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Abstract

Beyond-planarity focuses on combinatorial properties of classes of non-
planar graphs that allow for representations satisfying certain local geo-
metric or topological constraints on their edge crossings. Beside the study
of a specific graph class for its maximum edge density, another parameter
that is often considered in the literature is the size of the largest complete
or complete bipartite graph belonging to it.

Overcoming the limitations of standard combinatorial arguments, we
present a technique to systematically generate all non-isomorphic topo-
logical representations of complete and complete bipartite graphs, taking
into account the constraints of the specific class. As a proof of concept,
we apply our technique to various beyond-planarity classes and achieve
new tight bounds for the aforementioned parameter.
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1 Introduction

Beyond-planarity is an active research area concerned with combinatorial prop-
erties of non-planar graphs that somehow lie in the “neighborhood” of planar
graphs. More concretely, these graphs allow for non-planar drawings in which
certain geometric or topological crossing configurations are forbidden. The
most studied beyond-planarity graph classes, with early results dating back
to 60’s [13, 53], are the k-planar graphs [50], which forbid an edge to be crossed
more than k times, and the k-quasiplanar graphs [5], which forbid k mutually
crossing edges; for an illustration refer to Figs. 1a-1b.

More recently, several other graph classes have been suggested in the litera-
ture (see, e.g., [3, 9, 15, 24]), also motivated by cognitive experiments [42, 48]
indicating that the absence of certain types of crossings helps in improving the
readability of a drawing of a graph; for a survey, we point the reader to [32].
Some of the most studied such graph classes are:

– fan-planar graphs, in which no edge can be crossed by two independent edges
or by two adjacent edges from different directions [16, 17, 18, 43]; e.g., in the
left part of Fig. 1c the vertically drawn edge is crossed by two independent
edges, which is forbidden by fan-planarity, while in its right part the vertically
drawn edge is crossed by two edges from different directions, which is also not
allowed by fan-planarity,

– fan-crossing free graphs, in which no edge can be crossed by two adjacent
edges [23, 27]; e.g., in Fig. 1d the horizontally drawn edge is crossed by edges
incident to a common vertex (i.e., forming a fan), which is forbidden by fan-
crossing freeness,

– gap-planar graphs, in which each crossing is assigned to one of its two in-
volved edges, such that each edge can be assigned at most one crossing [15];
e.g., in Fig. 1e the horizontally drawn edge has been assigned two crossings
(represented as gaps), which is forbidden by gap-planarity, and

– RAC graphs, in which edge crossings occur only at right angles [30, 31, 33];
e.g., Fig. 1f illustrates a crossing between two edges that is not allowed since
the formed angle is clearly less than 90◦.

Two notable subclasses of 1-planar graphs are the IC-planar [8, 57] and NIC-
planar [56] graphs, in which the crossings are independent (i. e., no two pairs
of crossing edges share a vertex) and nearly independent (i. e., any two pairs of
crossing edges share at most one vertex), respectively. We also remark that if
one relaxes the second restriction in the definition of fan-planar graphs (i.e., the
one on the right part of Fig. 1c, which concerns the direction of the crossings),
then the resulting graph class is a proper super-class of the fan-planar graphs,
whose members are referred to as fan-crossing graphs [21, 22].

Furthermore, it is worth mentioning that all the aforementioned graph classes
are topological, i.e., each edge is represented as a simple curve, with the only
exception of the class of RAC graphs, which is a purely geometric graph class,
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(a) 1-planar (b) 3-quasiplanar (c) fan-planar

(d) fan-crossing free (e) gap-planar (f) RAC

Figure 1: Different forbidden crossing configurations.

i.e., each edge must be represented as a straight-line segment. In this work, we
refer to the aforementioned topological graph classes as beyond-planarity classes
of topological graphs.

A common characteristic of these graph classes is that their edge density is
at most linear in the number of vertices, e.g., 1-planar graphs with n vertices
have at most 4n − 8 edges [50]; the known density bounds for several graph
classes are provided in Table 1. Another common measure to determine the
extent of a specific class is the size of the largest complete or complete bipartite
graph belonging to it [15, 20, 28, 29], which also provides a lower bound on
their chromatic number [40] and has been studied in related fields (refer, e.g.,
to [12, 25, 19, 34, 35, 41, 54]).

For 1-planar graphs, Czap and Hudák [28] proved that the complete graph
Kn is 1-planar if and only if n ≤ 6, and that the complete bipartite graph Ka,b,
with a ≤ b, is 1-planar if and only if a ≤ 2, or a = 3 and b ≤ 6, or a = b = 4.
Analogous characterizations are known for the classes of IC-planar, NIC-planar
and RAC graphs. In fact, the complete graph Kn belongs to any of these classes
of graphs if and only if n ≤ 5 [30, 56, 57]. On the other hand, the complete
bipartite graph Ka,b, with a ≤ b, is IC-planar if and only if b ≤ 3 [56], and NIC-
planar or RAC if and only if a ≤ 2, or a = 3 and b ≤ 4 [29, 56]. For the classes
of 3-quasiplanar (also known as quasiplanar), gap-planar, and fan-crossing free
graphs, characterizations exist only for complete graphs, i.e., Kn is quasiplanar
if and only if n ≤ 10 [4, 20], gap-planar if and only if n ≤ 8 [15], and fan-crossing
free if and only if n ≤ 6 [27, 28]. We provide more details in Table 1.

To prove the “if part” of these characterizations, one has to provide a certifi-
cate drawing of the respective graph that respects the constraints of the specific
graph class. The proof for the “only if part” is generally more complex, as it
requires arguments to show that no such drawing exists.
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One of the main techniques is provided by the linear edge density of the
graph classes; e.g., K7 is neither 1-planar nor fan-crossing free, as it has more
than 4n− 8 edges [27, 50]. However, this technique has a limited applicability;
e.g., for 2-planar and fan-planar graphs, which have at most 5n−10 edges, it only
ensures that K9 is not a member of these classes. Proving that K8 is also not
a member requires a different approach. The limitations are even more evident
for complete bipartite graphs, as they are sparser than the complete ones.

Another technique consists of showing that the minimum number of crossings
required by any drawing of a certain graph (as derived by, e.g., the Crossing
Lemma [2, 6, 7, 47, 49] or closed formulas [39, 55]) exceeds the maximum number
of crossings allowed in the considered graph class. However, this technique only
applies to graph classes that impose such restrictions, such as the classes of
gap-planar and 1-planar graphs [14, 28].

Motivation. The difficulty in finding combinatorial arguments to prove that
certain complete or complete bipartite graphs do not belong to specific graph
classes often results in the need of a large case analysis on the different topo-
logical representations of the graph. Beside the proofs in [29, 44], we give in
the arXiv version [11] of this paper another example of a combinatorial proof
that, based on a tedious case analysis, yields a characterization of the complete
bipartite fan-crossing free graphs. The range of the cases in these proofs justifies
the need of a tailored approach to systematically explore them.

Our contribution. We suggest a technique to engineer the analysis of all
topological representations of a graph that satisfy certain beyond-planarity con-
straints. Our technique is tailored for complete and complete bipartite graphs,
as it exploits their symmetry to reduce the search space, by discarding equivalent
topological representations. However, it does not extend to classes of geometric
graphs (such as the RAC graphs), as it is strongly based on tools that build
upon the topology of the graph and not the actual geometry.

In Section 2 we introduce some preliminary definitions. In Section 3, we
present an algorithm to generate all possible representations of such graphs
under different topological constraints on the crossing configurations. Our al-
gorithm builds upon two key ingredients, which allow to drastically reduce the
search space. First, the representations are constructed by adding a vertex at
a time, directly taking into account the topological constraints, thus avoiding
constructing unnecessary representations. Second, at each intermediate step,
the produced drawings are efficiently tested for equivalence (up to a relabeling
of the vertices), which usually allows to discard a large number of them. Using
this algorithm, we derived characterizations for several classes of topological
graphs beyond planarity, as described in Section 4; Table 1 positions our results
with respect to the state of the art. In Section 5 we provide some statistics
about the computations we performed to obtain our results. Finally, we discuss
future directions in Section 6.
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Table 1: Overview of the known results, combining the previous literature with our
findings. For each class, we present the largest complete and complete bipartite graphs
that belong to this class (col. “∈”), and the smallest ones that do not (col. “/∈”), and
we indicate whether this follows from the literature (references) or from one of our
results (Characterization or Observation). Color gray indicates weaker results that
follow from other entries. For example, the fact that K3,19 is not 4-planar implies that
K4,19, K5,19, and K6,19 are not 4-planar, either.

complete complete bipartite

Class Density ∈ Ref. /∈ Ref. ∈ Ref. /∈ Ref.

IC-planar 13
4 n− 6 K5 [33, Fig.5] K6 [57, Prp.2.1] K3,3 [56, Cor.19]K3,4 [56, Cor.19]

NIC-planar 18
5 n−

36
5 K5 [56, Thm.7]K6 [56, Thm.7] K3,4 [56, Thm.9]K3,5 [56, Thm.9]

K3,4 K4,4 [56, Thm.9]

1-planar 4n− 8 K6 [28, Fig.1] K7 [50, Thm.1] K3,6 [28, Fig.2] K3,7 [28, Lem.4.2]
K4,4 [28, Fig.3] K4,5 [28, Lem.4.3]

2-planar 5n− 10 K7 [18, Fig.7] K8 Char.2 K3,10 [9, Lem.1] K3,11 [9, Lem.1]
K4,6 Char.3 K4,7 Char.3
K4,5 K5,5 Char.3 [44]

3-planar 11
2 n− 11 K8 Char.2 K9 Char.2 K3,14 [9, Lem.1] K3,15 [9, Lem.1]

K4,9 Char.4 K4,10 Char.4
K5,6 Char.4 K5,7 Char.4
K5,6 K6,6 Char.4

4-planar 6n− 12 K9 Char.2 K10 Char.2 K3,18 [9, Lem.1] K3,19 [9, Lem.1]
K4,11 Obs.5 K4,19

K5,8 Obs.5 K5,19

K6,6 Obs.5 K6,19

5-planar < 8.52n K9 Char.2 K10 Char.2 K3,22 [9, Lem.1] K3,23 [9, Lem.1]

fan-planar 5n− 10 K7 [18, Fig.7] K8 Char.6 K4,n [43, Fig.3] K5,5 Char.7
fan-crossing

fan-crossing 4n− 8 K6 [28, Fig.1] K7 [27, Thm.1] K3,6 K3,7 Char.9
free K4,6 Char.9 K4,7

K4,5 K5,5 Char.9

gap-planar 5n− 10 K8 [15, Fig.7] K9 [15, Thm.23] K3,12 [15, Fig.7] K3,14 [14, Thm.1]
K4,8 [15, Fig.9] K4,9 Obs.11
K5,6 [15, Fig.9] K5,7 [15]
K5,6 K6,6 [14, Thm.1]

RAC 4n− 10 K5 [33, Fig.5] K6 [30, Thm.1] K3,4 [29, Fig.4] K3,5 [29, Thm.2]
K3,4 K4,4 [29, Thm.2]

quasiplanar 13
2 n− 20 K10 [20, Fig.1] K11 [4, Thm.5] K4,n [43, Fig.3] –

K5,18 Obs.13 ?
K6,10 Obs.13 ?
K7,7 Obs.13 K7,52 [4, Thm.5]
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Figure 2: Illustration of (a) two pathways ρ1 (solid blue) and ρ2 (dashed blue) for u of
length 2, with destinations f1 and f2 (the crosses indicate dummy vertices of Γ). For
the class of 2-planar graphs, ρ1 is valid, while ρ2 is not valid, since in its presence the
bold drawn edge has three crossings; (b) an augmentation of Γ by edge (u, v), using
the valid pathway ρ1.

2 Preliminaries

We assume familiarity with standard definitions on planar graphs and drawings.
In this paper, we consider graphs containing neither multi-edges nor self-loops.
Let G = (V,E) be a graph. A drawing of G is a topological representation of
G in the plane R2 such that each vertex v ∈ V is mapped to a distinct point
pv of the plane, and each edge (u, v) ∈ E is drawn as a simple Jordan curve
connecting its endpoints pu and pv without passing through any other vertex.
Unless otherwise specified, we consider simple drawings, in which any two edges
intersect in at most one point, which is either a common endpoint or a proper
crossing. Hence, no two edges are allowed to cross twice (or more times), and no
two edges incident to the same vertex are allowed to cross. We note, however,
that the simplicity assumption may be not without loss of generality for some
of the graph classes; e.g., in the case of quasiplanar graphs [4].

A drawing without edge crossings is called planar. Accordingly, a graph that
admits a planar drawing is called planar. The planarization of a (non-planar)
drawing is the planar drawing obtained by replacing each of its crossings with a
dummy vertex. The dummy vertices are referred to as crossing vertices, while
the remaining ones (that is, the ones of the original drawing) as real vertices.
A planar drawing partitions the plane into connected regions, called faces; the
unbounded one is called outer face. The degree of a face is defined as the
number of edges on its boundary, counted with multiplicity. The dual of a
planar drawing Γ has a node for each face of Γ and an arc between two nodes
if the corresponding faces of Γ share an edge.

Let D be a drawing of a graph G and let Γ be its planarization. A half-
pathway for a vertex u in Γ is a path in the dual of Γ from a face incident to u
to some face in Γ, called its destination; see Fig. 2. The length of a half-pathway
is the number of edges in this path. A half-pathway ρ for u is valid with respect
to a beyond-planarity class C of topological graphs, if Γ can be augmented in
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(a)

1

2
3 4

56 7 8

(b)

1
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3 4

56 7 8

(c)

Figure 3: Different drawings of K5: The drawing of (a) is isomorphic neither to the one
of (b) nor to the one of (c), while the drawings of (b) and (c) are in fact isomorphic;
the colors of the vertices and the labels show the vertex and facial correspondences.

such a way that:

(i) a vertex v is placed in the interior of the destination of ρ,

(ii) edge (u, v) is drawn as a curve from u to v that crosses only the edges that
are dual to the edges in ρ, in the same order, and

(iii) drawing edge (u, v) in D with the same curve as in Γ, results in a simple
drawing that satisfies the restrictions of class C.

Accordingly, a pathway for an edge (u, v) is a half-pathway for vertex u in
Γ, whose destination is a face incident to vertex v. A valid pathway is defined
analogously, with the only difference that v is already part of Γ.

Another ingredient of our algorithm is an equivalence-relationship between
different drawings of a graph G. We say that two drawings D1 and D2 of G are
isomorphic [45] if there exists a homeomorphism of the sphere transforming D1

into D2; see Fig. 3 for an illustration. In other words, D1 and D2 are isomorphic
if D1 can be transformed into D2 by relabeling vertices, edges, and faces of D1,
and by moving vertices and edges of D1, so that at no time of this process
new crossings are introduced, existing crossings are eliminated, or the order of
the crossings along an edge is modified. To determine whether two drawings
are isomorphic, we make use of the following definition. A bijective mapping
between vertices, crossings, edges, and faces of the planarizations Γ1 and Γ2 of
D1 and D2 is valid if and only if the following two properties hold.

P.1 if an edge (v1, w1) is mapped to an edge (v2, w2) in Γ1 and Γ2, respectively,
and v1 is mapped to v2, then w1 is mapped to w2;

P.2 if a face f1 is mapped to a face f2 in Γ1 and Γ2, respectively, and an
edge e1 incident to f1 is mapped to an edge e2 incident to f2, then the
predecessor (successor) of e1 is mapped to the predecessor (successor) of
e2 when walking along the boundaries of f1 and f2 in clockwise direction.
Also, the face incident to the other side of e1 is mapped to the face incident
to the other side of e2.
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To see that Properties P.1 and P.2 are necessary and sufficient for D1 and D2 to
be isomorphic, observe that Property P.1 describes the relabeling of the vertices
and edges in the definition of isomorphism, Property P.2 describes the corre-
sponding relabeling of the faces, while the fact that the crossing configuration
is preserved during the transformation is guaranteed by the fact that Proper-
ties P.1 and P.2 hold on the planarizations of the original drawings. Note that
Property P.2 guarantees that two vertices are mapped to each other only if they
have the same degree.

We conclude this section by mentioning that several works (see, e.g., [1, 38,
52]) that generate simple drawings of complete graphs adopt a weaker definition
of isomorphism. Namely, two drawings D1 and D2 are weakly isomorphic [45], if
there exists an incidence preserving bijection between their vertices and edges,
such that two edges cross in D1 if and only if they do in D2. Weakly iso-
morphic drawings that are non-isomorphic differ in the order in which their
edges cross [37]. Two simple drawings of a complete graph with the same cyclic
order of the edges around each vertex (called rotation system) are weakly iso-
morphic, and vice versa [37, 51]; hence, generating all simple drawings of a
complete graph reduces to finding all rotation systems that determine simple
drawings [46]. However, this property holds only for complete graphs [1], while
for the complete bipartite graphs, which are more difficult to handle, only partial
results exist in the literature [26]. Thus, we decided not to follow this approach.

3 Generation Procedure

Let C be a beyond-planarity class of topological graphs and let G be a graph
with n ≥ 3 vertices. Assuming that G is either complete or complete bipartite1,
we describe in this section a recursive algorithm to compute a set S containing
all non-isomorphic simple drawings of G that are certificates that G belongs
to C (if any); refer to Algorithm 1 for an outline of the main steps of our
technique. With slight abuse of terminology, in the following we will (sometimes
implicitly) assume that S contains the planarizations of the drawings of G, since
the (valid) pathways and the isomorphism between drawings are defined on the
planarizations.

In the base of the recursion (see Line 10 of Algorithm 1), graph G is a cycle
of length 3 or 4, depending on whether G is the complete graph K3 or the
complete bipartite graph K2,2. In the former case, set S only contains a planar
drawing of K3, while in the latter case, set S contains a planar drawing and one
with a crossing between two non-adjacent edges. This is because, in both cases,
any other drawing is either isomorphic to one of these, or non-simple.

In the recursive step, we consider a vertex v of G (see Line 2 of Algorithm 1)
and assume that we have recursively computed a set S ′ containing all non-
isomorphic simple drawings of G \ {v} (see Line 3 of Algorithm 1) that belong

1We stress that, if G is neither complete nor complete bipartite, then it is a more involved
task to recognize isomorphic drawings [36], and thus to eliminate them, which is a key point
in the efficiency of our approach (we provide more details in Section 4).
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Algorithm 1: Enumeration Algorithm

Input: A complete (bipartite) graph G and a class C beyond planarity.
Output: All non-isomorphic drawings of G that are certificates that G

belongs to C.
Enumerate(Graph: G)
1 if G /∈ {K3,K2,2} then
2 v ← a vertex of G;
3 S ′ ← Enumerate(G \ {v});
4 S ← ∅;
5 foreach drawing D in S ′ do

/* Add v and its edges to D in all possible ways respecting C */

6 S ← S ∪ Insert(v,Γ, C);
7 end
8 Remove drawings from S that are isomorphic to other ones in S;

9 else
/* G is the complete graph K3 or the complete bipartite graph K2,2 */

10 S ← all non isomorphic drawings of G;

11 end
12 return S;

to C. We may assume w.l.o.g. that S ′ 6= ∅, as otherwise we can conclude that G
does not belong to C. Then, we consider each drawing of S ′ and our goal is to
report all non-isomorphic simple drawings of G that have it as a subdrawing,
and add them to set S, where S is initially empty. In other words, we aim at
reporting all non-isomorphic simple drawings that can be derived by all different
placements of vertex v and the routing of its incident edges in the drawings of
S ′ (see Line 6 of Algorithm 1, and also Algorithm 2, which outlines the main
steps of the procedure to insert vertex v into the current drawing). To this end,
let D be a drawing in S ′, let Γ be its planarization, and let u1, . . . , uk be the
neighbors of v in G, where k = deg(v) (see Line 1 of Algorithm 2). If G is a
complete graph, then k = n−1; otherwise, G is a complete bipartite graph Ka,b

with a+ b = n, and k = a or k = b holds.

Insertion procedure. We start by computing all possible valid half-pathways
for u1 in Γ with respect to C, which corresponds to constructing all possible
drawings of edge (v, u1) that respect simplicity and the restrictions of class
C (see Line 3 of Algorithm 2). To compute these half-pathways, we again use
recursion. For each half-pathway, we maintain a list of so-called prohibited edges,
which are not allowed to be crossed when inserting edge (u1, v), as otherwise
either the simplicity or the crossing restrictions of class C would be violated,
making the half-pathway not valid; see Fig. 4 and Fig. 5. This list is initialized
with all edges of Γ corresponding to edges of D that are incident to u1, and is
updated at every recursive step.

In the base of this inner recursion, we determine all valid half-pathways for
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Algorithm 2: Insertion Algorithm

Input: A vertex v, a drawing D, and a class C
Output: All non-isomorphic drawings that contain v, belong to C and

have D as a subdrawing.

Insert(Vertex: v, Drawing: D, Class: C)
1 u1, . . . , uk ← the neighbors of v in G;
2 S1,S2 ← ∅;
3 foreach valid half-pathway p for u1 in D do

/* choose a face for v and connect it to u1 */

4 Insert into S1 the drawing obtained by inserting an edge (following
p) and a new vertex v (in the destination of p) into D;

5 end

6 for i = 2, . . . , k do
/* connect v to all its other neighbors */

7 foreach drawing D′ in S1 do
8 foreach valid pathway p for (v, ui) in D′ do
9 Insert into S2 the drawing obtained by inserting an edge

(following p) into D′;

10 end

11 end
12 S1 ← S2;
13 S2 ← ∅;
14 end

15 return S1

u1 of length zero; this means that, for each face f incident to u1, we create a half-
pathway that starts at f and has its destination also at f , which corresponds
to placing v in f and drawing edge (v, u1) crossing-free. Assume now that we
have computed all valid half-pathways of some length i ≥ 0 in Γ. We show how
to compute all valid half-pathways for u1 of length i + 1 (if any). Consider a
half-pathway p of length i. Let fp be its destination. Every non-prohibited edge
e of fp implies a new half-pathway of length i + 1, composed of p followed by
the edge that is dual to e in Γ. After this step, we add to the set of prohibited
edges all the edges of Γ that correspond to the same edge of G as e to guarantee
simplicity. We also add to this set all the edges of Γ that cannot be further
crossed due to the restrictions of class C. We note at this point that this process
will eventually terminate, since the length of a half-pathway is bounded by the
number of edges of Γ.

For each valid half-pathway p computed by the procedure above, we obtain
a new drawing by inserting (u1, v) into Γ following p and by inserting v into the
destination of p (see Line 4 of Algorithm 2). It remains to insert the remaining
edges incident to v, i.e., (v, u2), . . . , (v, uk), into each of these drawings – again
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Figure 4: The prohibited edges (blue solid) for a half-pathway (red dashed) that ends
in a face fp. The thick blue edges are prohibited, because they are crossed by the
half-pathway. In (a) edges e1 and e2 are prohibited, since they are incident to u1. In
(b) edge e3 is prohibited, since, in order to cross this edge, the half-pathway would
make a self-crossing. In (c) edge e4 is prohibited since it is part of a crossed edge.
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Figure 5: Illustration of an example for the insertion of a node v into a crossing-free
4-cycle, such that v is connected to two vertices u1 and u2. The dashed red edge
is the newly inserted edge; the blue edges are prohibited; the turquoise edges are the
edges that are marked as prohibited while computing the half-pathway of the red edge.
Figs 5a–5j illustrate all possible ways for drawing edge (v, u1). Figs 5k–5o illustrate
all possible ways for inserting edge (v, u2) into the drawing of Fig. 5a. Note that
among the drawings that contain the edge (v, u2) the drawings of Figs. 5l and 5n are
isomorphic, and the same holds for the drawings of Figs. 5m and 5o. Also, all obtained
drawings are legal for the topological graph classes defined in the introduction, except
for the class of 1-planar graphs.
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in all possible ways (see Lines 6-13 of Algorithm 2). For this, we proceed mostly
as above with one difference. Instead of half-pathways, we search for valid
pathways for each edge (v, ui), 2 ≤ i ≤ k, i.e., we only consider pathways that
start in a face incident to v and end in a face incident to ui.

If we find an edge (v, ui) for which no valid pathway exists, we declare
that Γ cannot be extended to a simple drawing of G that respects the crossing
restrictions of C. Otherwise, the computed drawings of G are added to set S,
once all the drawings of G\{v} have been removed from it (see Lines 12 and 13
of Algorithm 2). To maintain our initial invariant, however, we remove from S
drawings that are isomorphic to other drawings in S (see Line 8 of Algorithm 1).

Testing for isomorphism. We describe a procedure to test whether the pla-
narizations Γ1 and Γ2 of two drawings of G comply with Properties P.1 and P.2
of a valid bijection.

We start by selecting two edges e1 = (v1, w1) and e2 = (v2, w2) in Γ1 and Γ2,
respectively, whose end-vertices have compatible types (i.e., v1 and v2 are both
real vertices or both crossings, and the same holds for w1 and w2). We bijectively
map e1 to e2, v1 to v2, and w1 to w2, which complies with Property P.1. We
call this a base mapping and try to extend it to a valid bijection.

Let f1 be the face of Γ1 that is “left” of e1 (when walking along e1 from v1
to w1). We bijectively map f1 to one of the faces that are incident to e2, which
we call f2. In the following we describe the procedure when f2 is the face of Γ2

that is “left” of e2 (when walking along e2 from v2 to w2). The case when f2 is
“right” of e2 is symmetric. If the degrees of f1 and f2 are different, then the base
mapping cannot be extended. Otherwise, both f1 and f2 have degree δ, and
we walk simultaneously along their boundaries in counter-clockwise direction,
starting at e1 and e2 respectively (when f2 is “right” of e2, we walk along
the boundary of f2 in clockwise direction). In view of Property P.2, for each
i = 1, . . . , δ, we bijectively map the i-th vertex (either real or crossing) of f1 to
the i-th vertex of f2, and the i-th edge of f1 to the i-th edge of f2. If a crossing
is mapped to a real vertex, or if the degrees of two mapped vertices are different,
then the base mapping cannot be extended.

If the vertices and edges of f1 and f2 have been mapped successfully, we
proceed by considering the two maximal connected subdrawings Γ′1 and Γ′2 of
Γ1 and Γ2, respectively, such that each edge of Γ′1 and Γ′2 has at least one face
incident to it that is already mapped. Consider an edge e′1 of Γ′1 that is incident
to only one mapped face f ′1 (such an edge exists, as long as the base mapping
has not been completely extended). Let f ′′1 be the other face incident to e′1.
Also, let e′2 be the edge of Γ′2 mapped to e′1; note that e′2 must be incident to a
face f ′2 that is mapped to f ′1 and to a face f ′′2 that is not mapped yet. We map
to each other f ′′1 and f ′′2 , and we proceed by applying the procedure described
above (i.e., we walk along the boundaries of f ′′1 and f ′′2 simultaneously, while
ensuring that the mapping remains valid). If this procedure can be performed
successfully, then we have computed two subdrawings Γ′′1 and Γ′′2 , such that
Γ′1 ⊆ Γ′′1 , Γ′2 ⊆ Γ′′2 , and each edge of them has at least one face incident to it
that is already mapped. Hence, we can recursively apply the aforementioned
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procedure to Γ′′1 and Γ′′2 . This procedure eventually terminates since the number
of faces of Γ1 is bounded.

Drawings Γ1 and Γ2 are isomorphic, if the base mapping can be eventually
extended. If this is not possible, then we have to consider another base mapping
and check whether this can be extended. Note that the case where e1 is bijec-
tively mapped to e2, v1 to w2, and w1 to v2 defines a different base mapping
than the one we were currently considering. If none of the base mappings can
be extended, then we consider Γ1 and Γ2 as non-isomorphic.

To reduce the number of base mappings that we have to consider, we first
count the number of edges of Γ1 and Γ2 whose endpoints are both real vertices,
both crossings, and those consisting of one real vertex and one crossing. These
numbers have to be the same in Γ1 and Γ2. Since it is enough to consider base
mappings only restricted to one of the three types of edges, we choose the type
with the smallest positive number of occurrences. We summarize the above
discussion in the following theorem.

Theorem 1 Let G be a complete (or a complete bipartite) graph and let C be
a beyond-planarity class of topological graphs. Then, G belongs to C if and only
if, under the restrictions of class C, our algorithm returns at least one drawing
of G.

4 Proof of Concept - Applications

In this section we use the algorithm described in Section 3 to test whether certain
complete or complete bipartite graphs belong to specific beyond-planarity graph
classes. We give corresponding characterizations and discuss how our findings
are positioned within the literature (for an overview refer to Table 1). Our
upper bounds are the smallest instances reported as negative by our algorithm.
Our lower bound examples are drawings that certify membership to particular
beyond-planarity graph classes, computed by an implementation of our algo-
rithm; for typesetting reasons we have redrawn them. Our implementation is
available to the community in the following repository:

https://github.com/beyond-planarity/complete-graphs

In the remainder of this section, we discuss our findings for different classes of
graphs beyond planarity.

4.1 The class of k-planar graphs

In this section we consider k-planar graphs, in which each edge can be crossed
at most k times. We start our discussion with the case of complete such graphs.
As already mentioned in the introduction, the complete graph Kn is 1-planar if
and only if n ≤ 6 [28].

For the case of complete 2-planar graphs, the fact that a 2-planar graph with
n vertices has at most 5n − 10 edges [50] implies that K9 is not a member of

https://github.com/beyond-planarity/complete-graphs
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(a) (b) (c) (d) (e)

Figure 6: Illustration of (a) a 3-planar drawing of K8, (b) a 4-planar drawing of K9,
(c) a drawing of K4,6 that is both 2-planar and fan-crossing free, (d) a 3-planar drawing
of K4,9, and (e) a 3-planar drawing of K5,6.

this class. Fig. 7 in [18], on the other hand, shows that K7 is 2-planar. With
our implementation we close this gap by reporting that even K8 is not 2-planar.

For the cases of complete 3-, 4-, and 5-planar graphs, the application of a
similar density argument as above proves that K10, K11, and K19 are not 3-, 4-,
and 5-planar, respectively [2, 49]. With our implementation, we could conclude
that even K9 is not 3-planar, while K10 is neither 4- nor 5-planar. On the other
hand, our algorithm was able to construct 3- and 4-planar drawings of K8 and
K9, respectively; see Figs. 6a and 6b. Note that a 6-planar drawing of K10 can
be easily derived from the 4-planar drawing of K9 in Fig. 6b by adding one extra
vertex inside the red colored triangle. The above results are summarized in the
following characterization.

Characterization 2 For k ∈ {1, 2, 3, 4}, the complete graph Kn is k-planar if
and only if n ≤ 5 + k. Also, Kn is 5-planar if and only if n ≤ 9.

Note that the 3-planarity of K8 implies that the chromatic number of 3-
planar graphs is lower bounded by 8. Analogous implications can be derived
for the classes of 4-, 5-, and 6-planar graphs. Another observation that came
out from our experiments is that, up to isomorphism, K6 has a unique 1-planar
drawing, K7 has only two 2-planar drawings, and K8 has only three 3-planar
drawings, while the number of non-isomorphic 4-planar drawings of K9 is sig-
nificantly larger, namely 35. We provide more details about the numbers of
non-isomorphic drawings in Section 5.

Consider now a complete bipartite graph Ka,b with a ≤ b. Note that a ≤ 2
implies that Ka,b is planar; thus, it trivially belongs to all beyond-planarity
graph classes. Also, recall that Ka,b is 1-planar if and only if a ≤ 2, or a = 3
and b ≤ 6, or a = b = 4 [28]. Further, a recent combinatorial result states that
K3,b is k-planar if and only if b ≤ 4k + 2 [9]. So, in the following we focus on
the case where a ≥ 4.

For complete bipartite 2-planar graphs, the fact that a bipartite 2-planar
graph with n vertices has at most 3.5n− 7 edges [10] implies that neither K4,15

nor K5,8 is 2-planar. With our implementation, we could conclude that K4,7

and K5,5 are not 2-planar, while K4,6 is; we provide a corresponding certifi-
cate drawing in Fig. 6c. A summary of these results is given in the following
characterization.
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Characterization 3 The complete bipartite graph Ka,b (with a ≤ b) is 2-planar
if and only if (i) a ≤ 2, or (ii) a = 3 and b ≤ 10, or (iii) a = 4 and b ≤ 6.

As opposed to the corresponding 2-planar case, there exists no upper bound
on the edge density of 3-planar graphs tailored for the bipartite setting. The
upper bound of 5.5n− 11 edges [49] for general 3-planar graphs with n vertices
does not provide any negative instance for a ≤ 5, and only proves that K6,b, with
b ≥ 45, is not 3-planar. With our implementation, we could provide significant
improvements, by reporting that K4,10, K5,7, and K6,6 are not 3-planar, while
K4,9 and K5,6 are; we provide corresponding certificate drawings in Figs. 6d
and 6e. Our results are summarized in the following characterization.

Characterization 4 The complete bipartite graph Ka,b (with a ≤ b) is 3-planar
if and only if (i) a ≤ 2, or (ii) a = 3 and b ≤ 14, or (iii) a = 4 and b ≤ 9, or
(iv) a = 5 and b ≤ 6.

On the other hand, we were unable to derive a complete picture for complete
bipartite 4-planar graphs, but only some partial results, because the search space
becomes drastically larger than in the previous cases and, as a consequence, our
generation technique could not terminate. To give an intuition, note that K4,4

has 81817 non-isomorphic 4-planar drawings, which makes the computation of
the corresponding non-isomorphic drawings ofK4,5 infeasible in reasonable time.
We provide more insights in Section 5.

On the positive side, we were able to report certificate drawings showing
that K4,11, K5,8, and K6,6 are 4-planar; see Fig. 7. We achieved this by slightly
refining our generation technique. Namely, instead of computing all possible
non-isomorphic simple drawings of graph Ka−1,b or Ka,b−1, to compute the
corresponding ones for Ka,b, we only computed few samples, in a DFS-like ap-
proach, aiming to eventually find a corresponding certificate drawing, only based
on these samples. We summarize these findings in the following observation.

Observation 5 The complete bipartite graph Ka,b (with a ≤ b) is 4-planar if
(i) a ≤ 2, or (ii) a = 3 and b ≤ 18, or (iii) a = 4 and b ≤ 11, or (iv) a = 5
and b ≤ 8, or (v) a = 6 and b = 6. Further, Ka,b is not 4-planar if a ≥ 3 and
b ≥ 19.

(a) (b) (c)

Figure 7: Illustration of 4-planar drawings of (a) K4,11, (b) K5,8 and (c) K6,6.
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4.2 The classes of fan-crossing and fan-planar graphs

In this section, we consider the classes of fan-crossing and fan-planar graphs.
Recall that the former class does not allow an edge to be crossed by two in-
dependent edges, while the latter additionally does not allow an edge to be
crossed by two adjacent edges from different directions. It is worth noting at
this point that the class of fan-planar graphs is a proper subclass of the one
of fan-crossing graphs [21], even though both classes have the same maximum
edge density, namely, every n-vertex fan-crossing or fan-planar graph has at
most 5n − 10 edges [21, 43]. Note that this bound is tight for both classes, as
initially observed by Kaufmann and Ueckerdt [43]. In the following, we will no-
tice that these two classes of graphs are “equivalent” also in terms of the largest
complete and complete bipartite graphs belonging to them.

We start our discussion with complete graphs. The aforementioned density
bound implies that K9 is neither fan-crossing nor fan-planar, while Fig.7 in [18]
shows that K7 is fan-planar and thus fan-crossing. With our implementation, we
can conclude that K8 is not fan-crossing, and, as a consequence, not fan-planar.
This yields the following characterization.

Characterization 6 The complete graph Kn is fan-crossing or fan-planar if
and only if n ≤ 7.

We note that Brandenburg in [23] claimed that the graph obtained from K8

by removing one edge is not fan-crossing, but without giving the details of the
proof of this claim. With a slight modification in our implementation, we could
actually prove that the claim does not hold, since this graph is indeed fan-planar
(and thus also fan-crossing); refer to Fig. 8 for an illustration.

Consider now a complete bipartite graph Ka,b with a ≤ b. For a ≤ 4,
Kaufmann and Ueckerdt [43] indicated that Ka,b is fan-planar for any value of
b, which implies that it is also fan-crossing. On the other hand, the fact that a
bipartite fan-planar graph has at most 4n−12 edges [10] implies that K5,9 is not
fan-planar (to the best of our knowledge, there exists no density bound for fan-
crossing graphs that is tailored to bipartite graphs). Using our implementation,
we concluded that even K5,5 is not fan-crossing, and thus not fan-planar. These
two results together imply the following characterization.

Characterization 7 The complete bipartite graph Ka,b (with a ≤ b) is fan-
crossing or fan-planar if and only if a ≤ 4.

Figure 8: A fan-planar drawing of the graph obtained from K8 by removing one edge,
that is, the one connecting the two red colored vertices.
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4.3 The class of fan-crossing free graphs

We continue our discussion with the class of fan-crossing free graphs, in which
no edge can be crossed by two adjacent edges. A characterization for the case
of complete graphs can be derived by combining two known results. First, K6 is
fan-crossing free, since it is 1-planar; with our implementation, we additionally
demonstrate that, up to isomorphism, K6 has a unique fan-crossing free drawing
(see Section 5). Second, the fact that a fan-crossing free graph with n vertices
has at most 4n − 8 edges [27] implies that K7 is not fan-crossing free. Hence,
we have the following characterization.

Characterization 8 (Cheong et al. [27], Czap et al. [28]) The complete
graph Kn is fan-crossing free if and only if n ≤ 6.

As already stated, a combinatorial proof of the characterization of the com-
plete bipartite fan-crossing free graphs is provided in the arXiv version [11] of
this paper, where it is proved that K4,6 is fan-crossing free, while K3,7 and K5,5

are not. We stress that the range of the case analysis in the proof is dramatically
long. However, we could obtain the same result using our implementation.

Characterization 9 The complete bipartite graph Ka,b (with a ≤ b) is fan-
crossing free if and only if (i) a ≤ 2, or (ii) a ≤ 4 and b ≤ 6.

4.4 The class of gap-planar graphs

In this section, we continue our study with the class of gap-planar graphs, in
which each crossing is assigned to one of its two involved edges, such that each
edge can be assigned at most one crossing. A characterization of the complete
gap-planar graphs has been recently provided by Bae et al. [15] as follows.

Characterization 10 (Bae et al. [15]) The complete graph Kn is gap-planar
if and only if n ≤ 8.

For the case of complete bipartite graphs, Bae et al. [15] proved that K3,12,
K4,8, and K5,6 are gap-planar, while K3,15, K4,11, and K5,7 are not. These
negative results were derived using the technique discussed in Section 1 that
compares the crossing number of these graphs with their number of edges, which
is an upper bound to the number of crossings allowed in a gap-planar drawing.
By refining this technique, Bachmaier et al. [14] proved that even K3,14, K4,10,
and K6,6 are not gap-planar. Hence, towards a complete characterization one
has to determine whether K3,13 and K4,9 are gap-planar or not. Here, we answer
one of these two open questions by reporting that K4,9 is in fact not gap-planar.
Note that with our implementation we faced several difficulties in reporting
whether K3,13 is gap-planar or not, because of the number of non-isomorphic
gap-planar drawings of K3,7, which are more than 1,000,000 (up to the point of
writing, after the program has been running for more than three months).
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Figure 9: A quasiplanar drawing of K5,18.

Observation 11 The complete bipartite graph Ka,b (with a ≤ b) is gap-planar
if (i) a ≤ 2, or (ii) a = 3 and b ≤ 12, or (iii) a = 4 and b ≤ 8, or (iv) a = 5
and b ≤ 6. Further, Ka,b is not gap-planar if (i) a = 3 and b ≥ 14, or (ii) a = 4
and b ≥ 9, or (iii) a = 5 and b ≥ 7, or (iv) a ≥ 6 and b ≥ 6.

4.5 The class of quasiplanar graphs

In this section, we conclude our study with the class of quasiplanar graphs, which
do not allow three mutually crossing edges. As in Section 4.4, a characterization
for the complete quasiplanar graphs can be derived by combining two known
results. First, the fact that a simple quasiplanar graph with n vertices has at
most 6.5n − 20 edges [4] implies that K11 is not quasiplanar. On the other
hand, K10 is quasiplanar, as first observed by Brandenburg [20]. These two
observations are summarized in the following characterization.

Characterization 12 (Ackerman et al. [4], Brandenburg [20]) The com-
plete graph Kn is quasiplanar if and only if n ≤ 10.

Consider now a complete bipartite graph Ka,b with a ≤ b. First, we observe
that for a ≤ 4, graph Ka,b is quasiplanar for any value of b, since it is even fan-
planar [43]. On the other hand, the fact that a quasiplanar graph with n vertices
has at most 6.5n− 20 edges [4] does not provide any negative answer for a ≤ 6,
while for a = 7 it only implies that K7,52 is not quasiplanar. We stress that we
were not able to find any improvement on the latter result. The reason is the
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(a) (b)

Figure 10: Illustration of quasiplanar drawings of (a) K6,10 and (b) K7,7.

same as the one that we described for the class of complete bipartite 4-planar
graphs (for further details, we point the reader to Section 5). Notably, using
the DFS-like variant of our algorithm, we were able to derive at least positive
certificate drawings for K5,18, K6,10, and K7,7; see Figs. 9, 10a, and 10b. We
summarize these findings in the following observation.

Observation 13 The complete bipartite graph Ka,b (with a ≤ b) is quasiplanar
if (i) a ≤ 4, or (ii) a = 5 and b ≤ 18, or (iii) a = 6 and b ≤ 10, or (iv) a = 7
and b ≤ 7. Further, Ka,b is not quasiplanar if a ≥ 7 and b ≥ 52.

5 Further insights from our implementation

In this section, we present some insights from the computations that we made in
order to check whether certain complete and complete bipartite graphs belong
to specific graph classes; for a summary refer to Table 2. Our algorithm was
implemented in Java and was executed on a Windows machine with 2 cores at
2.9 GHz and 8 GB RAM.

As described in Section 3, our algorithm constructs all possible drawings of
a certain (complete or complete bipartite) graph by adding a single vertex to
the non-isomorphic drawings of the subgraph of it without this vertex. Once
a new drawing is obtained in this procedure, we compare it for isomorphism
against the already computed ones (and possibly discard it). The total number
of produced drawings is reported in the column “General”, while the number of
the non-isomorphic ones in the column “Non-Iso.”. The reported times are in
seconds and correspond to the total time needed for generation and filtering for
isomorphism. The bottommost row of each section in the table corresponds to
a negative instance, as no drawing satisfying the constraints of the respective
graph class could be found. The class of complete bipartite 4-planar graphs and
the one of complete bipartite quasiplanar graphs form exceptions, as for these
classes we were not able to report all non-isomorphic drawings of K4,5.
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Table 2: A summary of the required time (in sec.) and of the number of general and
non-isomorphic drawings for different complete and complete bipartite graphs.

Part A: Results concerning the classes of k-planar graphs; k ∈ {1, 2, 3, 4}.

complete complete bipartite

Class Graph General Non-Iso. Time Graph General Non-Iso. Time

1-planar K4 8 2 0.043 K2,3 34 3 0.061
K5 13 1 0.043 K3,3 14 2 0.049
K6 4 1 0.020 K3,4 16 3 0.065
K7 0 0 0.006 K4,4 5 2 0.044

K4,5 0 0 0.010

total: 25 4 0.112 total: 69 10 0.229

2-planar K4 8 2 0.028 K2,3 76 6 0.090
K5 89 4 0.105 K3,3 243 19 0.254
K6 56 6 0.233 K3,4 526 71 1.458
K7 38 2 0.119 K4,4 310 38 1.152
K8 0 0 0.029 K4,5 318 37 1.826

K5,5 0 0 0.357

total: 191 14 0.514 total: 1473 171 5.137

3-planar K4 8 2 0.042 K2,3 76 6 0.234
K5 109 5 0.195 K3,3 678 69 1.802
K6 548 39 0.953 K3,4 7141 1188 16.969
K7 648 39 3.459 K4,4 24058 2704 97.801
K8 20 3 1.153 K4,5 44822 7653 310.194
K9 0 0 0.065 K5,5 20043 1899 199.908

K5,6 2516 438 47.396
K6,6 0 0 4.822

total: 1333 88 5.867 total: 99334 13957 679.126

4-planar K4 8 2 0.040 K2,3 76 6 0.108
K5 109 5 0.222 K3,3 968 102 2.146
K6 1374 95 4.080 K3,4 32454 6194 163.000
K7 14728 1266 79.842 K4,4 681196 81817 34096.183
K8 7922 833 84.725 K4,5 ? ? ?
K9 353 35 33.672
K10 0 0 1.175

total: 24494 2236 203.756 total: ? ? ?

5-planar K4 8 2 0.059
K5 109 5 0.259
K6 1752 119 4.716
K7 83710 8318 1396.781
K8 1190765 138750 262419.413
K9 285847 29939 32299.196
K10 0 0 2783.813

total: 1562191 177133 298904.237
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Part B: Results concerning the remaining graph classes considered in this paper.

complete complete bipartite

Class Graph General Non-Iso. Time Graph General Non-Iso. Time

fan-crossing K4 8 2 0.034 K2,3 76 6 0.110
K5 89 5 0.133 K3,3 127 9 0.292
K6 147 39 0.226 K3,4 295 43 0.757
K7 75 39 0.405 K4,4 255 29 0.972
K8 0 0 0.196 K4,5 324 48 1.624

K5,5 0 0 0.637

total: 319 22 0.994 total: 1077 135 4.392

fan-crossing K4 8 2 0.049 K2,3 34 3 0.057
free K5 13 1 0.054 K3,3 38 5 0.092

K6 4 1 0.038 K3,4 28 5 0.098
K7 0 0 0.009 K4,4 19 4 0.106

K4,5 16 2 0.075
K5,5 0 0 0.012

total: 25 4 0.150 total: 135 19 0.440

gap-planar K4 14 2 0.135 K2,3 169 14 0.256
K5 243 10 0.366 K3,3 1425 266 4.359
K6 739 237 4.726 K3,4 16898 7466 170.396
K7 1124 665 13.943 K3,5 148527 56843 12032.226
K8 1 1 16.347 K4,5 199778 148367 28457.751
K9 0 0 0.019 K4,6 408476 246318 132622.664

K4,7 173271 101428 32958.628
K4,8 5981 4015 2708.278
K4,9 0 0 99.583

total: 2121 915 35.536 total: 954525 564717 209054.141

quasiplanar K4 8 2 0.082 K2,3 76 6 0.187
K5 109 5 0.193 K3,3 604 53 0.859
K6 936 63 1.820 K3,4 11902 2248 34.073
K7 16505 1607 69.943 K4,4 386241 46711 11328.401
K8 173199 20980 4044.264 K4,5 ? ? ?
K9 209248 23011 35163.772
K10 81 9 7593.865
K11 0 0 5.225

total: 400086 45677 46879.164 total: ? ? ?
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As a typical example, we describe in the following one intermediate step in
our computations; refer to the gray colored entry of Part A of Table 2. Our
algorithm for reporting that K6,6 is not a 3-planar graph generated at some
intermediate step all 3-planar drawings of K5,5, based on the non-isomorphic
drawings of K4,5. The algorithm reported in total 20043 drawings (including
isomorphic ones), which were reduced to 1899 due to the elimination of isomor-
phic ones. These two steps together required 199.908 seconds. The obtained
drawings were extended (by adding one additional vertex and its five incident
edges) to 2516 drawings of K5,6, which were reduced to 438 due to the filter-
ing for isomorphism. None of these drawings could be extended to a 3-planar
drawing of K6,6, and thus we concluded that K6,6 is not 3-planar.

The class of complete bipartite 4-planar graphs and the class of complete
bipartite quasiplanar graphs show the limitations of our approach. We start our
discussion with the former class. As already mentioned in Section 4.1, for the
class of complete bipartite 4-planar graphs, we were able to report only some
partial results (and not a complete characterization). The reason is depicted
in Part A of Table 2. Observe that, in order to determine the 81817 non-
isomorphic drawings of K4,4, our implementation needed to generate 681196
drawings starting from the 6194 non-isomorphic drawings of K3,4. This growth
in the number of non-isomorphic drawings and the time needed to generate them
(i.e., 34096 sec.) form a clear indication of the reason why our implementation
failed to report all corresponding drawings of K4,5. Similar observations can be
made for the class of quasiplanar graphs; see Part B of Table 2.

We conclude this section by making some additional observations. First,
it is eye-catching from both parts of Table 2 that the number of general and
non-isomorphic drawings of the complete graphs are significantly smaller than
the corresponding ones for the complete bipartite graphs. This observation is
explained by the fact that the former are very symmetric and denser.

As it is naturally expected, we also observe that both the number of gen-
eral drawings and the number of non-isomorphic drawings of a k-planar graph
increases as k increases (at least for values of k in {1, 2, 3, 4, 5}). In particu-
lar, it seems that this increment becomes significantly large from 3- to 4-planar
graphs, both in the complete and in the complete bipartite settings.

Comparing fan-crossing and fan-crossing free graphs, which are in a sense
complementary to each other, we observe significant differences in the number
of general and non-isomorphic drawings. In particular, the number of non-
isomorphic drawings of fan-crossing free graphs are always single digits.

We finally observe that it is generally not a time-demanding task to conclude
that a graph does not belong to a specific class, once all non-isomorphic drawings
of its maximal realizable subgraph have been computed. In fact, the bottommost
row of every section in Table 2 reports times in the order of few seconds at most.
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Table 3: A comparison of the number of drawings reported by our algorithm with
the elimination of isomorphic drawings (col. “General”) and without it (col. “All”) for
the classes of 1- and 2-planar graphs; the corresponding execution times (in sec.) to
compute these drawings are reported next to them.

complete complete bipartite

Class Graph General Time All Time Graph General Time All Time

1-planar K4 8 0.043 8 0.043 K2,3 34 0.061 34 0.061
K5 13 0.043 30 0.206 K3,3 14 0.049 84 0.539
K6 4 0.020 120 0.737 K3,4 16 0.065 960 5.642
K7 0 0.006 0 0.448 K4,4 5 0.044 1584 10.871

K4,5 0 0.010 0 7.198

total: 25 0.112 158 1.434 total: 69 0.229 2662 24.311

2-planar K4 8 0.028 8 0.028 K2,3 76 0.090 76 0.090
K5 89 0.105 294 2.661 K3,3 243 0.254 2352 10.571
K6 56 0.233 2664 3.292 K3,4 526 1.458 52248 244.964
K7 38 0.119 8400 55.323 K4,4 310 1.152 168624 1128.457
K8 0 0.029 0 51.321 K4,5 318 1.826 1200384 8135.843

K5,5 0 0.357 0 12639.293

total: 191 0.514 11366 112.625 total: 1333 5.137 1423684 22159.218

6 Conclusions and Open Problems

In this paper, we presented an efficient algorithm to generate all non-isomorphic
drawings of complete (bipartite) graphs that are certificates of their membership
to particular beyond-planarity graph classes. As a proof of concept, we obtained
characterizations on the size of the largest such graphs for several classes. We
remark that these results also have some theoretical implications. In particular,
K5,5 was conjectured in [10] not to be fan-planar; Characterization 7 implies
that K5,5 is not even fan-crossing, and thus settles in the positive this conjecture.
By Characterization 7 and Observation 11, we deduce that K5,5 is a certificate
that there exist graphs which are gap-planar but not fan-planar. Since K4,9 is
fan-planar but not gap-planar, the two classes are incomparable, which answers
a related question posed in [15] about the relationship between 1-gap-planar
graphs and fan-planar graphs.

We stress that the elimination of isomorphic drawings is a key step in our
algorithm, as shown in Table 3. For example, to test whether K5,5 is 2-planar
without the elimination of intermediate isomorphic drawings, one would need
to investigate 1423684 drawings, while in the presence of this step only 1333.
This significantly reduced the required time to roughly 5 seconds, including the
time to perform all isomorphism tests and eliminations.

Our work leaves two main open problems. First, is it possible to extend our
approach to graphs that are neither complete nor complete bipartite, e.g., to
k-trees or to k-degenerate graphs (for small values of k)? A major difficulty is
that, in the absence of symmetry, discarding isomorphic drawings becomes more
complex. A general observation from our proof of concept is that our approach
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was of limited applicability on the classes of complete bipartite k-planar graphs,
for k > 3, and complete bipartite quasiplanar graphs, for which we could report
partial results. So, as a second open question, we ask whether it is possible to
broaden these results by deriving improved upper bounds on the edge densities
of these classes tailored for the bipartite setting (see, e.g., [10]).
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