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Abstract. The first algorithm to achieve linear-time performance searching for and
identifying a subgraph homeomorphic to K3,3 is due to Fellows and Kaschube. Part
of the proof of correctness depends on three cases of a straddling bridge of a subgraph
homeomorphic to K5 in an input graph. This paper presents a missing fourth case and
revises the algorithm with an additional K3,3 homeomorph isolator for the condition
corresponding to the missing case. This paper also discusses why the prior proof of
correctness missed the fourth case and presents a new proof of correctness showing that
there are no other missing cases.

1 Introduction

Given a graph G and a pattern graph P , a homeomorphic subgraph search algorithm seeks to find
a subgraph H of G that has the essential structure of P . Specifically, H and P are equivalent
except that some edges of P could be paths in H whose internal vertices are degree two, and
vice versa. While the general problem of homeomorphic subgraph search is challenging, there are
efficient algorithms for some pattern graphs, such as K2,3, K3,3, and K4 [1, 2, 4]. In particular,
the homeomorphic subgraph search algorithm by Fellows and Kaschube [4] was the first to achieve
linear-time performance for P = K3,3.

In a subgraph H homeomorphic to K3,3 or K5, the vertices of degree higher than two are called
image vertices, and each path in H that connects a pair of image vertices without including any
other image vertices is called a fundamental path. Degree-two vertices between the image vertices
of a fundamental path are called non-image vertices. As the Fellows-Kaschube algorithm isolates
a subgraph homeomorphic to K3,3, it identifies the image vertices, so it is reasonable to return
them, along with H, as a way to optimize applications that consume the output, especially when
processing billions or more graphs.

A challenge with the Fellows-Kaschube method is that there is a case for identifying a subgraph
homeomorphic to K3,3 that is missing from the proof of correctness and hence the algorithm. In
this missing case, a reasonable implementation is likely to still inadvertently identify a subgraph
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H homeomorphic to K3,3 based on a different case, but the image vertices of H would not match
the image vertices predicted by the proof of correctness for the different case. This paper con-
tributes the additional case as well as a proof that there are no others, thereby completing the
proof of correctness of the Fellows-Kaschube algorithm. This contribution also helps ensure that
implementations optimized to return the image vertices operate correctly. Section 2 presents as
preliminaries the pertinent aspects of the Fellows-Kaschube method. Section 3 presents the missing
case and a discussion of how it would be handled by a reasonable implementation, and then revises
the algorithm with a new handler for the missing case. Section 4 presents a proof that the revised
algorithm is complete due to there being no other missing cases as well as a discussion of why the
prior proof missed the case. Section 5 presents concluding remarks.

2 Preliminaries

An implementation of the Fellows-Kaschube method begins by applying a planarity algorithm,
such as [3], on a given biconnected graph G. The planarity algorithm produces either a planar
embedding of G, a subgraph homeomorphic to K3,3, or a subgraph homeomorphic to K5. The
Fellows-Kaschube method has the desired output result if the planarity algorithm result is a planar
embedding of G or a subgraph of G homeomorphic to K3,3, so further work is only performed if
the result is a subgraph homeomorphic to K5, which is denoted J . The Fellows-Kaschube method
examines the bridges of G that attach to the fundamental paths of J . A bridge is said to straddle
J if it attaches to vertices that do not lie on a single fundamental path. The proof of Theorem 1
in [4] asserts that “there are only three different ways a bridge of J can straddle J as shown in
Figure 2” [4, p. 281]. For each of the three ways of a bridge straddling J , the pattern for identifying
a subgraph homeomorphic to K3,3 is shown in Figure 2 of [4], an edited version of which appears
in Figure 1.

Figure 1: The three cases of a straddling bridge from Fellows and Kaschube [4]. The dotted paths
are not needed to form a subgraph homeomorhpic to K3,3.

In each case in Figure 1, the two partitions of the image vertices are (x1, x2, x3) and (y1, y2, y3),
and all image vertices except y1 are also image vertices of the subgraph J homeomorphic to K5.
In Figure 1(A), y1 is not in J and the straddling bridge attaches to three image vertices of J .
In Figures 1(B) and 1(C), y1 appears along a fundamental path p of J and the straddling bridge
containing y1 attaches to a second vertex of J that is not in p. In the absence of these three given
ways a bridge can straddle the K5 homeomorph J , Fellows and Kaschube assert that the search
for a subgraph homeomorphic to K3,3 can proceed under the assumption that “no bridge of J
straddles J” [4, p. 283].
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3 The Missing Case

There is an additional way that a bridge of J can straddle J that is irreconcilable with the cases
described in [4] and reviewed in Section 2. Figure 2 depicts the missing case. Figure 2(A) depicts
the unlabeled pattern, which shows the straddling bridge attaching to two non-image vertices of
two fundamental paths of J that do not share any image vertices. The missing case is distinct
from the case in Figure 1(A), which requires that the straddling bridge attaches to three image
vertices of J . The missing case is distinct from the case in Figure 1(B), which requires that the
straddling bridge attaches to at least one image vertex. The missing case is distinct from the case
in Figure 1(C) because, in that case, the straddling bridge attaches to two non-image vertices of
two fundamental paths of J that do share an image vertex (labeled x2).

Figure 2: The missing case of an additional straddling bridge configuration that results in a
subgraph homeomorphic to K3,3.

It is reasonable for implementations of the Fellows-Kaschube method to select one of the three
cases based on how many image vertices of J are included in the attachments of the straddling
bridge. Such implementations would classify the missing case in Figure 2 as an instance of the case
in Figure 1(C). Therefore, we examine how the K3,3 homeomorph isolator for Figure 1(C) would
process the straddling bridge configuration in Figure 2.

First, one of the non-image vertex attachment points of the straddling bridge is labeled y1,
and the two image vertices of J in the fundamental path containing y1 are labeled x1 and x2.
The paths [y1, . . . , x1] and [y1, . . . , x2] are marked for inclusion in the subgraph homeomorphic to
K3,3. Next, on the fundamental path containing the other non-image vertex attachment point of
the straddling bridge (not y1), one of the two image vertices on that fundamental path is labeled
x3 (see Figure 2(B)). Then, the path is marked from y1, through the straddling bridge, to the
other non-image vertex attachment point of the straddling bridge, and to x3. The remaining
two unlabeled image vertices of J are labeled y2 and y3. Figure 2(B) reflects the result after
the following additional paths are marked: [y2, . . . , x1], [y2, . . . , x2], [y2, . . . , x3], [y3, . . . , x1], and
[y3, . . . , x2].

So far, using the K3,3 homeomorph isolator from Figure 1(C) on the straddling bridge config-
uration in Figure 2 has worked. However, as shown in Figure 2(C), x3 does not become degree
when marking the final path [y3, . . . , x3] because it overlaps a portion of the path that was already
marked when marking the path [y1, . . . , x3]. Therefore, x3 does not become an image vertex in
the output. However, marking the path [y3, . . . , x3] does cause a subgraph homeomorphic to K3,3

to still be isolated because the straddling bridge attachment point, labeled x3′ in Figure 2(C), be-
comes another degree three vertex that, in lieu of x3, happens to have distinct marked paths to y1
(as part of marking [y1, . . . , x3]), y2 (due to marking [y2, . . . , x3] and part of marking [y3, . . . , x3]),
and y3 (as part of marking [y3, . . . , x3]).
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Any subgraph H homeomorphic to K3,3 that is isolated by applying the method from Fig-
ure 1(C) on the case in Figure 2 is notable not only because one of the image vertices is incorrect
but also because one of the image vertices from J is not in H. In all cases from [4] in Figure 1,
all five image vertices from the K5 homeomorph J are included in the subgraph homeomorphic
to K3,3 that is isolated. This prompts the question of whether it is possible to develop a new
K3,3 homeomorph isolator for the case in Figure 2 that would include all five image vertices of J .
Theorem 1 shows that it is not possible.

Theorem 1 If a straddling bridge B of J attaches only to two non-image vertices of two funda-
mental paths of J that do not share an image vertex of J , then no subgraph homeomorphic to K3,3

in B ∪ J can contain all five image vertices of J .

Proof: Assume that all five of the image vertices of J must be image vertices of a subgraph H
of B ∪ J that is homeomorphic to K3,3. Then only one of B’s attachment vertices to J can be
an image vertex of H because H has six image vertices. Since J is a subgraph homeomorphic
to K5, we can select without loss of generality the sixth image vertex to be the one labeled y1
in Figure 2(B). Due to the available path connections between y1 and other vertices in B ∪ J ,
the three image vertices of J in the opposing partition of H from y1 must be the ones labeled x1,
x2, and one of x3 or y3 in Figure 2(B). Furthermore, we can select the vertex labeled x3 as the
third vertex in the opposing partition of H from y1 because J is a K5 homeomorph. Therefore,
the last two image vertices of H must be the ones labeled y2 and y3 in Figure 2(B), and they can
be labeled as depicted without loss of generality. Based upon these labels, there are no options
for selecting the paths [y1, . . . , x1], [y1, . . . , x2], and [y1, . . . , x3] for H other than as depicted in
Figure 2(B). In particular, alternative paths in B ∪ J from y1 to x3 cannot be selected because a
fundamental path between two image vertices of H cannot internally contain other image vertices
of H. For the same reason, there are no options for selecting the paths [y2, . . . , x1], [y2, . . . , x2],
[y2, . . . , x3], [y3, . . . , x1], and [y3, . . . , x2] for H other than as depicted in Figure 2(B). Here we reach
a contradiction because there is no remaining way to select a path from y3 to x3 whose internal
vertices are distinct from the internal vertices of the previously selected paths and the other image
vertices of H. □

Due to Theorem 1, it is reasonable to develop a K3,3 homeomorph isolator for the case in
Figure 2 by simply unlabeling vertex x3 and relabeling x3′ to be x3, since it is the final image
vertex of the K3,3 homeomorph. However, it is notable that this isolation method is guaranteed
to produce an output containing seven or more vertices. This prompts the question of whether
every K3,3 homeomorph isolator for the case in Figure 2 must necessarily isolate a subgraph
homeomorphic to K3,3 containing at least seven vertices. Figure 3 shows that the answer is no
by showing an alternative K3,3 homeomorph isolator that produces an output containing only six
vertices if, within B ∪ J , each image vertex in the first partition of the K3,3 homeomorph is a
neighbor of each image vertex in the second partition. After unlabeling vertex x3 and relabeling
x3′ to be x3, the label y2 is moved to the unlabeled vertex (formerly labeled x3) so that the
fundamental path [y2, . . . , x3] is not required to contain an internal vertex. An additional point
about this alternative isolator is that one image vertex of the K5 homeomorph J , labeled z in
Figure 3, is neither an image vertex nor even included in the isolated K3,3 homeomorph.

When theK3,3 homeomorph isolator in Figure 1(C) is applied properly to the case that it solves,
it is notable that it is also guaranteed to produce an output containing seven or more vertices.
Theorem 2 shows that every K3,3 homeomorph isolator for the case in Figure 1(C) must necessarily
isolate a subgraph homeomorphic to K3,3 containing at least seven vertices. This establishes an
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Figure 3: An alternative K3,3 homeomorph isolator for the missing case. It outputs as few as six
vertices and excludes one image vertex of J .

additional point of differentiation between the case in Figure 1(C) from Fellows and Kaschube and
the new case in Figure 2, since the alternative isolator in Figure 3 can produce outputs having less
than seven vertices.

Theorem 2 If a straddling bridge B of J attaches only to two fundamental paths of J at non-
image vertices of J , denoted x and y, and the two fundamental paths share an image vertex of J ,
denoted z, then every subgraph homeomorphic to K3,3 in B∪J must contain at least seven vertices.

Proof: Assume, by contradiction, that B ∪ J contains a subgraph homeomorphic to K3,3 having
only six vertices. All vertices in B ∪ J have degree two except the seven vertices depicted in
Figure 1(C). At least one of x and y must be an image vertex of any subgraph homeomorphic to
K3,3 in B ∪ J because J only contains five vertices of degree greater than two. Therefore, for each
subgraph H homeomorphic to K3,3 in B ∪ J , first assume that only one of x and y is an image
vertex of H. Then, without loss of generality, H has the configuration depicted in Figure 1(C)
wherein the one of x or y is labeled y1. In this configuration, y1 (the one of x or y) is degree three,
and it only connects in B ∪ J to two image vertices of J and the other of x and y. Since the other
of x and y is assumed not to be an image vertex of H, then the other of x and y must be included
as a degree two vertex in a third fundamental path emanating from y1, which contradicts the
assumption that H has less than seven vertices. Therefore, for each subgraph H homeomorphic
to K3,3 in B ∪ J , assume that both x and y are image vertices of H. Since x and y have only
degree three, they must be in opposite partitions of H. Furthermore, both image vertices of J in
the fundamental path px containing x must be in the partition of H that contains y, and both
image vertices of J in the fundamental path py containing y must be in the partition of H that
contains y. Thus, we reach a contradiction because px and py share an image vertex z that cannot
be in both partitions of H, and so we must reject the original assumption that B ∪ J contains a
subgraph homeomorphic to K3,3 having only six vertices. □

4 No Other Missing Cases

The proof of Theorem 1 in [4] asserts but does not prove that “there are only three different ways
a bridge of J can straddle J ...” [4, p. 281]. To complete any case-based proof of correctness,
it is necessary not only to articulate the cases one can discern but also to prove that no other
undiscerned cases exist. Theorem 3 completes the proof of correctness of the revised Fellows-
Kaschube K3,3 search, i.e. the Fellows-Kaschube K3,3 homeomorphic subgraph search algorithm
as revised by inclusion of one of the two K3,3 homeomorph isolators in Section 3.
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Theorem 3 Let G = (V,E) be a biconnected graph with a subgraph J homeomorphic to K5. If a
bridge of J straddles J , then G has a subgraph homeomorphic to K3,3.

Proof: Given a bridge B of J that straddles J , we only need to consider how B attaches to two
fundamental paths since two fundamental paths are sufficient for demonstrating a subgraph home-
omorphic to K3,3. Furthermore, we can begin the analysis by considering only two attachments
from B to J , denoted x and y, one per fundamental path, denoted px and py, respectively.

Case 1 : If x and y are both image vertices of J , then they are insufficient by themselves to
establish that B is a straddling bridge of J because J is a K5 homeomorph that has a single
fundamental path connecting every pair of its image vertices. Therefore, if B is a straddling bridge
of J , then there must exist a third point of attachment, denoted y′, that attaches to a fundamental
path of J other than the one containing both x and y. As was shown in [4], if y′ is also an image
vertex of J , then a subgraph homeomorphic to K3,3 can be obtained by assigning x1 = x, x2 = y,
and x3 = y′ in Figure 1(A). The assignments can be in any order since J is a K5 homeomorph and
so its rendition can be rearranged into the canonical form depicted in Figure 1(A). On the other
hand, if y′ is not an image vertex of J , then B can be analyzed as an instance of Case 2 below by
replacing with y′ whichever of x and y attaches to the fundamental path containing y′.

Case 2 : If only one of x and y is an image vertex of J , then without loss of generality,
let x denote the image vertex. As was shown in [4], a subgraph homeomorphic to K3,3 can be
obtained by assigning x1 = x and y1 = y in Figure 1(B). Note that y may attach to any of the six
fundamental paths that do not contain x, but because J is a K5 homeomorph, the rendition of J
can be rearranged into the canonical form depicted in Figure 1(B) wherein x is at the top of the
diagram and the fundamental path containing y is on the lower left.

Case 3 : If neither of x and y is an image vertex of J and the two distinct fundamental paths
px and py share an image vertex, then a subgraph homeomorphic to K3,3 can be obtained, as was
shown in [4], by assigning x to the unlabeled vertex and letting y1 = y in Figure 1(C). Note that
x may attach to any of six fundamental paths that share one of the two image vertices with the
fundamental path containing y, but because J is a K5 homeomorph, the rendition of J can be
rearranged into the canonical form depicted in Figure 1(C).

Case 4 : If neither of x and y is an image vertex of J and the two distinct fundamental paths
px and py do not share an image vertex, then a subgraph homeomorphic to K3,3 can be obtained
as shown in Figure 3 by assigning x3 = x and y1 = y. Note that x may attach to any of three
fundamental paths that share no image vertices with the fundamental path containing y, but
because J is a K5 homeomorph, the rendition of J can be rearranged into the canonical form
depicted in Figure 3.

As a contradictive assumption, assume there exists a fifth case of a straddling bridge B that
attaches to J in a way that is distinct from the four above. B cannot attach to more than two
image vertices as that would not be distinct from one of the forms covered by Case 1. If B attaches
to exactly two image vertices of J , labeled x and y, then it is not a straddling bridge unless it also
attaches to a non-image vertex on a fundamental path that does not contain both x and y, but B
cannot attach to two image vertices and a non-image vertex of J because, ignoring the attachment
to one of x or y, that would not be distinct from the forms covered by Case 2. Therefore, assume
B attaches to at most one image vertex of J and any other attachments to J are to non-image
vertices. If B attaches to one image vertex y of J , then it is not a straddling bridge unless it also
attaches to a non-image vertex of J that is on one of the six fundamental paths of J that does
not contain y, but B cannot have such a non-image vertex attachment as that also would not be
distinct from the forms covered by Case 2. Therefore, assume that B attaches only to non-image
vertices of J . To be a straddling bridge, B must attach to more than one fundamental path of J ,
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and without loss of generality, we can consider the attachments of B to two distinct fundamental
paths of J since B attaches to two if it attaches to more than two. Similarly, without loss of
generality, we can consider only one of B’s attachments to each fundamental path. To be distinct
fundamental paths, the two fundamental paths can only share either one image vertex or zero
image vertices of J , but the fundamental paths cannot share one image vertex as that would not
be distinct from the forms covered by Case 3, and they cannot share zero image vertices as that
would not be distinct from the forms covered by Case 4. Given one of B’s attachment points x to
a non-image vertex of a fundamental path px, there are only nine other fundamental paths of J
that could contain the second of B’s non-image vertex attachment points, all of which are covered
by Cases 3 and 4. Therefore, we reach a contradiction of the assumption of a fifth case because B
cannot meet the definition of being a straddling bridge of J since it cannot attach to any image
vertices of J nor can it attach to the non-image vertices of two distinct fundamental paths.

The theorem then follows because, in each of the four and only four existing canonical cases in
which a bridge of J straddles J , a subgraph homeomorphic to K3,3 “with image vertices x1, x2, x3

and y1, y2, y3” [4, p. 281] can be extracted from G. □

It is useful to consider how the proof of Theorem 1 in [4] differs from the proof of Theorem 3
above. In the former proof, Figure 2 in [4] (see Figure 1) is referenced in the proof, so it is
reasonable to conclude that it provides an implicit proof by contradiction that there are no more
than three cases of a straddling bridge based on a bridge attaching to zero, one, or more than one
image vertex of J . While there are no other distinct cases for the number of image vertices to which
a straddling bridge can attach, it is important to align the case analysis in a proof by contradiction
with the definition of the phenomenon under scrutiny. Since the definition of a straddling bridge
B of J is based on B’s attachments to multiple fundamental paths of J , the case analysis must
include consideration of the configurations of the fundamental path attachments of B to J . For
Cases 1 and 2, the distinction made no difference because all alternative ways of attaching a
straddling bridge are isomorphic to the canonical forms in Figures 1(A) and 1(B). For Case 3, once
a fundamental path px is known for a first non-image vertex attachment x of B to J , there are nine
subcases to consider corresponding to each of the other fundamental paths in J that could contain
the second non-image vertex attachment of B to J . In the canonical form of Case 3 shown in
Figure 1(C), the two fundamental paths share an image vertex of J , but only six of the nine other
fundamental paths of J share an image vertex with px. Since the rearrangement operations for the
rendition B ∪ J – namely, rotation, flipping about the vertical axis, and swapping the positions of
two vertices – do not alter the fundamental paths of J , two fundamental paths that share no image
vertices before a rearrangement cannot share an image vertex after the rearrangement. Therefore,
Case 3 cannot cover the three subcases of fundamental paths that share no image vertex of J with
px. These three subcases are covered by the canonical form for Case 4 shown in Figure 3. More to
the point, in the latter proof, we are able to claim as fact that there are no other subcases because
the canonical forms for Cases 3 and 4 cover all nine possibilities for the second fundamental path.

5 Conclusion

In this paper, we have revised the Fellows-Kaschube algorithm for finding a subgraph homeomor-
phic toK3,3. A newK3,3 homeomorph isolator was added for a missing case of how a bridge of aK5

homeomorph J could straddle J , i.e. connect to more than one fundamental path of J . This case
was shown to be irreconcilable with original straddling bridge cases from Fellows and Kaschube [4].
A new proof of correctness in this paper shows that there are no other missing straddling bridge
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cases. Finally, we have shown the importance in general of explicitly proving assertions about
the number of distinct cases of a phenomenon and of carefully aligning the case analysis with the
definition of the phenomenon to help avoid drawing fallacious conclusions in case-based proofs.
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