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Abstract

The need for a similarity measure for comparing two drawings of
graphs arises in problems such as interactive graph drawing and the in-
dexing or browsing of large sets of graphs. Many applications have been
based on intuitive ideas of what makes two drawings look similar — for
example, the idea that vertex positions should not change much. In this
paper, we formally define several of these intuitive ideas of similarity and
present the results of a user study designed to evaluate how well these
measures reflect human perception of similarity.
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1 Introduction

The question of how similar two drawings of graphs are arises in a number of
situations. One application is interactive graph drawing, where the graph being
visualized changes over time and it is important to preserve the user’s “mental
map” [12] of the original drawing as much as possible so the user does not need to
spend a lot of time relearning the drawing after each update. Having to relearn
the drawing can be a significant burden if the graph is updated frequently.
Animation can be used to provide a smooth transition between the drawings
and can help compensate for greater changes in the drawing, but it is still
important to maintain some degree of similarity between the drawings to help
the user orient herself to the new drawing. Related to interactive graph drawing
is layout adjustment, where an existing drawing is modified so as to improve an
aesthetic quality without destroying the user’s mental map.

Another application is in indexing or browsing large sets of graphs. An
example of a graph browser is contained the SMILE graph multidrawing system
of Biedl et. al. [1]. The SMILE system tries to find a good drawing by producing
many drawings of the graph and letting the user choose among them, rather
than trying to code the properties of a good drawing into the algorithm. The
graph browser arranges the drawings so that similar ones are near each other,
to help the user navigate the system’s responses. Related to this is the idea of
using similarities between drawings as a basis for indexing and retrieval. Such
a system has applications in character and handwriting recognition, where a
written character is transformed into a graph and compared to a database of
characters to find the closest match.

Let M be a similarity measure defined so that M ’s value is always nonneg-
ative and is 0 when the drawings are identical. In order to be useful, M should
satisfy three properties:

Rotation: Given drawings D and D′, M(D, D′
θ) should have the minimum

value for the angle a user would report as giving the best match, where
D′

θ is D′ rotated by an angle of θ with respect to its original orientation.

Ordering: Given drawings D, D′, and D′′, M(D, D′) < M(D, D′′) if and
only if a user would say that D′ is more like D than D′′ is like D.

Magnitude: Given drawings D, D′, and D′′, M(D, D′) = 1
cM(D, D′′) if and

only if a user would say that D′ is c times more like D than D′′ is like D.

This paper describes a user study performed in order to evaluate several po-
tential similarity measures with respect to rotation and ordering, and to test a
possible method for obtaining data to be used for evaluating measures with re-
spect to magnitude. Data cannot be collected directly for the magnitude part as
it can be for rotation and ordering because it is very difficult to assign numerical
similarity values to pairs of drawings; Wickelgren [18] observes that it is more
difficult to assign numerical values than to judge ordering. As a result, other
data must be gathered — for example, response times on a particular task —
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with the hope that the data is sufficiently related to the actual similarity values
to be useful. This can be partially tested by using the data (e.g., response times)
to order the drawings, and determining whether the results are consistent with
user responses on the ordering part.

This study improves on our previous work [3] in several ways:

• More Experimental Data: A larger pool of users (103 in total) was
used for determining the “correct” behavior for the measure.

• Refined Ordering Part: Users made only pairwise judgments between
drawings rather than being asked to order a larger set.

• Addressing of Magnitude Criterion: The previous experiment did
not address magnitude at all.

• More Realistic Drawing Alignment: The previous drawing alignment
method allowed one drawing to be scaled arbitrarily small with respect to
the other; the new method keeps the same scale factor for both drawings.

• Refinement of Measures: For those measures computed with pairs of
points, pairs involving points from the same vertex are skipped.

• New Measures: Several new measures have been included.

We describe the experimental setup in Section 2, the measures evaluated in
Section 3, the results in Sections 4 and 5, and conclusions and directions for
future work in Section 6.

2 Experimental Setup

This study focuses on similarity measures for orthogonal drawings of nearly the
same graph. “Nearly the same graph” means that only a small number of vertex
and edge insertions and deletions are needed to transform one graph into the
other. In this study, the graphs differ by one vertex and two or four edges. The
focus on orthogonal drawings is motivated by the availability of an orthogonal
drawing algorithm capable of producing many drawings of the same graph,
and by the amount of work done on interactive orthogonal drawing algorithms.
(See, for example, Biedl and Kaufmann [2], Fößmeier [8], Papakostas, Six, and
Tollis [14], and Papakostas and Tollis [15].) Producing multiple drawings of the
same graph is important because it can be very difficult to judge if one pair of
drawings is more similar than another if the graphs in each pair are different.

2.1 Graphs

The graphs used in the study were generated from a base set of 20 graphs with 30
vertices each, taken from an 11,582-graph test suite. [7] Each of 20 base graphs
was first drawn using Giotto [17]. Each of the Giotto-produced base drawings was
modified by adding a degree 2 and a degree 4 vertex, for a total of 40 modified
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drawings. Each modified drawing is identical to its base drawing except for
the new vertex and its adjacent edges, which were placed in a manner intended
to mimic how a user might draw them in an editor. Because InteractiveGiotto
(used in the next step) preserves edge crossings and bends, routing the edges
realistically avoids introducing a large number of extra crossings. Finally, a
large number of new drawings were produced for each modified drawing using
InteractiveGiotto [4], and four drawings were chosen from this set. The four
drawings chosen range from very similar to the base drawing to very different.

2.2 Definition

The experiment consisted of three parts, to address the three evaluation crite-
ria. In all cases, the user was asked to respond as quickly as possible without
sacrificing accuracy. To promote prompt responses, each trial timed out after
30 seconds if the user did not respond.

Rotation Part The rotation part directly addresses the rotation criterion.
The user is presented with a screen as shown in Figure 1. The one drawing D
on the left is the base drawing; the eight drawings D1, . . . , D8 on the right are
eight different orientations of the same new (InteractiveGiotto-produced) drawing
derived from D. The eight orientations consist of rotations by the four multiples
of π/2, with and without an initial flip around the x-axis. For orthogonal
drawings, only multiples of π/2 are meaningful since it is clear that rotation by
any other angle is not the correct choice. The vertices are not labelled in any of
the drawings to emphasize the layout of the graph over the specifics of vertex
names.

The user’s task is to choose which of D1, . . . , D8 looks most like the base
drawing. A “can’t decide” button is provided for cases in which the drawings
are too different and the user cannot make a choice. The user’s choice and the
time it took to answer are recorded.

Ordering Part The ordering part directly addresses the ordering criterion.
In this part, the user is presented with a screen as shown in Figure 2. The one
drawing D on the left is the base drawing; the two drawings D1 and D2 on the
right are two different (InteractiveGiotto-produced) new drawings of the same
modified drawing derived from D.

The user’s task is to choose which of D1 and D2 looks most like the base
drawing. A “can’t decide” button is provided for cases in which the drawings
are too different and the user cannot make a choice. The user’s choice and the
time it took to answer are recorded.

Difference Part The difference part addresses the magnitude criterion by
gathering response times on a task, with the assumption that a greater degree
of similarity between the drawings will help the user complete the task more
quickly. The screen presented to the user is shown in Figure 3. The drawing
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D on the left is the base drawing; the drawing D1 on the right is one of the
InteractiveGiotto-produced new drawings derived from D.

The user’s task is to identify the vertex present in the right drawing that is
not in the left drawing. The vertices are labelled with random two-letter names
— corresponding vertices in drawings in a single trial have the same name,
but the names are different for separate trials using the same base drawing to
prevent the user from simply learning the answer. Displaying the vertex names
makes the task less difficult, and mimics the scenario where the user is working
with a dynamically updated graph where the vertex labels are important.

The user’s choice and the time it took to answer are recorded.

2.3 Methodology

The three parts were assigned to students as part of a homework assignment
in a second-semester CS course at Brown University. A total of 103 students
completed the problem.

Before being assigned the problem, the students had eight lectures on graphs
and graph algorithms, including one on graph drawing. They had also been
assigned a programming project involving graphs, so they had some familiarity
with the subject.

The homework problem made use of an online system which presented the
displays shown in Figures 1, 2, and 3. A writeup was presented with the problem
explaining how to use the system, and the directions were summarized each time
the system was run.

Each of the three parts was split into four runs, so the students would not
have to stay focused for too long without a break. The graphs used were divided
into 10 batches: the first batch (the practice batch) contained two modified
drawings along with their associated new drawings, and each of the other nine
batches contained three modified drawings and the associated new drawings.
All of the students were assigned the practice batch for the first run of each
part, and were randomly assigned three of the other batches for later runs so
that each batch was completed by 1/3 of the students. A given student worked
with the same batches for all three of the parts. Within each run of the system,
the individual trials were presented in a random order and the order of the
right-hand drawings in the rotation and ordering parts was chosen randomly.

On average, students spent 6.9 minutes total on all four runs the rotation
task (out of 22 minutes allowed), 8.3 minutes on the ordering task (out of 33),
and 12.9 minutes on the difference task (out of 22).

After the students completed all of parts, they answered a short question-
naire about their experiences. The questions asked were as follows:

1. (Ordering and Rotation) What do you think makes two drawings of
nearly the same graph look similar? Are there factors that influenced
your decisions? Did you find yourself looking for certain elements of the
drawing in order to make your choice?
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Figure 1: The rotation part.

Figure 2: The ordering part.

Figure 3: The difference part.
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2. (Difference) What factors helped you locate the extra vertex more
quickly? Did you compare the overall look of the two drawings in or-
der to aid your search, or did you just scan the second drawing?

3. (All Parts) As you consider your answers, think about what this means
for a graph drawing algorithm that seeks to preserve the look of the draw-
ing. What types of things would it have to take into account?

3 Measures Evaluated

All of the measures evaluated in this study are described below. Most are the
same as or similar to those described in [3]; the primary difference is that all
of the measures have been scaled so that 0 means the drawings are identical
and 1 is the maximum difference. The upper bound is frequently based on the
worst-case scenario for point positioning and may not be achievable by an actual
drawing algorithm. (For example, the upper bound may only be achieved when
all of the vertices are placed on top of each other, an impossible situation with
most drawing algorithms.)

3.1 Preliminaries

Corresponding Objects Most of the measures make use of the fact that the
graph in the drawings being compared is the same. (If the graphs are not the
same, those parts that are different are ignored and only the common subgraphs
used.) This means that each vertex and edge of G has a representation in each
of the drawings, and it is meaningful to talk about the corresponding vertex or
edge in one drawing given a vertex or edge in the other drawing.

Point Set Selection All measures except for the shape measures are defined
in terms of point sets derived from the edges and vertices of the graph rather
than the edges and vertices themselves. Like vertices and edges, each point in
one drawing has a corresponding point in the other drawing.

Points can be selected in a variety of ways; inspired by North [13], one point
set contains the four corners of each vertex. Inspired by feedback from the study
(section 5.2), a second “borders-only” point set was also considered. This is a
subset of the “full” point set which contains only those points outside an ellipse
centered within the drawing’s bounding box and with radii 90% of the width and
height of the bounding box, or whose corresponding point in the other drawing
meets this criterion.

A change from the previous experiment [3] is that the computation of the
nearest neighbor measures skips pairs of points derived from the same vertex.
This can have a great effect because a point’s nearest neighbor will often be
another corner of the same vertex, which does not convey much information
about how that vertex relates to other vertices in the drawing. In this study, a
point’s nearest neighbor is the nearest point from a different vertex. This is not
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explicitly written in the definitions below for clarity of notation, but it should
be assumed.

Drawing Alignment For the measures involving the comparison of coordi-
nates between drawings, the value of the measure is very dependent on how
well the drawings are aligned. Consider two identical drawings, but let the
x-coordinate of each point in the second drawing be one bigger than the x-
coordinate of the corresponding point in the first drawing. The average distance
moved by each point will be reported as 1, even though the drawings actually
are the same. Aligning the drawings before comparing the coordinates removes
this effect.

In the previous experiment [3], alignment was done by simultaneously ad-
justing the scale and translation of one drawing with respect to the other so
as to minimize the distance squared between corresponding points. This had
the effect of potentially reducing one drawing to a very small area if the draw-
ings did not match well. This has been replaced by a new alignment method
which separates the determination of the scale and translation factors into two
steps. First, the scale factor is set to ensure that the two drawings are drawn
to the same scale. Since the drawings are orthogonal drawings, there is a nat-
ural underlying grid which can be used to adjust the scale. Once scaled, the
translation factor is chosen so as to minimize the distance squared between cor-
responding points. The new alignment method is intended to better match how
a person might try to match up the drawings — it does not seem likely that
someone would mentally shrink or enlarge one drawing drastically with respect
to the other, but rather would work with the current scale and try to adjust the
translation.

Suitability for Ordering vs. Rotation and Ordering Some of the mea-
sures do not depend on the relative rotation of one drawing with respect to
the other. This means that they fail the rotation test, however, they are in-
cluded because there may be situations in which the measure is not being used
to determine the proper rotation for the drawings. Furthermore, a successful
ordering-only measure could be combined with one which is successful at rota-
tion but less so at ordering to obtain a measure which is good at both. Measures
suitable for ordering only are marked [order only] below.

Notation In the following, P and P ′ will always refer to the point sets for
drawings D and D′, respectively, and p′ ∈ P ′ will be the corresponding point
for p ∈ P (and vice versa). Let d(p, q) be the Euclidean distance between points
p and q.

3.2 Degree of Match

The following measures measure a degree of matching between the point sets
by looking at the maximum mismatch between points in one set and points in
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another. The motivation for these measures is straightforward — if point sets
are being used to represent the drawings, then classical measures of point set
similarity can be used to compare the drawings.

Undirected Hausdorff Distance The undirected Hausdorff distance is a
standard metric for determining the quality of the match between two point
sets. It does not take into account the fact that the point sets may be labelled.

haus(P, P ′) =
1

UB
max {max

p∈P
min
q′∈P ′

d(p, q′) , max
p′∈P ′

min
q∈P

d(p′, q) }

UB is the maximum distance between a corner of the bounding box of P and a
corner of the bounding box of P ′.

Maximum Distance The maximum distance is an adaptation of the undi-
rected Hausdorff distance for labelled point sets, and is defined as the maximum
distance between two corresponding points:

maxdist(P, P ′) =
1

UB
max
p∈P

d(p, p′)

UB is the maximum distance between a corner of the bounding box of P and a
corner of the bounding box of P ′.

3.3 Position

These measures are motivated by the idea that the location of the points on the
page is important, and points should not move too move far between drawings.

Average Distance Average distance is the average distance points move be-
tween drawings.

dist(P, P ′) =
1
|P |

∑
p∈P

d(p, p′)

Nearest Neighbor Between Nearest neighbor between is based on the as-
sumption that a point’s original location should be closer to its new position
than any other point’s new position.

nnb(P, P ′) =
1

UB

∑
p∈P

weight(nearer(p))

where
nearer(p) = {q | d(p, q′) < d(p, p′) , q ∈ P , q 6= p}
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Unweighted In the unweighted version, the score for p counts only
whether or not there are points in P ′ between p and p′.

weight(S) =
{

0 if |S| = 0
1 otherwise

UB = |P |

Weighted In the weighted version, the number of points in P ′ between p
and p′ is taken into account.

weight(S) = |S|
UB = |P | (|P | − 1)

3.4 Relative Position

These measures are based on the idea that the relative position of points should
remain the same. There are two components to relative position — the distance
between the points, and the orientation. All of the measures except for average
relative distance are concerned with changes in orientation.

Orthogonal Ordering Orthogonal ordering measures the change in orienta-
tion between pairs of points. Imagine compass roses centered on p and p′, with
north oriented towards the top of the page. Let θq and θq′ be the directions
associated with q and q′, respectively.

order(P, P ′) =
1
W

∑
p,q∈P

min

{∫ θq′

θq

weight(θ) dθ,

∫ θq

θq′
weight(θ) dθ

}

Constant-Weighted In the constant-weighted version, all changes of di-
rection are weighted equally.

weight(θ) = 1
W = π

Linear-Weighted In the linear-weighted version, changes in the north,
south, east, west relationships between points are weighted more heavily than
changes in direction which do not affect this relationship. The weight function
grows linearly with the distance between θ and north, south, east, or west.

weight(θ) =

{
(θ mod π/2)

π/4 if (θ mod π/2) < π/4
π/2−(θ mod π/2)

π/4 otherwise
W = π/2
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Ranking The ranking measure considers the relative horizontal and vertical
position of the point. This is a component of the similarity measure used in
the SMILE graph multidrawing system. [1] Let right(p) and above(p) be the
number of points to the right of and above p, respectively.

rank(P, P ′) =
1

UB

∑
p∈P

min{ | right(p)−right(p′) |+| above(p)−above(p′) | , UB }

where
UB = 1.5 (|P | − 1)

Of note here is that the upper bound is taken as 1.5 (|P |−1) instead of 2 (|P |−1),
the actual maximum value occurring when a point moves from one corner of the
drawing to the opposite corner. The motivation for this is simply that it scales
the measure more satisfactorily.

Average Relative Distance [order only] The average relative distance is
the average change in distance between pairs of points.

rdist(P, P ′) =
1

|P | (|P | − 1)

∑
p,q∈P

| d(p, q) − d(p′, q′) |

λ-Matrix [order only] The λ-matrix model is used by Lyons, Meijer, and
Rappaport [10] to evaluate cluster-busting algorithms. It is based on the concept
of order type used by Goodman and Pollack [9], where two sets of points P and
P ′ have the same order type if, for every triple of points (p,q,r), they are oriented
counterclockwise if and only if (p′,q′,r′) are also oriented counterclockwise.

Let λ(p, q) be the number of points in P to the left of the directed line from
p to q.

lambda(P, P ′) =
1

UB

∑
p,q∈P

|λ(p, q) − λ(p′, q′) |

where the upper bound for a set of size n is:

UB = n

⌊
(n − 1)2

2

⌋

3.5 Neighborhood

These measures are guided by the philosophy that each point’s neighborhood
should be the same in both drawings. The measures do not explicitly take into
account the point’s absolute position, and considers its position relative to other
points only in the sense of keeping nearby points together.
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Nearest Neighbor Within [order only] For nearest neighbor within, a
point’s neighborhood is its nearest neighbor. Let nn(p) be the nearest neighbor
of p in the p’s point set and nn(p)′ be the corresponding point in P ′ to nn(p).
Ideally, nn(p)′ should be p′’s nearest neighbor.

nnw(P, P ′) =
1

UB

∑
p∈P

weight(nearer(p))

where

nearer(p) = { q | d(p′, q′) < d(p′, nn(p)′) , q ∈ P , q 6= p , q 6= nn(p) }

Unweighted The unweighted version considers only whether or not nn(p)′

is p′’s nearest neighbor.

weight(S) =
{

0 if |S| = 0
1 otherwise

UB = |P |

Weighted The weighted version takes into account the number of points
in P ′ closer to p′ than nn(p)′.

weight(S) = |S|
UB = |P | (|P | − 1)

ε-Clustering [order only] ε-clustering defines the neighborhood for each
point to be its ε-cluster, the set of points within a distance ε, defined as the
maximum distance between a point and its nearest neighbor. The ε-cluster
for each point is guaranteed to contain at least one other point. The measure
considers the ratio of the number of points in p’s ε-cluster in both drawings to
the number of points in the ε-cluster in at least one of the drawings; ideally, this
ratio would be 1 because the same points would be in both clusters.

eclus = 1 − |SI |
|SU |

where

ε = max
p∈P

min
q∈P,q 6=p

d(p, q)

SI = { (p, q) | p ∈ P , q ∈ clus(p, P, ε) and q′ ∈ clus(p′, P ′, ε′) }
SU = { (p, q) | p ∈ P , q ∈ clus(p, P, ε) or q′ ∈ clus(p′, P ′, ε′) }

clus(p, P, ε) = { q | d(p, q) ≤ ε , q ∈ P , q 6= p }
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Separation-Based Clustering [order only] In the separation-based clus-
tering measure, points are grouped so that each point in a cluster is within some
distance δ of another point in the cluster and at least distance δ from any point
not in the cluster. The intuition is that the eye naturally groups things based
on the surrounding whitespace.

Formally, for every point p in cluster C such that |C| > 1, there is a point
q 6= p ∈ C such that d(p, q) < δ, and d(p, r) > δ for all points r 6∈ C. If C is
a single point, only the second condition holds. Let clus(p) be the cluster to
which point p belongs.

sclus = 1 − |SI |
|SU |

where

SI = { (p, q) | p, q ∈ P , clus(p) = clus(q) and clus(p′) = clus(q′) }
SU = { (p, q) | p, q ∈ P , clus(p) = clus(q) or clus(p′) = clus(q′) }

3.6 Edges

Shape The shape measure treats the edges of the graph as sequences of north,
south, east, and west segments and compares these sequences using the edit
distance.

shape =
1

UB

∑
e∈E

edits(e,e’)

Regular The edit distance is not normalized for the length of the sequence,
and the upper bound is as follows:

UB =
∑
e∈E

| length(e) − length(e′) | + min{ length(e) , length(e′) }

Normalized The edit distance is normalized for the length of the sequence
using the algorithm of Marzal and Vidal [11], and the upper bound is as follows:

UB = |E|

4 Results: Rotation and Ordering

Figures 4(a) and 4(b) show the results for the rotation and ordering tasks,
respectively. The measures are grouped according to the categorization of sec-
tion 3. These results are explained and discussed in the following sections.
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Figure 4: Average measure correctness for the rotation and ordering tasks.
Numbers by columns show average relative correctness for that group; for (b),
relative correctness is shown only for the “similar” and “not” trial groups.
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4.1 Correctness

The success or failure of the candidate similarity measures is determined by
how well they match observed user responses. A measure’s “correctness” is the
fraction of the time the measure correctly predicted user responses on the tasks.

For the rotation task, let an individual trial Trot be described by the tuple
(D, D1, . . . , D8), where D is the base drawing and the Di are the eight orienta-
tions the user must choose between. There are only two drawings that the user
must choose between for the ordering task, so an ordering trial Torder can be
described by the tuple (D, D1, D2).

Let TM be the measure’s choice for a rotation or ordering trial T :

TM =




Dk if M(D, Dk) < M(D, Di) ∀i 6= k
tie if ∃ j, k such that M(D, Dj) = M(D, Dk) ≤ M(D, Di)

∀i 6= j, k (j 6= k)

Also, let Tk denote user k’s response for trial T :

Tk =
{

Dk if the user chose drawing Dk

tie if the user clicked the “can’t decide” button

Note that Tk is only defined if user k was presented with trial T — each trial
was completed by about one-third of the users.

Define the correctness of the measure M with respect to user k for T as
C(M, T, k):

C(M, T, k) =
{

1 if TM = Tk or if Tk = tie
0 otherwise

C(M, T, k) is undefined if Tk is undefined. Any TM is considered to be correct
for those trials where the user’s response is “can’t decide” because it is assumed
that if the user has no preference as to the correct response, she will be happy
with any of the choices.

Let K be the set of users k for which Tk is defined for a particular trial T .
Then the correctness CM,T of measure M for a trial T is

CM,T =

∑
k∈K

C(M, T, k)

|K|

The solid shaded areas behind the columns in Figures 4(a) and 4(b) show
the average correctness for each measure over all rotation and all ordering trials,
respectively. Only the results for the full point set (for point-based measures)
are shown in Figures 4(a) and 4(b); the results for the borders-only point sets are
discussed in section 4.4. Also, only results for the normalized shape measure are
included because there is little difference in the performance of the two shape
measures (p = .95). Unless otherwise specified, the performance of different
measures over a set of trials is compared using Student’s t-test to determine
the probability that the measures have the same average correctness for those
trials.
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Observations For the rotation task, the average correctness over all trials for
even the best measures is disappointingly low — below 50%! — meaning that
even the best of the tested measures will tend to rotate drawings incorrectly
much of the time.

For both rotation and ordering, a striking result is that no one measure
stands out as being significantly better than the others. There is little dif-
ference between the angle-sensitive relative position measures (constant- and
linear-weighted orthogonal ordering, ranking, λ-matrix) and the nearest neigh-
bor within measures; distance, weighted nearest neighbor between, and shape
also have similar good performance on the rotation task. On the other hand, sev-
eral measures stand out as being noticeably worse than the others. Hausdorff
distance, the clustering neighborhood measures (ε-clustering and separation-
based clustering), unweighted nearest neighbor between, and to a lesser degree
maximum distance have the poorest performance over all trials. Figures 5 and 6
summarize the significant similarities and differences in measure performance.

4.2 Correctness By Drawing Category

Some trials were easier than others — one might expect that in the rotation
task it might be easier to choose the “correct” rotation when the new drawing
is very similar to the old, and that in the ordering task it might be easier to
pick the most similar drawing of two when one is very similar to the base. As a
result, the measures under consideration may perform better or worse in these
circumstances.

To evaluate this, the new drawings were separated into categories: similar
for drawings very close to the corresponding base, features for drawings some-
what different from the base but with noticeable recognizable features to help
identification, contradictory for drawings with recognizable features but where
those features contradicted each other (for example, when one feature was ro-
tated with respect to another), and different for drawings that are very different
from the base.

The trials were also grouped according to the type of drawing(s) involved:
rotation trials were considered to be “similar”, “features”, or “contradictory”
according to the category of the new drawing used in the trial, and ordering
trials were considered to be “similar” or “not” depending on whether or not
one of the new drawings in the trial was classified as “similar”. Since only two
drawings were classified as “different”, the results from trials involving these
drawings were included only in the “all trials” results and not in the results
from any other subgroup of trials.

The multiple columns for each measure in Figures 4(a) and 4(b) show the
average correctness for each category of trials. Figure 4(b) breaks down the
trials beyond the two “similar” and “not” groupings, but the discussion is only
in terms of the two groups. There were no ordering trials in which both drawings
were similar, so that combination is not shown.

The categorization used is based on human judgment and the assumption
that features play a key role in similarity. The latter assumption is supported
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angle−sensitive 
relative position

edges relative position degree of match position

Hausdorff distance

unweighted nearest neighbor between

weighted nearest neighbor betweenorthogonal ordering
average distanceranking

normalized shape

maximum distance

Figure 5: Similarities and differences in measure performance for the rotation
task. The vertical position of the measure name indicates its average correctness
over all trials, with the lowest at the bottom. Gray-shaded areas group related
measures. Measures with similar performance are grouped by ovals; arrows
indicate differences between measures or groups of measures. The line style
indicates the significance level: solid for p = .01/p = .99, dashed for p =
.05/p = .95.

by the feedback portion of the study (section 5.2). It is intended that the order-
ing “similar”, “features”, and “contradictory” represent groups of new drawings
that are increasingly different from the base drawing to which they are com-
pared. This goal seems to have been met: in the ordering task, users picked the
drawing from the most similar group in 80% of the trials involving drawings from
different groups, and the most common user response was the drawing from the
most similar group in 90% of the trials. Also, using Student’s t-test to compare
the distances between base and new drawings in each group shows that, for all
of the similarity measures under consideration except Hausdorff distance, the
means of the groups are significantly different and follow the expected pattern
(p = .01). Since most of the measures being tested seem to capture at least
some of the users’ ideas of similarity, this lends support to the categorization.
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Figure 6: Similarities and differences in measure performance for the ordering
task.

Observations Within measures, the expected drop in performance between
“similar” and “features” trials and between “features” and “contradictory” trials
for rotation, and between “similar” and “not” trials for ordering is significant for
nearly every measure (p = .01). The only exceptions are for Hausdorff distance
in the rotation task (differences are not significant, and average correctness is
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higher for “contradictory” than for “features”) and ε-clustering for the ordering
task (drop in performance is significant only at p = .05).

4.3 Mode Correctness

The “correct” answer for any given trial is based on a user’s opinion, and because
approximately 34 students gave responses for each set of drawings, there was
the potential for getting different “correct” user responses for the same set of
drawings. Since each measure always chooses the same response for the same
set of drawings, the best correctness score a measure could receive is if it always
makes the choice that was most common among the users.

Let f(T, r) be the frequency with which the users completing trial T picked
response r from the choices Di. Also define the most common response Tmode
as the response for which f(T, r) is maximized, and the correctness of the most
common response for trial T and user k as

C(mode, T, k) =
{

1 if Tmode = Tk or Tk = tie
0 otherwise

Then the “best possible score” for a measure for trial T is:

Cbest,T =

∑
k∈K

C(mode, T, k)

|K|

where K is the set of users completing trial T . The “mode” columns of Fig-
ures 4(a) and 4(b) show the average value of Cbest over the various groups of
trials.

The relative correctness for a given measure and trial is the ratio of the
measure’s correctness to the mode correctness for that trial. The numbers listed
by the measure columns in Figure 4(a) give the average relative correctness for
each group of trials for which the average correctness is given; the numbers
shown in Figure 4(b) give the average relative correctness for the “similar” and
“not” trial groups.

Observations The first observation is that, as one might expect, the average
mode correctness drops for the less similar trials. The differences in average
mode correctness between “similar”, “features”, and “contradictory” trials in
the rotation task and between “similar” and “not” trials in the ordering task
are significant (p = .01). The drop in correctness between the more similar and
more different trials is due to an increase in user disagreement over the correct
answer for each trial. Table 1 summarizes the degree to which users preferred
some drawings to others for different groups of trials.

The mode correctness is also affected by the number of users choosing “can’t
decide” for each trial — a large number of “can’t decide” answers will raise the
value of the mode correctness. For rotation, the percentage of “can’t decide”
answers grew from 1.1% for “similar” drawings to 3.9% for “features” drawings
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rotation all trials similar features contradictory
preference 92% 100% 94% 83%
no preference - - - -

ordering all trials similar not
preference 70% 94% 61%
no preference 1.9% - 2.6%

Table 1: Percentage of trials for which users preferred one or more choices over
the others, and for which there was no preference. Preference was determined
using the χ2 test to compare the distribution of frequencies for each possible
choice in a trial with a uniform distribution (the expectation if there was no
preference among the choices in the trial). “Preference” indicates a significant
difference between the distribution of user responses and the uniform distribu-
tion (p = .05); “no preference” indicates no difference between the distribution
of user responses and the uniform distribution (p = .95).

and 6.7% for “contradictory” drawings. For ordering, the percentage grew from
2.7% for trials involving “similar” drawings to 6.1% for trials not involving
“similar” drawings. The increase in “can’t decide” answers partially offsets the
drop in mode correctness due to increased user disagreement, but did not cancel
out the effect.

A second observation concerns the relative correctness. While the average
correctness is low for all measures, the relative correctness results are better.
For both rotation and ordering, the average correctness is at least 90% of the
average mode correctness for most measures. (Exceptions are Hausdorff dis-
tance, unweighted nearest neighbor between, and the clustering neighborhood
measures (ε-clustering and separation-based clustering).) This indicates that
low correctness values for these measures, especially in the rotation task, are
primarily due to disagreements between users about the correct answer rather
than major failings on the part of the measures.

An interesting note is that the average relative correctness of most measures
drops with the more difficult trials — the lower performance for these trials is not
due only to increased user disagreement about the correct answer. Table 2 lists
the measures for which the drop is significant. The drop in relative correctness,
combined with the presence of some user preference for many of even the most
different trials, suggests that there are more subtle similarities that users are
picking up on that the measures do not capture. The good relative performance
for “similar” trials is the result of the drawings in those trials being similar
in many ways — including those ways captured by the measures — while the
poorer relative performance for more different trials is the result of the measures’
missing something that the users are seeing.
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rotation ordering
maximum distance maximum distance

unweighted nearest neighbor between weighted nearest neighbor between
ranking average distance

normalized shape constant-weighted orthogonal ordering
linear-weighted orthogonal ordering

ranking
λ-matrix

relative distance
unweighted nearest neighbor within
weighted nearest neighbor within

Table 2: Measures for which the average relative correctness is significantly lower
between “similar” or “features” trials and “contradictory” trials (rotation) or
between “similar” and “not” trials (ordering); p = .05.

4.4 Border vs. Full Point Sets

Based on user feedback (see section 5.2), a second point set using only those
points near the borders of the drawing was tested for point-based measures.
There was no significant difference in performance between the two point sets
for any measure (p = .95), and so results for the borders-only point set are not
included in Figures 4(a) and 4(b).

4.5 Per-User Correctness

The low correctness for even the mode (65% for the most similar drawings) in the
rotation task indicates that not all users agree on what the “correct” answer
is for a given trial. This suggests that users have different ideas about what
factors make drawings look more similar, or different ideas about the relative
importance of different aspects of similarity.

Let Tk be the set of trials for which Tk is defined, i.e., the set of trials user
k completed. Then the correctness of measure M for user k is

CM,k =

∑
T∈Tk

C(M, T, k)

|Tk|

Figure 7 shows CM,k for each measure/user combination in the rotation task.

Observations The most striking observations from Figure 7 are that the mea-
sures that do badly overall (Hausdorff distance and unweighted nearest neigh-
bor between) perform badly for every user, and the measures that perform well
overall tend to all perform well or all perform badly for an individual user. The
results are similar, but less dramatic, for the ordering task.
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Figure 7: Average correctness per user for the rotation task. Colors indicate the
average correctness, from light gray (1) to black (0). Each measure label (except
normalized shape) spans two rows, where the top row shows the borders-only
point set and the bottom row the full point set.

rotation all trials similar features contradictory
borders-only better 5.8% - - 7.1%
full better 2.0% - - -
no difference 23% 100% 54% 39%

ordering all trials similar not
borders-only better 6.9% 4.9% 6.9%
full better 8.8% 8.8% 9.8%
no difference 1.0% 40% 2.9%

Table 3: Percentage of users which are significantly better predicted by one of
the point sets used (p = .05), and the percentage for which there is no difference
(p = .95).

Of interest, though, is that there is a small group of users who are signif-
icantly better- or worse-predicted by the borders-only point set than the full
point set. The CM,k values for a user k for selected measures were compared for
the full and borders-only point set using Student’s t-test. The measures used
were for the better measures: all of the point-based measures except Hausdorff
distance, unweighted nearest neighbor between, and the clustering neighborhood
measures (ε-clustering and separation-based clustering). Table 3 summarizes the
results.

The cases for which the borders-only point set performs better meshes well
with the feedback from the study (section 5.2), though many more users com-
mented on the importance of the borders than had a significant improvement
for that point set. One possibility for this is that the change in the border may
be representative of the change in the drawing as a whole, so that full point set
performs well for users even if they are focusing primarily on the borders of the
drawing. For the rotation task, another possibility is that many of the measures
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are already more sensitive to changes in the border regions than in the centers
of the drawings because rotation moves points near the borders farther than
those near the center. This means that the full point set versions will tend to
perform similarly to the border-only sets for rotation.

Another interesting note is that a larger number of users were better-
predicted by the border point set for more different trials than for the simi-
lar trials. This suggests that the borders become important when the obvious
similarities disappear — when the drawings are similar, users can easily select
their responses based on the overall look of the drawing, but when the drawings
become more different, they begin focusing on the borders to look for distin-
guishing characteristics.

Focusing on cases where the borders-only point set outperforms the full
point set ignores those instances where the reverse is true. In fact, more users
are predicted better by the full point set than by the borders-only point set
for the ordering task — a pattern which is not seen in the results from the
rotation task. This may be the result of users looking for different things in
each task — the overall look may be more important in the ordering task, while
users gravitate towards the borders when looking for hints as to the proper
orientation in the rotation task. The border-sensitivity of many measures under
rotation may also explain this difference — if both full and border-only point
sets are sensitive to the same things, they will tend to perform in the same way
and thus the full point set will not perform better.

4.6 Other Rotation Angles

The rotation task focused on differences of π/2 in the rotation angle — a very
large difference, though it is the only meaningful difference for orthogonal draw-
ings since a user can easily tell that a rotation by some other angle is not the
best match. Ideally, there would be no change in a measure’s correctness if ad-
ditional rotation angles are considered, since the user’s “correct” answer would
not change.

Figure 8 shows the average correctness over all trials for three sets of orien-
tations: the π/2 multiples (with and without an initial flip around the x-axis)
discussed so far (labelled “π/2”), the π/2 multiples augmented by the four ad-
ditional multiples of π/4 (labelled “π/4”), and the π/2 multiples augmented
by the four additional rotations π/36, π/2 + π/36, π + π/36, and 3π/2 + π/36
(labelled “π/36 offsets”). (The shape measure is not included in the figure be-
cause it is defined only in terms of orthogonal drawings.) The π/4 set adds
several additional orientations, though the angle between successive rotations is
still relatively large; the π/36 offsets add rotation angles which are very close
to angles a user would consider. The additional rotations were not presented to
the users, as it was assumed that no one would pick one of them.

Observations Clearly the ideal outcome did not happen — over all trials,
there is a drop in the average correctness with the addition of the extra orienta-
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Figure 8: Measure correctness for rotation with other sets of orientations.

tions and the drop is greater for the π/36 offsets group than for the π/4 group.
Table 4 summarizes the significant results.

If the correctness criterion is relaxed so that measures are only expected to
choose a rotation near the correct one, the drop in performance is eliminated.
The expanded definition of “correct” is as follows: Cnear(M, T, k) = 1 if Tk

is “tie” or if the rotation angle of TM is within ±π/4 of the rotation angle
of Tk for “π/4” and within ±π/36 for “π/36 offsets.” The improvement in
the results indicates that when the wrong rotation is chosen, it tends to be
near the right one. This suggests that while the measures would likely perform
less satisfactorily when asked to pick the correct rotation in non-orthogonal
applications, they would still perform reasonably well if the goal is only to
obtain approximately the right orientation.

5 Other Results

5.1 Difference Task

The goal in the difference part was to be able to use the user’s response times as
an indicator of similarity, the idea being that a user can locate the new vertex
faster if the drawings are more similar. As a test of the validity of this, the
times on the difference part were used to order the pairs of drawings used in
the ordering task. The results were very unsatisfactory, achieving only 45%
correctness on average (compare to Figure 4(b), where even the worst of the
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π/2 vs. π/4 all trials similar features contradictory
Hausdorff distance
maximum distance >> >> >>
nearest neighbor between

unweighted =
weighted > == >>

average distance > == >>
orthogonal ordering

constant-weighted == >
linear-weighted == >

ranking == >

π/2 vs. π/36 offsets all trials similar features contradictory
Hausdorff distance >> >
maximum distance >> >> >> >>
nearest neighbor between

unweighted >> > >> >
weighted >> > >> >>

average distance >> >> >>
orthogonal ordering

constant-weighted >> >> >
linear-weighted >> >> >

ranking >> >> >>

Table 4: Comparing the average performance for each group of trials for dif-
ferent sets of orientations. “>” and “>>” indicate a drop in performance
with additional drawings; “=” and “==” indicate that the performance did
not change. The number of symbols indicates the significance level: “>” and
“=” for p = .05/p = .95, “>>” and “==” for p = .01/p = .99.

measures under consideration reached 62% correctness). As a result, the times
on the difference task are not a good indicator of similarity and are not suitable
for evaluating measures with respect to the magnitude criterion.

5.2 User Feedback

The students’ responses to the final questionnaire yielded several interesting
notes. As might be expected, the responses as to what makes two drawings look
similar in the rotation and ordering parts included a sizable percentage (35%)
who said preserving the position, size, number of large vertices was important
and another large percentage (44%) who said they looked for distinctive clusters
and patterns of vertices, such as chains, zigzags, and degree 1 vertices. More
surprising was that 44% of the students said that borders and corners of the
drawing are more important than the interior when looking for similarity. This
is supported by research in cognitive science indicating that people often treat
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filled and outline shapes as equivalent, focusing primarily on the external con-
tour (Wickelgren [18]). A number of these students mentioned the importance
of “twiddly bits around the edges” — distinctive clusters and arrangements of
vertices, made more obvious by being on the border. Related comments were
also that the orientation and aspect ratio of the bounding box should remain the
same, and that the outline of the drawing should not change. Another sizable
group (34%) commented that the “general shape” of the drawing is important.

For the question about the difference part, several users expressed frustra-
tion at the difficulty of the task. The usefulness of the “big picture” view —
looking at the overall shape of the drawing — was contested, with nearly equal
numbers reporting that the overall look was useful in the task, and that it was
confusing and misleading. About 16% of the users mentioned limited use of the
overall look, using it on a region-by-region basis to quickly eliminate blocks that
remained the same and falling back on simply scanning the drawing or matching
corresponding vertices and tracing edges when the regions were too different.
Another 24% reported using vertex-by-vertex matching from the beginning. A
similar-sized group (20%) figured out shortcuts, such as that the edges added
along with the new vertex frequently caused one of the neighboring vertices
to have a degree larger than 4 and thus be drawn with a larger box, so they
scanned for the neighbors of the large boxes to find the new vertex. Overall,
just over a quarter of the users (28%) reported searching for vertices with extra
edges rather than searching for new vertex directly.

For the final question, about what a graph drawing algorithm should take
into account if the look of the drawing should be preserved, the most common
answers echoed those from the rotation/ordering question: maintaining vertex
size and shape, the relative positions of vertices, the outline of the drawing, and
clusters.

6 Conclusions and Future Work

Table 5 summarizes the best and worst of the measures evaluated.
As groups, the angle-sensitive relative position measures (orthogonal or-

dering, ranking, and λ-matrix) and the non-clustering neighborhood measures
(weighted and unweighted nearest neighbor within) performed significantly bet-
ter than the degree-of-match measures (Hausdorff distance and maximum dis-
tance) and the clustering neighborhood measures (ε-clustering and separation-
based clustering). As a result, the orthogonal ordering, ranking, λ-matrix, and
nearest neighbor within measures are given the highest ranking.

Two of the three position measures (weighted nearest neighbor between and
average distance) also perform significantly better than the degree-of-match and
clustering neighborhood measures, and so are also ranked well. They are given
the second-level ranking because there was a slightly greater dropoff in their
performance when additional rotation angles were introduced, suggesting that
they might not perform quite as well for non-orthogonal drawings.

Shape and relative distance are also given an above-average ranking be-
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best measures

angle-sensitive
relative position

ranking
orthogonal ordering (constant- and linear-weighted)
λ-matrix




non-clustering
neighborhood nearest neighbor within (weighted and unweighted)

{

position average distance
weighted nearest neighbor between

{
edges shape

{
distance-sensitive
relative position relative distance

{

middle-of-the-road measures

degree of match maximum distance
{

worst measures
clustering
neighborhood

ε-clustering
separation-based clustering

{
position unweighted nearest neighbor between

{
degree of match Hausdorff distance

{

Table 5: Overall ranking of the measures evaluated. Measures are listed in
groups from best to worst; groups are separated by horizontal lines. There is
little difference between measures in a single group.

cause of their performance on the ordering task — while not significantly worse
than the top-ranked measures, they were also not significantly better than the
bottom-ranked measures. It should be noted that shape was among the best
measures for the rotation task.

Maximum distance received a middle-of-the-road ranking because of its
middle-of-the-road performance in both tasks — while it performed as well the
several top-ranked measures for the “similar” rotation trials, its average correct-
ness was between the top- and bottom-ranked measures for both rotation and
ordering. Also, when the degree-of-match measures were considered as a group,
their performance was significantly worse than the top-ranked groups.

The clustering neighborhood measures and the unweighted nearest neighbor
between measure all performed significantly worse than the top-ranked groups of
measures, and so are given a low ranking. Hausdorff distance is given the bottom
ranking because it performs significantly worse than most other measures in
most groups of trials.

Several other conclusions can be drawn from this study:

• The difference in relative correctness between the more similar and more
different trials for both rotation and ordering task suggests that there are
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more subtle notions of similarity which are being missed by the measures
tested, and which, if incorporated, would improve their performance.

• The per-user analysis suggests that while it is meaningful to talk about
“good” measures and “bad” measures in overall terms, to get the max-
imum performance it may be necessary to tailor the specific similarity
measure used to a particular user.

• The difficulty of the difference part suggests that the amount of difference
between the drawings that is considered reasonable varies greatly with the
task — when the user simply needs to recognize the graph as familiar, the
perimeter of the drawing and the position and shape of few key features
are the most important. On the other hand, when trying to find a specific
small change, the drawings need to look very much alike or else the user
needs some other cues (change in color, more distinctive vertex names,
etc.) in order to highlight the change.

The students’ responses on the questionnaire suggest several possible direc-
tions for future investigation.

• The number of students who mentioned focusing on drawing borders was
surprising, and additional study is needed to further investigate the im-
portance of borders.

• Large vertices are identified as being especially important, which could
lead to a scheme in which changes in the position and size of large vertices
are weighted more heavily than other vertices.

• Another major focus was clusters of vertices — both the presence of clus-
ters in general, and the presence of specific shapes such as chains and
zigzags. The relatively poor showing of the clustering measures indicates
that they are not making use of clusters in the right way. The fact that
the students reported looking for specific shapes suggests an approach re-
lated to the drawing algorithms of Dengler, Friedell, and Marks [6] and
Ryall, Marks, and Shieber [16]. These algorithms try to produce draw-
ings which employ effective perceptual organization by identifying Visual
Organization Features (VOFs) used by human graphic designers. VOFs
include horizontal and vertical alignment of vertices, particular shapes
such as “T” shapes, and symmetrically placed groups of vertices. VOFs
can also be used not to guide the creation of drawings from scratch, but
to identify features in an existing drawing that may be important because
they adhere to a particular design principle. This is related to the work
of Dengler and Cowan [5] on semantic attributes that humans attach to
drawings based on the layout — for example, symmetrically placed nodes
are interpreted as having common properties. A similarity measure could
then measure how well those structures are preserved, and an interactive
graph drawing algorithm could focus on preserving the structures.
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