≤ 4, we have

∑h
i=1 PH(ei, ei+1) = 4− deg(v), where we define eh+1 := e1.

We now show that to solve an instance (G,H,ΓH) of the RepExt(ortho) problem, it suffices
to only consider the port constraints determined by ΓH together with the embedding EH of H
in ΓH . More specifically, we prove the following characterization, which could also be deduced
from [1].

Theorem 1 Let (G,H,ΓH) be an instance of RepExt(ortho). Let EH be the embedding of H
in ΓH , and let PH be the port constraints induced by ΓH . Then, (G,H,ΓH) admits an orthogonal
drawing extension if and only if G admits a planar embedding EG that extends EH and such that,
for every port constraint PH(e, e′) = k, there exist at most k G-edges between e and e′ in the
rotation at v in EG, where v is the common vertex of the H-edges e and e′.

Proof: One direction is trivial; namely, if there exists an orthogonal drawing ΓG of G that extends
ΓH , then the embedding of G in ΓG satisfies the two properties by construction. Suppose now
that there exists an embedding EG of G that satisfies the two properties. Since EG is planar and
extends EH , we can route each G-edge uv as an arbitrary curve, while respecting the rotation at u
and v in EG, without crossing any other edge. Also, the fact that EG satisfies the port constraints
in PH implies that, for each G-edge uv, we can assign free ports of u and v to uv, in such a way
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Figure 2: Gadgets for H-vertices.

that no port is assigned to more than one edge. Thus, by approximating the curve representing
each G-edge uv with an orthogonal polyline, it is possible to construct an orthogonal drawing
of G extending ΓH . Note that in Theorem 5 we will prove that this can even be done by using
orthogonal polylines with a limited number of bends. □

In view of Theorem 1, we define a new problem, called RepExt(top+port), which is linear-
time equivalent to RepExt(ortho). Here, top stands for topological drawing, i.e., one in which
edges are represented as Jordan arcs. An instance of this problem is a 4-tuple (G,H, EH ,PH) and
the goal is to test whether G admits an embedding EG that satisfies the conditions of Theorem 1. In
order to unify the terminology, we also refer to the Partially Embedded Planarity problem studied
in [2] as RepExt(top). Recall that an instance of this problem is a triple (G,H, EH), and the goal
is to test whether G admits an embedding EG that extends EH . As proved in [2], RepExt(top)
can be solved in linear time.

3 Testing Algorithm

In this section, we show that RepExt(ortho) can be solved in linear time. By Theorem 1,
it suffices to prove that RepExt(top+port) can be solved in linear time. The algorithm is
based on a linear-time reduction to RepExt(top), which is known to be linear-time solvable [2].
Namely, starting from an instance (G,H, EH ,PH) of RepExt(top+port), we construct an in-
stance (G′, H ′, EH′) of RepExt(top) that admits a solution if and only if (G,H, EH ,PH) does.

We start by initializing G′ = G, H ′ = H, and EH′ = EH . Then, for each vertex v such that
1 < degH(v) < degG(v), we modify the instance as described in the following; see Fig. 2.

Case 1: Suppose first that degH(v) = 3 and degG(v) = 4, and let e = vw be the unique G-edge
incident to v; refer to Fig. 2(a). Since degH(v) = 3, there exist exactly two H-edges e1 and e2
such that e1 immediately precedes e2 in the rotation at v in EH and PH(e1, e2) = 1. Note that,
to respect the port constraint, we have to guarantee that e is placed between e1 and e2 in the
rotation at v in EG. For this, we subdivide e with a new H ′-vertex w′, that is, we remove e from
G′, and we add the vertex w′ and the edges vw′ and w′w to G′. Also, we add w′ and vw′ to H ′,
and embed vw′ in between e1 and e2 in the rotation at v.

Case 2: Suppose now that degH(v) = 2 and degG(v) ≥ 3. Let e1 and e2 be the two H-
edges incident to v, and let e = vw and e∗ = vz be the at most two G-edges incident to v. We
distinguish two cases, based on whether PH(e1, e2) = 2 and PH(e2, e1) = 0 (or vice versa), or
PH(e1, e2) = PH(e2, e1) = 1.

Case 2.a: If PH(e1, e2) = 2, then we need to guarantee that both e and e∗ (if it exists) are
placed between e1 and e2 in the rotation at v in EG; refer to Fig. 2(b). For this, we remove e and
e∗ from G′, and we add a new vertex w′ and the edges vw′, w′w, and w′z to G′. Also, we add w′
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and vw′ to H ′, and insert vw′ between e1 and e2 in the rotation at v in EH′ . Note that, if e∗ does
not exist, this is the same procedure as in the previous case.

Case 2.b: If PH(e1, e2) = PH(e2, e1) = 1, then we have to place e and e∗ (if it exists) with
respect to the path composed of the edges e1 and e2; refer to Fig. 2(c). Note that, if e∗ does not
exist, then e can be on any of the two sides of this path, and thus in this case we do not perform
any modification. If e∗ exists, then we just have to guarantee that e and e∗ lie on different sides
of the path. For this, we subdivide e, e∗, e1, and e2 with a new vertex each, that is, we remove
these edges from G′ (e1 and e2 also from H ′), and we add four new vertices w′, z′, w′

1, and w′
2

to G′. Also, we add to G′ the edges vw′, vz′, vw′
1, and vw′

2, and the edges w′w, z′z, w′
1w1, and

w′
2w2, where w1 and w2 are the endpoints of e1 and e2, respectively, different from v. Further, we

add the edges w′w′
1, w

′
1z

′, z′w′
2, and w′

2w
′ to G′. Finally, we add the vertices w′

1 and w′
2, and the

edges vw′
1, w

′
1w1, vw

′
2, and w′

2w2 also to H ′; in EH′ , we place w′
1w1 and w′

2w2 in the rotations at
w1 and at w2, respectively, in the same position as e1 and e2, respectively, in EH . The rotations at
v, w′

1, and w′
2 in EH′ do not need to be set, since each of these vertices has at most two incident

H ′-edges. The above construction leads to the following lemma.

Lemma 1 The instance (G′, H ′, EH′) has an embedding extension if and only if (G,H, EH ,PH)
has an embedding extension satisfying the port constraints.

Proof: Suppose that (G′, H ′, EH′) admits an embedding extension, and let EG′ be the corre-
sponding embedding of G′. We construct an embedding EG of G that determines an embedding
extension of (G,H, EH ,PH) satisfying the port constraints, as follows. Let v be any vertex of G.
By construction, v is also a vertex of G′.

Suppose first that all the neighbors of v in G′ also belong to G, that is, none of the described
modifications has been applied to v. By construction, this is the case only if v satisfies the conditions
of neither Case 1 nor Case 2, or if it satisfies the condition of Case 2.b, but edge e∗ does not exist.
In the former case, we have that in (G,H, EH ,PH) either there exists no G-edge incident to v, or
there exists at most one H-edge incident to v. If there exists no G-edge incident to v, the rotation
at v in EH′ is the same as the one in EH , and there exists no port constraint at v. On the other
hand, if there exists at most one H-edge incident to v, there exists no port constraint at v in PH ,
by definition, and every rotation at v in EG trivially extends the rotation at v in EH . Thus, in this
case, we set the rotation at v in EG to be the same as the one in EG′ . In the latter case, when Case
2.b applies but edge e∗ does not exist, we already argued that any rotation at v in EG satisfies the
port constraints and extends the rotation at v in EH , so we can again set the rotation at v in EG
to be the same as the one in EG′ .

Suppose then that there exists exactly one neighbor of v in G′ that does not belong to G. Then,
by construction, this neighbor of v is the vertex w′ that we introduced in one of the first two cases
we described above. Namely, either it holds that degH(v) = 3 and degG(v) = 4, or it holds that
degH(v) = 2, degG(v) ≥ 3, PH(e1, e2) = 2, and PH(e2, e1) = 0, where e1 and e2 are the H-edges
incident to v. In both cases, we obtain the rotation at v in EG by contracting the edge vw′, and by
merging the rotations at v and at w′ in EG′ . This guarantees that the rotation at v in EG extends
the rotation at v in EH and that the port constraint PH(e1, e2) = 1 (resp. PH(e1, e2) = 2) at v is
satisfied, since the edge vw (resp. the edges vw and vz) appears between e1 and e2 in EG.

Suppose finally that there exists more than one neighbor of v in G′ that does not belong to
G. Then, by construction, degG′(v) = 4, and the four neighbors of v in G′ are the ones that
we introduced in Case 2.b when e∗ exists. Namely, v is incident to two H-edges e1 and e2, and
PH(e1, e2) = PH(e2, e1) = 1. Observe that, since the subgraph of G′ induced by the vertices
v, w′, z′, w′

1, and w′
2 is triconnected, the vertices w′, w′

1, z
′, w′

2 appear in the rotation at v in EG′
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either in this order or in its reverse. In the former case (the latter being analogous), we set the
rotation at v in EG so that w,w1, z, w2 appear in this order. This trivially extends the rotation at
v in EH , since degH(v) = 2, and guarantees that the port constraints at v are satisfied, since w
and z use non-consecutive ports of v.

We further observe that, due to our transformation, the cycles in H bijectively correspond
to the cycles in H ′, and that a vertex lies inside a cycle in EH if and only if it lies inside the
corresponding cycle in EH′ . Together with the above discussion, this implies that EG extends EH ,
since EG′ extends EH′ . Finally, since G′ contains G as a minor, the fact that EG′ is a planar
embedding implies that EG is a planar embedding, which concludes the proof of this direction.

The proof for the other direction is analogous. In fact, given a planar embedding EG of G that
is a solution for the instance (G,H, EH ,PH), we can construct a planar embedding EG′ of G′ that
determines an embedding extension of (G′, H ′, EH′), as follows.

Let v be any vertex of G′. If v is also a vertex of G and all the neighbors of v in G′ also belong
to G, then we can set the rotation at v in EG′ to be the same as the one in EG, as discussed above.
To cover all the other cases (either v or at least one of its neighbors is not a vertex of G), it is
enough to consider the three cases in the construction we described above.

In the first two cases, the fact that EG satisfies the port constraint PH(e1, e2) = 1 (resp.
PH(e1, e2) = 2) implies that vw (resp. both vw and vz) appears between e1 and e2 in the rotation
at v in EG. Thus, inserting vw′ in the rotation at v in EG′ in the same position as vw (resp. both
vw and vz) in the rotation at v in EG yields a rotation at v in EG′ that extends the one at v in
EH′ . The same trivially holds for the rotation at w′, since degH′(w′) = 1.

In the last case, when v is incident to two H-edges e1 and e2, and PH(e1, e2) = PH(e2, e1) = 1,
the fact that EG satisfies the port constraints implies that the vertices w,w1, z, w2 appear in the
rotation at v in EG either in this order or in its reverse. In both cases, it is possible to set the
rotations at v, w′, w′

1, z
′, w′

2 in EG′ so that the triconnected subgraph induced by these vertices is
embedded according to its unique planar embedding, and all the vertices of G′, except for v, lie
outside of the cycle induced by w′, w′

1, z
′, w′

2. Note that each of these five vertices is incident to
at most two H ′-edges, and thus every of its rotations in EG′ trivially extends the one in EH′ . This
concludes the proof of the lemma. □

Theorem 2 The RepExt(top+port) problem can be solved in linear time.

Proof: Given an instance I = (G,H, EH ,PH) of RepExt(top+port), we construct the instance
I ′ = (G′, H ′, EH′) of RepExt(top) that has linear size as described above. This takes O(1) time
per vertex, and hence total linear time. By Lemma 1, I has a solution if and only if I ′ has one.
Since the existence of a solution of I ′ can be tested in linear time [2], the statement follows. □

As a consequence of Theorems 1 and 2, we conclude the following.

Theorem 3 The RepExt(ortho) problem can be solved in linear time.

4 Realizability with Bounded Number of Bends

In this section we prove that, if there exists an orthogonal drawing extension for an instance
(G,H,ΓH) of RepExt(ortho), then there also exists one in which the number of bends per edge
is linear in the complexity of the drawing ΓH . By subdividing H at the bends of ΓH , we can assume
that ΓH is a bend-free drawing of H. To achieve the desired edge complexity, it then suffices to
show that O(|ΓH |) bends per edge suffice. This result can be considered as the counterpart for the
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orthogonal setting of the one by Chan et al. [6] for the polyline setting. In their work, in fact, they
show that a positive instance (G,H,ΓH) of the RepExt(top) problem can always be realized
with at most O(|V (H)|) bends per edge when ΓH is a planar straight-line drawing of H.

Our approach follows the algorithm given in [6], with a main technical difference which is
due to the peculiar properties of orthogonal drawings. Their algorithm first constructs a planar
supergraph G′ of G that is Hamiltonian using a method of Pach et al. [25, Lemma 5]. The main step
of the algorithm of Chan et al. [6] involves the contraction of some edges of G′ [6, Lemma 3]. This
operation identifies the two end-vertices of the contracted edge and merges their adjacency lists.
However, both the construction of the supergraph G′ and the contractions may produce vertices of
degree greater than 4, which implies that the resulting graph does not admit an orthogonal drawing
any longer. As such, these operations are not suitable for the realization of orthogonal drawings.
In order to overcome this problem, we consider instead the Kandinsky model [16], which extends
the orthogonal drawing model to also allow for vertices of large degree. Once the drawing has
been computed, we remove the previously added parts and by adding a small amount of additional
bends on the G-edges, we arrive at a orthogonal drawing of the initial graph G. More specifically,
we prove the following theorem.

Theorem 4 Let (G,H,ΓH) be an instance of RepExt(ortho). Suppose that G admits a planar
orthogonal drawing ΓG that extends ΓH , and let EG be the embedding of G in ΓG. Then we can
construct a planar Kandinsky drawing of G in O(n2)-time, where n is the number of vertices of G,
that realizes EG, extends ΓH , and has at most 192|ΓH | bends per edge.

An overview of the algorithm to construct the desired Kandinsky orthogonal drawing Γ∗
G of G,

whose main steps follow the method in [6], is given below.

Step 1: Consider a face F of ΓH with facial walks W1,W2, . . . ,Wk. Construct an ε-approximation
of F and let W ′

i be the orthogonal polygon that approximates Wi, 1 ≤ i ≤ k. Let F ′ be
the face bounded by the approximated boundary components of F ; refer to Lemma 2, and
to Fig. 3b.

Step 2: Partition F ′ into rectangles [15] and construct a graph K by placing a vertex at the center
of each rectangle and by joining the vertices of adjacent rectangles. Let T be a spanning
tree of K. For each facial walk Wi, add a new vertex near Wi as a leaf of T (see Fig. 3c).

Step 3: Construct the multigraph GF induced by the vertices lying inside or on the boundary of
F and by contracting each facial walk of F to a single vertex. Then draw GF along T .
Now, reconstruct the edges of G \H and the edges between GF and other components of
G inside F . Refer to Lemma 6 and to Fig. 4.

Let Γ∗
G be the resulting Kandinsky orthogonal drawing and we then transform Γ∗

G into an orthog-
onal drawing ΓG of G with O(|ΓH |) bends per edge that extends ΓH . An illustration is given in
Fig. 8.

To prove Theorem 4, we first need a couple of tools and we present those tools as lemmas before
delving into the actual proof of the theorem.

Since the embedding of G is fixed, it is enough to consider a face F of ΓH and prove Theorem
4 for that particular face. We first show how to construct an inner ε-approximating orthogonal
polygon for each facial walk of F using a technique similar to the one from [6]. We adopt the
definition of an inner ε-approximation of a facial walk from [6] which is defined as follows. Let W1

be the outer facial walk of a face F andW2, . . . ,Wk be inner facial walks. An inner ε-approximation
of Wi is a simple polygon Pi (a closed polygonal arc with no self-intersections) such that:
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W2 W3

W2 W3

W1(a) (b) W1 W1(c)

W2 W3

Figure 3: (a) A face with outer walk W1 and, inner facial walks W2 and W3. (b) An approximation
F ′ of F . (c) A face and a corresponding tree T .

1. Pi is ε-close to Wi, that is, every point of Pi is within distance ε of a point of Wi and
vice-versa,

2. the inner facial walk Wi lies in the interior of Pi if 2 ≤ i ≤ k, and

3. the outer facial walk W1 lies in the exterior of P1.

Lemma 2 Let W be a facial walk in a face F of an orthogonal drawing of a graph G in the plane.
An inner ε-approximating orthogonal polygon Pε of W can be constructed in O(|W |) time so that
Pε has at most max{4, |W |+ l} vertices, where l is the number of degree-1 vertices in W .

Proof: If W is an isolated vertex v, then approximate W with a square of side length
√
2ε centered

at v. Next, assume that W contains more than one vertex. We consider each vertex of degree 1
in W as a sequence of two degree-2 vertices that are connected by an infinitesimally short edge
that forms a 270◦-angle with the single edge incident to v inside F . Consider a corner e, v, e′ of
W , where e and e′ are two consecutive edges and v is their shared vertex. Let α denote the angle
formed by e and e′ inside F . We choose v′ as the point on the angular bisector of α in side F at
distance ε from v. If (vi)

k
i=1 is the sequence of vertices in W , then by joining (v′i)

k
i=1, we get an

orthogonal polygon that ε-approximates W . □

We now prove two auxiliary lemmas, which follow the structure of Lemmas 5 and 6 in [6].
Assume that G is a Hamiltonian graph with Hamiltonian cycle C. Lemma 3 provides a method to
draw the edges of C, assuming that the vertex locations are fixed. Lemma 4 explains how to draw
the remaining edges of G.

Lemma 3 Let C be a cycle with fixed vertex locations, and suppose we are given a planar orthog-
onal drawing of a tree T with no bends, in which the vertices of C are leaves of T at their fixed
locations. Then for every ε > 0 there is a planar Kandinsky drawing of C with at most 3|E(T )|
bends per edge and ε-close to T .

Proof: Let p1, . . . , pn be the vertices of the cycle C in order. To construct a planar poly-line
drawing of C, Lemma 5 of [6] explains a method as follows. First of all, n ε-approximations
θi(1 ≤ i ≤ n) of the given drawing of T are constructed, using Lemma 2. For 1 ≤ j ≤ n − 1,
we denote by Qj the unique path in T from Pj to Pj+1 and we denote Ti by the collection of all
paths Qj for j ≤ i. If a vertex v of Ti is incident to an edge that is not in Ti, then the edge e is
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Figure 4: (a) An orthogonal drawing of a tree T together with approximations θi along T (b)
A planar orthogonal drawing of the Hamiltonian cycle C with respect to T (c) The edge p3p5 is
drawn using approximations of T .

replaced from θi to get θ′i by approximating v with adjacent vertices v1 and v2 which lies on the
edge bisector of e with adjacent edges (An example can be seen in Fig. 4 (b). The vertex p3 is not
a part of Q1 and hence the edge adjacent to it is replaced with an edge bisector in Q′

1).
In order to draw the edges of C, we follow the same method explained above by constructing

an (iε/n+1)-approximation θi of the given orthogonal drawing of T using Lemma 2, for 1 ≤ i ≤ n,
and by routing the edges of C through the corresponding θ′i’s. An example given in Fig. 4 (a)-(c)
illustrates how an edge is drawn along T using the approximations θi.

Here, note that each edge of C is replaced with a part of an approximation of θi and θi has
at most 3|E(T )| edges. Hence each edge of C is replaced with an orthogonal arc that has at most
3|E(T )| bends. □

Lemma 4 Let G be a Hamiltonian multigraph with a given planar embedding and fixed vertex
locations. Suppose we are given an orthogonal drawing of a tree T with no bends, whose leaves
include all the vertices of G at their fixed locations. Then for every ε > 0 there is a planar
Kandinsky drawing of G so that

1. the drawing is ε-close to T,

2. the drawing realizes the given embedding,

3. the vertices of G are at their fixed locations,

4. every edge has at most 6|E(T )| bends, and

5. every edge comes close to any leaf of T at most twice, and only does so by terminating at or
bending near the leaf.
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Proof: We closely follow Lemma 6 of [6] to construct a planar poly-line drawing of G, which
works as follows. Using Lemma 5 of [6], a planar poly-line drawing of C with respect to the given
drawing of T is constructed. Next, m approximations ∆i,k of θ′i are constructed using Lemma 2,
for each 1 ≤ i ≤ n and 1 ≤ k ≤ m, where m = |E(G)|. By using the fact that ∆i,k crosses C twice;
once when it traverses from pi to θ′i+1 and from θ′n to p1; the ∆i,k is cut into two pieces. Then
the endpoints are joined with pi and p1 to get two curves ∆′

i,k and ∆′′
i,k. Note that one of the

curves lies inside C, while the other lies outside. To route an edge pipj , the path concatenating
the straight-line polygons ∆′

i,k and ∆′
j,k is used. To construct a planar Kandinsky drawing of

G, we continue in a similar manner. First, we route the edges of the Hamiltonian cycle C using
Lemma 3 and then route the remaining edges by creating additional approximations of the curves
θ′i. Here, corresponding to an edge at most 6E(T ) bends are introduced, since an edge pipj is a
concatenation of two approximations ∆′

i,k and ∆′
j,k. An example shown in Fig. 5(a)-(c) depicts

the procedure of drawing an edge through the approximations ∆i,k.

p1
p3

p5

p4 p2

∆3,k

∆5,k

p1
p3

p5

p4 p2

∆3,k

∆5,k

(a) (b)

Figure 5: The edge p3p5 is drawn. (a) The polygons ∆3,k and ∆5,k are drawn in gray color. (b)
The edge p3p5 is drawn in red color using parts of ∆3,k and ∆5,k.

□

Now, in order to make the given graph Hamiltonian, we use the following result by Pach and
Wenger [25].

Lemma 5 (Pach, Wenger [25]) For a planar graph G, a Hamiltonian planar graph G′ with
|E(G′)| ≤ 5|E(G)| − 10 can be constructed from G by subdividing and adding edges in linear time.
The construction is such that each edge of G is subdivided by at most two new vertices.

Next, we assume that a planar embedding of the graph G together with a set of vertices U ⊆ V (G)
is given, where every element of U has a fixed location. The next lemma shows a method to route
the edges of G by converting it into a Hamiltonian graph and then contracting the edges if at least
one of its endpoint is not U . Finally, we undo the edge contractions to obtain a drawing of the
original graph G.
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Figure 6: The graph G′
u.

Lemma 6 Let G be a multigraph with a given planar embedding and fixed locations for a subset U
of its vertices. Suppose we are given a planar orthogonal drawing of a tree T with no bends, whose
leaves include all the vertices in U at their fixed locations. Then for every ε > 0 there is a planar
Kandinsky drawing of G so that

1. the drawing is ε-close to T ,

2. the drawing realizes the given embedding,

3. the vertices in U are at their fixed locations, and

4. each edge has at most 18|V (T )| bends and comes close to each vertex u in U at most 6 times,
where coming close to u means intersecting an ε-neighborhood of u. Furthermore, any edge
that comes close to u will either terminate at u or enter the ε-neighborhood of u, bend at a
point in this ε-neighborhood, and then leave it.

Proof: From a given graph G, construct a Hamiltonian graph G′ with a Hamiltonian cycle C by
subdividing each edge of G at most twice, and by adding some edges using Lemma 5. We traverse
through C and whenever we encounter an edge e that has at least one endpoint not in U , then we
contract e. Continue this process to get a multigraph G′′ with a Hamiltonian cycle C ′ such that
V (G′′) = U .

Now, using Lemma 4, find a planar Kandinsky drawing Γ′′ for G′′ with respect to T . Fix a
vertex u ∈ V (G′′) and let Vu be the vertices of G that have been contracted into u. Next, we
have to draw the subgraph Gu = G′[Vu] and route the edges that connect vertices from Vu to
V (G′) \ Vu. To draw Gu, construct a small disk around u in Γ′′. Since Γ′′ is a planar Kandinsky
drawing, we can partition the neighborhood NG′′(u) of u in G′′ into four sets Vi, for i = 1, . . . , 4,
depending on the side of u to which its edge attaches in clockwise order. Now, let G′

u = (V ′, E′)
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with V ′ = Vu ∪NG′′(u) ∪ {u1, u2, u3, u4} and E′ = E(Gu) ∪ {u1u2, u2u3, u3u4, u4u1} ∪ {uix : x ∈
Vi for 1 ≤ i ≤ 4} ∪ {yui : there exists an edge yx in G′ with x ∈ Vi and y ∈ Vu} (see Fig. 6).

Note that G′
u is a planar multigraph and hence it has a Kandinsky drawing Γu with at most

two bends on each edge that can be computed in linear time [16]. Using Γu we can route the edges
that connect Vu and Vi by ignoring the vertex ui. Thus we get a Kandinsky drawing of G′ with at
most 6|E(T )| + 2 bends per edge (using Lemma 4 and the two extra bends that are added while
reconstructing Gu). Since each edge of G is subdivided at most twice to get G′, each edge of G
has 3(6|E(T )| + 2) = 18|E(T )| + 6 < 18|V (T )| bends. In addition, since each edge of G′ comes
close to a leaf of T at most twice, an edge of G comes close to a vertex of U at most six times. □

Now, we have all the required tools to prove Theorem 4.

4.1 Proof of Theorem 4:

Let F be a face of ΓH . Let Wi : 1 ≤ i ≤ a be facial walks inside F with isolated vertices and
let Wi, a + 1 ≤ i ≤ a + b, be facial walks inside F that involve more than one vertex. Construct
an inner ε-approximation F ′ of F using Lemma 2 and let W ′

i denote the orthogonal polygon that
approximates Wi. Since |Wi| ≥ 2 and by Lemma 2, |W ′

i | ≤ max{4, |Wi| + li} ≤ |Wi| + 2 + li,
where li is the number of degree-1 vertices in Wi and a + 1 ≤ i ≤ a + b. So we have |F ′| ≤
a∑

i=1

|Wi|+
a+b∑

i=a+1

(|Wi|+2+ li) = a+2b+
a+b∑

i=a+1

|Wi|+
a+b∑

i=a+1

li ≤ a+2b+
a+b∑

i=a+1

|Wi|+ |ΓH | (This is

Step 1 as explained in the overview of the algorithm). Now, partition F ′ into rectangles using at
most n/2 + h− 1 rectangles in time O(n3/2 log n) [15], where n is the number of vertices and h is
the number of holes. So in our case, the number of rectangles will be

1
2 |F

′|+a− 1 ≤ 1
2 (a+2b+

a+b∑
i=a+1

|Wi|+ |ΓH |)+a− 1 = 1
2

a+b∑
i=a+1

|Wi|+ 1
2 (3a+2b)− 1+ 1

2 |ΓH |. Place

a vertex at the center of each rectangle. Construct a graph K by joining the vertices of adjacent
rectangles (we call two rectangles adjacent if they share one side) if the line segment joining the
respective centers lies inside F ′. Note that K is a connected graph. Let T be a spanning tree of

K. Then T has 1
2

a+b∑
i=a+1

|Wi|+ 1
2 (3a+ 2b)− 1 + 1

2 |ΓH | vertices.

Also, we can find a no-bend planar orthogonal drawing of T that adds at most two new vertices
to each edge of T as follows. We consider two adjacent rectangles R1 and R2 with their respective
centers c1 and c2. We start from c1 and by spending zero bend, we reach line containing the shared
segment between R1 and R2 and we add a vertex u there at the meeting point. We also draw a
perpendicular line from c2 to S and add a new vertex v at the intersection. From u, we can reach
v and from v to c2 using no bends.

Now, for each facial walk Wi : 1 ≤ i ≤ a (that are isolated vertices), add the corresponding
isolated vertex as a leaf to T . For each facial walk Wi : a+ 1 ≤ i ≤ a+ b, add a new vertex near
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Figure 7: The vertex v2 is incident to T . We route the edges e and f through the newly created
buffer zone between W ′

2 and W2
′′ and the edges incident to W2 are routed through W2

′′ and W2.

to Wi as a leaf of T . This adds a+ b vertices to T and now, the number of vertices of T is

|V (T )| = a+ b+
1

2

a+b∑
i=a+1

|Wi|+
1

2
(3a+ 2b)− 1 +

1

2
|ΓH |

+ 2

(
1

2

a+b∑
i=a+1

|Wi|+
1

2
(3a+ 2b) +

1

2
|ΓH | − 1

)

=
3

2

a+b∑
i=a+1

|Wi|+
1

2
(11a+ 8b) +

3

2
|ΓH | − 3

(This concludes Step 2 in the overview of the algorithm).

Construct the multigraph GF induced by the vertices lying inside or on the boundary of F , by
contracting each facial walk of F to a single vertex. Draw GF along T using Lemma 6. Note that
the vertices corresponding to facial walks (inside F ) are drawn at fixed locations. Here, each edge
of GF has at most 18|V (T )| bends.

Now, we reconstruct the edges between GF and the non-isolated boundary components of F ,
following the same method as in Theorem 1, [6]. That is, by creating a buffer zone in between F ′

and F , the above mentioned edges are routed through the zone (see Figure 7). This adds at most
|Wi|+ 5 bends for each edge.

Next, we have to add the edges of G \H that belong to F according to the given embedding
EG of G. By Lemma 4, an edge can come close at most six times to a vertex in U and thus an edge
needs at most 6(|Wi| + 5) = 6|Wi| + 30 bends to go around Wi. So altogether there are at most

6
a+b∑

i=a+1

|Wi| + 30b bends along the whole edge to go around all the W ′
i s. Since we started with

18|V (T )| bends (Lemma 4) for each edge, this number increased to at most 6
a+b∑

i=a+1

|Wi| + 30b +

18|V (T )|. Thus the total number of bends per edge can be calculated as follows.
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u
u

u u u
u

Figure 8: Re-routing the edges incident to a vertex u in the Kandinsky drawing ΓK
G to obtain the

orthogonal drawing ΓG.

6

a+b∑
i=a+1

|Wi|+ 30b+ 18|V (T )| ≤ 6

a+b∑
i=a+1

|Wi|+ 30b

+ 18

(
3

2

a+b∑
i=a+1

|Wi|+
1

2
(11a+ 8b) +

3

2
|ΓH | − 3

)

≤ 33

a+b∑
i=a+1

|Wi|+ 99a+ 102b+ 27|ΓH | − 54

≤ 33× 2|ΓH |+ 99× |ΓH |+ 27|ΓH | since
a+b∑

i=a+1

|Wi| ≤ 2|ΓH | and a+ 2b ≤ |ΓH |[6]

≤ 192|ΓH |

Finally, by introducing a few more bends per edge, we can transform the Kandinsky drawing
produced in Theorem 4 into an orthogonal drawing. This leads to the following theorem.

Theorem 5 Let (G,H,ΓH) be an instance of RepExt(ortho). Suppose that G admits an or-
thogonal drawing ΓG that extends ΓH , and let EG be the embedding of G in ΓG. Then we can
construct a planar orthogonal drawing of G in O(n2)-time, where n is the number of vertices of G,
that realizes EG, extends H, and has at most 200|ΓH | bends per edge.

Proof: We first create a planar Kandinsky drawing ΓK
G of the given graph G using Theorem 4.

Let u be a vertex of G. Since G has an orthogonal drawing, we have that deg(u) ≤ 4. Note that,
in ΓK

G , some of the edges incident to u may be attached to the same port. Our goal is to change
the port to which some of the edges are attached, in such a way that every edge is attached to
a different port, while respecting the rotation at u in EG. Note that we only reroute G-edges,
as H-edges have a fixed drawing and therefore no two H-edges can attach to the same port of a
vertex. Since ΓG is an orthogonal drawing extension, EG satisfies the port constraints, and such a
rerouting can be achieved as illustrated in Fig. 8. Note that this adds at most four bends at each
endpoint of an edge, and thus adds at most eight bends per edge.

Applying this operation to all the vertices of G yields a planar orthogonal drawing ΓG of G that
realizes EG, extends H, and has at most 200|ΓH | bends per edge (at most twice four additional
bends on each edge). □



JGAA, 25(1) 581–602 (2021) 595

a b c d
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Figure 9: A representation of an instance of monotone planar 3-SAT with four variables a, b, c, d and
four clauses c1, c2, c3, c4 (a). Image of the vertically-stretched version of (a) under the mapping Φ
(b).

5 Bend-Optimal Extension

In this section we study the problem of computing an orthogonal drawing extension of an instance
I = (G,H,ΓH) of RepExt(ortho) with the minimum number of bends. Observe that, if H is
empty, this is equivalent to computing a bend-minimal drawing of G, which is NP-complete if the
embedding of G is not fixed [17]. We thus assume that G comes with a fixed planar embedding EG
that satisfies the port constraints of ΓH , and we study the complexity of computing a bend-optimal
drawing ΓG of G with embedding EG that extends ΓH .

Here, we specifically focus on the restricted case where V (H) = V (G) and E(H) = ∅, which
we call Orthogonal Point Set Embedding with Fixed Mapping. We show that, even in
this case, it is NP-hard to minimize the number of bends on the edges. On the positive side, we
show that in this case the existence of a drawing that uses one bend per edge can be tested in
polynomial time.

Theorem 6 Orthogonal Point Set Embedding with Fixed Mapping is NP-complete.

Proof: The problem is contained in NP, as it can be solved non-deterministically in polynomial
time as follows. First, we non-deterministically guess the positions and the directions of the bends
and use this information to subdivide the edges. Second, we non-deterministically guess for a
drawing the horizontal and vertical order of the vertices (including the information which of them
are aligned). This combinatorially fixes the orthogonal drawing, and we can then test in polynomial
time whether there exists a drawing with the given vertex order.

To show NP-hardness, we give a reduction from the NP-complete problem monotone planar
3-SAT [9]. In this variant of 3-SAT, the variable–clause graph is planar and has a layout where the
variables are represented by horizontal segments on the x-axis, the clauses by horizontal segments
above and below the x-axis, and each variable is connected to each clause containing it by a vertical
segment. Moreover, the clauses above the x-axis contain only positive literals and the clauses below
contain only negative literals; see Fig. 9a.

A box is an axis-aligned rectangle whose bottom-left and top-right corners contain two H-
vertices, connected by a G-edge. We consider non-degenerate boxes, and thus this G-edge requires
at least one bend; when this edge is drawn with one bend, there is a choice whether it contains
the top-left or the bottom-right corner of the box. In these cases we say that the box is drawn top
and drawn bottom, respectively. We now describe our variable, pipe, and clause gadgets.
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a) b)

c) d)

Figure 10: Variable gadget with h = 4 boxes (a,b). In (a) the odd boxes are drawn top and the
even boxes are drawn bottom, (b) shows the opposite. Pipe gadget (c,d). In (c) all boxes are
drawn bottom, in (d) they are all drawn top. In all cases the base point is marked.

A variable gadget consists of h > 0 boxes R1, . . . , Rh that are 3× 3-squares, where the bottom-
left corner of Ri lies at b+(2(i−1), 2(i−1)), for an arbitrary base point o = (ox, oy); see Fig. 10a-b.
The crucial property is that in a one-bend drawing of the gadget, Ri is drawn bottom if and only
if Ri+1 is drawn top for i = 1, . . . , h− 1. Thus, in such a drawing, either all the odd boxes (those
with odd indices) are drawn top and all the even boxes (those with even indices) are drawn bottom,
or vice versa. This will be used to encode the truth value of a variable.

A (positive) pipe gadget works similarly; see Fig. 10c-d. For a base point o, it consists of
h > 0 boxes R1, . . . , Rh that are 3 × 3-squares such that the bottom-left corner of Ri lies at
o+(−2(i− 1), 2(i− 1)); see Fig. 10c-d. The decisive property is that in a one-bend drawing of the
gadget, if R1 is drawn bottom, then also all other boxes of the gadget can be drawn bottom (see
Fig. 10c), whereas if R1 is drawn top, then so must be all other boxes of the gadget (see Fig. 10d).
Negative pipe gadgets are symmetric with respect to the line y = x and behave symmetrically.

The last gadget we describe is the (positive) clause gadget ; negative clause gadgets are sym-
metric with respect to the line y = x and behave symmetrically. The positive clause gadget has
three input boxes R1, R2, R3, whose corners lie on a single line with slope 1; we assume that R1

lies left of R2, which in turn lies left of R3. To simplify the description, we assume that the left
lower corners of these rectangles lie at (x, x), (y, y), and (z, z), respectively. Refer to Fig. 11a.

We create three literal boxes L1, L2, L3 that are 3 × 3-squares. The lower left corner of L1 is
(x−3, y+2), the lower left corner of L2 if (y−2, y+2), and the lower left corner of L3 is (y, z+3).
Note that the interiors of L2 and R2 intersect in a unit square, and therefore, if R2 is drawn top,
then L2 must be drawn top, too, thereby encoding that the corresponding literal of the clause is
set to false. To obtain the same behavior for the other input and literal rectangles, we add two
transmission boxes T1 and T2. The lower left corner of T1 is (x−1, x+2) and its upper right corner
is (x + 1, y + 3). The bottom-left and top-right corner of T2 are (y + 2, z + 2) and (z + 1, z + 4),
respectively. This guarantees that, also for i = 1, 3, if Ri is drawn top, then Ti and Li are drawn
top. We finally have a blocker box B, with corners at (x− 1, z+4) and (x+1, z+7); and a clause
box, whose corners are in the centers of L1 and L3, respectively.

Note that the G-edge connecting the two corners of the clause box, which we call the clause
edge, requires at least two bends, as any one-bend drawing cuts horizontally through either the
blocker B or the literal square L2; see Fig. 11a. The following claim shows that the possibility
of drawing it with exactly two bends depends on the drawings of the literal boxes of the clause
gadget, and thus on the truth values of the literals; see Fig. 11b-c.

Claim 1 If the other edges are drawn with one bend, then the clause edge can be drawn with two
bends if and only if not all literal boxes are drawn top.
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Figure 11: Clause gadget with input rectangles R1, R2, R3. The bottom-left and top-right corner
of the clause box are drawn as crosses (a). The image of the triangle ∆C under the mapping
(x, y) 7→ (x− y, x+ y) is drawn gray. The possibilities of routing the clause edge with two bends,
if L3 is drawn bottom (b) and if L3 is drawn top and L2 is drawn bottom (c).

Proof: Suppose, for a contradiction, that the clause edge is drawn with two bends, but all three
literal boxes are drawn top. Then, starting from the center of L1, the clause edge must first
intersect the bottom or the right side of L1. If it intersects the bottom side, then it further consists
of a horizontal segment and a vertical segment that then ends at the center of L3. But then either
the horizontal segment cuts horizontally through T1, or the vertical segment cuts vertically through
R2. Both cases contradict the assumption that the drawing is without crossings. Hence we can
assume that the clause edge intersects the right side of L1. Since it cannot intersect the left side
of L2, there must be a bend on the segment between the centers of L1 and L2 that lies outside of
these two boxes. To reach the other endpoint of the clause edge with just one more bend, the next
segment has to be vertical and must end at the y coordinate of the endpoint of the clause edge
that lies inside the literal box L3. But then the last horizontal segment of the clause edge crosses
the literal edge of the box L3, which is drawn top by assumption.

On the other hand, we show that if at least one of L1, L2, L3 is not drawn top, then we can
draw the clause edge with two bends. Assume that L3 is drawn bottom. Depending on whether
the top-left or bottom-right corner of L1 is used, we can draw the clause edge as indicated by the
solid or the dashed curve in Fig. 11b. Note that this is independent of whether L2 is drawn top
or bottom. Now assume that L3 uses its top-left corner. If L1 is drawn bottom, we can draw the
clause edge as indicated by the solid curve in Fig. 11c. Finally, if both L1 and L3 use their top-left
corner, but L2 does not, we can route the clause edge as indicated by the dotted curve in Fig. 11c.

□

We are now ready to put the construction together. Consider the layout of the variable–clause
graph, where each variable x is represented by a horizontal segment sx on the x-axis, and each
clause C = (c1, c2, c3) with only positive (only negative) literals by a horizontal segment sC above
(below) the x-axis. Further, the occurrence of a variable x in a clause C is represented by a vertical
visibility segment sx,C that starts at an inner point of sx and ends at an inner point of sC ; see
Fig. 9a. We call these points attachment points. By suitably stretching the drawing horizontally,
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we may assume that all segments start and end at points with integer coordinates divisible by 8.
We also stretch the whole construction vertically by a factor of n, which guarantees that for each
clause segment sC the right-angled triangle ∆C , whose long side is sC and that lies above sC
(below sC if C consists of negative literals) does not intersect any other segments in its interior.
Note that the initial drawing fits on a grid of polynomial size [23], and the transformations only
increase the area polynomially. For the construction it is useful to consider this representation
rotated by 45◦ in counterclockwise direction and scaled by a factor of

√
2 back to the grid. This is

achieved by the affine mapping Φ: (x, y) 7→ (x− y, x+ y); see Fig. 9b.
For each variable segment sx with left endpoint (a, 0) and right endpoint (b, 0) we create a

variable gadget with h = (b− a)/2 boxes and base point (a, a). For each clause segment sC above
the x-axis with attachment points (a1, b), (a2, b), (a3, b), we create a positive clause gadget with
input boxes at (ai − b, ai + b). For each vertical segment sx,C above the x-axis with attachment
points (a, 0) and (a, b), we create a positive pipe gadget of h = (b/2) − 2 boxes at base point
(a− 2, a− 2). Note that, together with the box of the variable gadget of x at (a, a) and the input
box of C at (a− b, a+ b), the newly placed boxes form a pipe gadget that consists of h+ 2 boxes.
Since distinct vertical segments on the same side of the x-axis have horizontal distance at least 8,
the boxes of distinct pipes do not intersect, and the placement is such that only the first and last
box of each pipe gadget intersect boxes that belong to the corresponding variable or clause gadget.
Finally note that for each clause C, except for the input boxes, the clause gadget lies inside the
image of the triangle ∆C under the mapping Φ, since the attachment points are interior points of
sC , and the x-coordinates of its endpoints are divisible by 8. Hence, the only interaction of the
clause gadget with the remainder of the construction is via the input variables. The proof of the
following claim is based on showing that we can draw each box with exactly one bend and each
clause edge with exactly two bends, if and only if the original instance of monotone planar 3-SAT
is satisfiable.

Claim 2 Let φ be an instance of monotone planar 3-SAT, with γ clauses. Also, let β be the
number of boxes in the instance (G,H,ΓH) of RepExt(ortho) constructed as described above.
Then, the formula φ is satisfiable if and only if the instance (G,H,ΓH) admits an extension with
at most k = β + γ bends.

Proof: Assume we are given a satisfying assignment of φ. For each variable, we draw the odd
boxes bottom and the even boxes top if the variable is assigned value true, and the other way
around if it is false. For each clause C, let x be a variable that satisfies it. We discuss the case that
C contains only positive literals, the case that it only contains negative literals is symmetric. We
draw C in such a way that the input box of x is drawn bottom and all other input boxes are drawn
top. We draw the boxes of the pipe gadget that connects x to C bottom, and the remaining pipe
gadgets that connect to other variables to C top. Note that the latter cannot cause crossings, and
the former do not cause a crossing, since it only intersects with an odd box of the variable gadget
of x, which is drawn bottom since x is true. By Claim 1, the clause edge of C can be drawn with
two bends. Altogether, we obtain a crossing-free orthogonal drawing ΓG of the instance that has
β + γ bends (one bend per box, and one additional bend per clause).

Conversely, assume that there exists a drawing ΓG with β + γ bends. Recall that each box
requires at least one bend, and each clause edge requires at least two bends. It follows that each
clause edge is drawn with two bends, and that each edge of the remaining gadgets is drawn with
one bend. We now assign a variable x the value true if and only if its odd boxes are drawn bottom.
Let C be a clause with only positive literals; the case with only negative literals is symmetric.
Since the clause edge of C is drawn with two bends, it follows that at least one of the input boxes
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Figure 12: Gadget for forcing an edge to use k = 4 bends. All vertices and the thin solid black
lines are H-vertices. Up to minor geometric adjustments, the thick blue and dotted red lines show
the only two ways to draw the G-edge between the two H-vertices u and v with k bends. Scaling
the lower left part to make it sufficiently small results in a construction that behaves like a box.

is drawn bottom. Then all boxes of the corresponding pipe are also drawn bottom, and therefore
an odd box of the corresponding variable is also drawn bottom. Hence the variable is true and C
is satisfied. □

Since the construction has polynomially many vertices and edges on a polynomial size grid, it
can be executed in polynomial time. Moreover, by construction, V (H) = V (G), E(H) = ∅, and
E(G) is a matching. The statement of the theorem follows. □

We observe that the graph in the reduction of Theorem 6 is a matching, and therefore also
requiring a fixed embedding would not make the problem easier. We further observe that the
non-clause G-edges require one bend, and the clause edge require two bends, each. Hence, by
subdividing each non-clause G-edge with a G-vertex, and each clause edge with two G-vertices, we
get the following corollary.

Corollary 1 It is NP-complete to decide whether a partial orthogonal drawing (G,H,ΓH) admits
an extension without bends.

Similarly, we can ask whether an instance (G,H,ΓH) admits an extension with at most k bends
per edge for a fixed number k. The construction depicted in Fig. 12 shows how to force an edge
to use k bends for any fixed number k. By making the part that enforces the first k − 1 bends
sufficiently small, we essentially obtain the behavior of the box gadget from the proof of Theorem 6.

Corollary 2 For any fixed k ≥ 2, it is NP-complete to decide whether an instance (G,H,ΓH) of
RepExt(ortho) admits an extension that uses at most k bends per edge, even if V (G) = V (H).

On the positive side, if all vertices are predrawn, the existence of an extension with at most k
bends per edge can be tested efficiently for k = 0 and k = 1.

Theorem 7 Let (G,H,ΓH) be an instance of RepExt(ortho) with V (G) = V (H) and let k ∈
{0, 1}. It can be tested in polynomial time whether (G,H,ΓH) admits an extension with at most k
bends per edge.

Proof: For k = 0 we simply draw each G-edge as the straight-line segment between its endpoints,
and check whether this is a crossing-free orthogonal drawing.
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For k = 1 we proceed as follows. While there exists a G-edge e = uv whose endpoints have
the same x- or the same y-coordinates, we do the following. If e must be drawn as a straight-line
(if u and v have the same x- or the same y-coordinates), the instance (G,H,ΓH) is equivalent
to the instance (G,H ′,Γ′

H), where H ′ is obtained from H by adding e, and Γ′
H is obtained from

inserting e as a straight-line segment. By applying this reduction rule, we eventually arrive at
an instance (G′′, H ′′,Γ′′

H) such that the endpoints of each G-edge have distinct x- and distinct
y-coordinates. Now for each such edge, there are precisely two ways to draw them with one bend.
It is then straightforward to encode the existence of choices that lead to a planar drawing into a
2-SAT formula. □

6 Conclusions

In this paper we studied the problem of extending a partial orthogonal drawing. We gave a linear-
time algorithm to test the existence of such an extension, and we proved that if one exists, then
there is also one whose edge complexity is linear in the size of the given drawing. On the other
hand, we showed that, if we also restrict the total number of bends or the number of bends per
edge, then deciding the existence of an extension is NP-complete.

Concerning future work we feel that the most important questions are the following:

1. The complexity of 200|ΓH | bends per edge resulting from the transition to orthogonal draw-
ings is significantly worse than the one of 72|V (H)| bends per edge in the case of arbitrary
polygonal drawings [6]. Can this number be significantly reduced to, say, less than 100|ΓH |?

2. As mentioned in the introduction, Tamassia [27] already observed that an orthogonal repre-
sentation of H can be efficiently extended to an orthogonal representation of G. However,
drawing such an extension may require to modify the drawing ΓH of the given subgraph. Is
it possible to efficiently test whether a given orthogonal representation can be drawn such
that it extends a given drawing ΓH?
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[2] P. Angelini, G. Di Battista, F. Frati, V. Jeĺınek, J. Kratochv́ıl, M. Patrignani, and I. Rutter.
Testing planarity of partially embedded graphs. ACM Trans. Algorithms, 11(4):32:1–32:42,
2015. doi:10.1145/2629341.

[3] P. Angelini, I. Rutter, and S. T. P. Extending partial orthogonal drawings. In D. Auber and
P. Valtr, editors, Graph Drawing and Network Visualization - 28th International Symposium,
GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers, volume

https://doi.org/10.1007/978-3-319-50106-2_41
https://doi.org/10.1145/2629341


JGAA, 25(1) 581–602 (2021) 601

12590 of Lecture Notes in Computer Science, pages 265–278. Springer, 2020. doi:10.1007/

978-3-030-68766-3\_21.

[4] T. Bläsius, S. Lehmann, and I. Rutter. Orthogonal graph drawing with inflexible edges.
Comput. Geom., 55:26–40, 2016. doi:10.1016/j.comgeo.2016.03.001.

[5] T. Bläsius, I. Rutter, and D. Wagner. Optimal orthogonal graph drawing with convex bend
costs. ACM Trans. Algorithms, 12(3):33:1–33:32, 2016. doi:10.1145/2838736.

[6] T. M. Chan, F. Frati, C. Gutwenger, A. Lubiw, P. Mutzel, and M. Schaefer. Drawing partially
embedded and simultaneously planar graphs. J. Graph Algorithms Appl., 19(2):681–706, 2015.
doi:10.7155/jgaa.00375.

[7] S. Chaplick, P. Dorbec, J. Kratochv́ıl, M. Montassier, and J. Stacho. Contact representations
of planar graphs: Extending a partial representation is hard. In D. Kratsch and I. Todinca,
editors, Graph-Theoretic Concepts in Computer Science, pages 139–151, Cham, 2014. Springer
International Publishing. doi:10.1007/978-3-319-12340-0_12.

[8] S. Chaplick, R. Fulek, and P. Klav́ık. Extending partial representations of circle graphs.
Journal of Graph Theory, 91(4):365–394, 2019. doi:10.1002/jgt.22436.

[9] M. de Berg and A. Khosravi. Optimal binary space partitions for segments in the place.
International Journal of Computational Geometry & Applications, 22(03):187–205, 2012. doi:
10.1142/S0218195912500045.

[10] G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM
J. Comput., 27(6):1764–1811, 1998. doi:10.1137/S0097539794262847.

[11] W. Didimo and G. Liotta. Computing orthogonal drawings in a variable embedding setting. In
K.-Y. Chwa and O. H. Ibarra, editors, Algorithms and Computation, 9th International Sympo-
sium, ISAAC ’98, Taejon, Korea, December 14-16, 1998, Proceedings, volume 1533 of Lecture
Notes in Computer Science, pages 79–88. Springer, 1998. doi:10.1007/3-540-49381-6\_10.

[12] W. Didimo, G. Liotta, G. Ortali, and M. Patrignani. Optimal orthogonal drawings of planar
3-graphs in linear time. In S. Chawla, editor, Proceedings of the 30th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’20), pages 806–825. SIAM, 2020. doi:10.1137/1.

9781611975994.49.

[13] C. A. Duncan and M. T. Goodrich. Planar orthogonal and polyline drawing algorithms. In
R. Tamassia, editor, Handbook on Graph Drawing and Visualization, pages 223–246. Chapman
and Hall/CRC, 2013.

[14] E. Eiben, R. Ganian, T. Hamm, F. Klute, and M. Nöllenburg. Extending Partial 1-Planar
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