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Abstract

Let G = (V,E) be a planar graph and let V be a partition of V . We
refer to the graphs induced by the vertex sets in V as clusters. Let DC
be an arrangement of pairwise disjoint disks with a bijection between the
disks and the clusters. Akitaya et al. [2] give an algorithm to test whether
(G,V) can be embedded onto DC with the additional constraint that edges
are routed through a set of pipes between the disks. If such an embedding
exists, we prove that every clustered graph and every disk arrangement
without pipe-disk intersections has a planar straight-line drawing where
every vertex is embedded in the disk corresponding to its cluster. This
result can be seen as an extension of the result by Alam et al. [3] who
solely consider biconnected clusters. Moreover, we prove that it is NP-
hard to decide whether a clustered graph has such a straight-line drawing,
if we permit pipe-disk intersections, even if all disks have unit size. This
answers an open question of Angelini et al. [4].
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1 Introduction

We study whether a clustered planar graph C has a planar straight-line drawing
on a prescribed set of disks where each edge is allowed to intersect the boundary
of each disk at most once. More formally, a (flat) clustering of a graph G =
(V,E) is a partition V = {V1, . . . , Vk} of the vertex set V . We refer to the pair
C = (G,V) as a clustered graph and the graphs Gi = (Vi, Ei) induced by Vi
as clusters. The set of edges Ei of a cluster Gi are intra-cluster edges and the
set of edges with endpoints in different clusters are inter-cluster edges. A disk
arrangement DC = {D1, . . . , Dk} of C is a set of disks in the plane together with
a bijective mapping µ(Vi) = Di between the clusters V and the disks D.

A pipe pij of two clusters Vi, Vj is the convex hull of the disks Di and Dj , i.e.,
the smallest convex set of points containing Di and Dj ; see Figure 1. Observe
that the boundary of pij is composed of two line segments uij , bij and two
circular arcs. We refer to a topological planar drawing of G, i.e., the drawing of
each edge is a curve, as an embedding of G. A DC-framed embedding of G is an
embedding of G where each vertex v ∈ Vi lies in the interior of the disk Di and
each edge uv, with u ∈ Vi and v ∈ Vj , lies entirely in the pipe of Vi and Vj .

Given a cluster planar graph C, a disk arrangement DC of C and a DC-framed
embedding ψ, Godau [11] proves that it is NP-hard to decide whether G has
a DC-framed straight-line drawing Γ such that ψ is homeomorphic to Γ. The
gadgets in the proof contain disks of size 0, i.e., the positions of some vertices
are fixed. Moreover, there are disks that are entirely contained in a larger disk,
i.e., there exist two disk di, dj , i 6= j with di ⊂ dj . Angelini et al. [4] consider
the case where G is not embedded but all disks have unit size. More formally,
they show that given a planar graph G, it is NP-hard to decide whether G has
a DC-framed straight-line drawing. For unit disks, they leave the computational
complexity of the question whether a DC-framed embedding has a corresponding
DC-framed straight-line drawing as an open question. Banyassady et al. [6] show
that this problem is NP-hard in case that G is the intersection graph of DC ,
i.e., each vertex corresponds to a disk and two vertices are joined by an edge if
the intersection of the corresponding disks is not empty.

The computational complexity of the following problem has not been con-
sidered: Given a cluster planar graph C = (G,V), a set of pairwise disjoint
disks D and a DC-framed embedding ψ, does C admit a DC-framed straight-line
drawing of C that is homeomorphic to ψ. Thereby, we consider two DC-framed
embeddings ψ,ψ′ of C to be homeomorphic if (i) ψ and ψ′ have the same combi-
natorial embedding and the same outer face, (ii) each edge e of G crosses a line
segment uij (bij) of a pipe pij in ψ if and only if it crosses the respective line
segment in ψ′, (iii) and it does so in the same order. Observe that every edge
in a DC-framed straight-line drawing intersects the boundary of a pipe at most
twice; see Figure 1. Thus, in the following we assume as a necessary condition
that an edge in a DC-framed embedding crosses the boundary of a pipe at most
twice.



JGAA, 24(2) 105–131 (2020) 107

Di

Dj

pij

(a) (b) (c)

Figure 1: (a) The light-blue region shows the pipe pij of the disks Di and
Dj . An edge in a DC-framed straight-line drawing intersects the boundary of
a pipe at most two times. Thus, the DC-framed embedding described in (b)
does not correspond to DC-framed straight-line drawing. The drawing in (c) is
not homeomorphic to (a), since the edge in (c) intersects different parts of the
boundaries of the pipes.

Related Work Feng et al. [10] introduced the notion of clustered graphs and
c-planarity. A graph G together with a recursive partitioning of the vertex set
is considered to be a clustered graph. An embedding of G is c-planar if (i) each
cluster c is drawn within a connected region Rc, (ii) two regions Rc, Rd intersect
if and only if the cluster c contains the cluster d or vice versa, and (iii) every edge
intersects the boundary of a region at most once. They prove that a c-planar
embedding of a connected clustered graph can be computed in O(n2) time. It is
an open question whether this result can be extended to disconnected clustered
graphs. Many special cases of this problem have been considered [7].

Eades et al. [9] prove that every c-planar graph has a c-planar straight-line
drawing where each cluster is drawn in a convex region. Angelini et al. [5]
strengthen this result by showing that every c-planar graph has a c-planar
straight-line drawing in which every cluster is drawn in an axis-parallel rect-
angle. The result of Akitaya et al. [2] implies that in O(n log n) time one can
decide whether an abstract graph with a flat clustering has an embedding where
each vertex lies in a prescribed topological disk and every edge is routed through
a prescribed topological pipe. In general they ask whether a simplicial map ϕ
of G onto a 2-manifold M is a weak embedding, i.e., for every ε > 0, ϕ can be
perturbed into an embedding ψε with ||ϕ− ψε|| < ε.

Alam et al. [3] prove that it is NP-hard to decide whether an embedded clus-
tered graph has a c-planar straight-line drawing where every cluster is contained
in a prescribed (thin) rectangle and edges have to pass through the interval com-
mon for both rectangles. Further, they prove that all instances with biconnected
clusters always admit a solution. Their result implies that graphs of this class
have DC-framed straight-line drawings.

Ribó [13] shows that every embedded clustered graph where each cluster is
a set of independent vertices has a straight-line drawing such that every cluster
lies in a prescribed disk. In contrast to our setting Ribó allows an edge e to
intersect a disk of a cluster Gi that does not contain an endpoint of e.
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Gi

Figure 2: The cluster Gi cannot be augmented with edges such that Gi becomes
biconnected.

Contribution We say that a disk arrangement DC is pipe-disk intersection
free if each pipe pij that contains an edge (i.e, (Vi×Vj)∩E 6= ∅) does not have
an intersection with a disk dk, where k 6= i, j. In Section 2, we prove that if
the disk arrangement DC is pipe-disk intersection free and each pair of disks is
disjoint, then every clustered planar graph (G,V) with a DC-framed embedding
ψ has a DC-framed planar straight-line drawing homeomorphic to ψ. Taking the
result of Akitaya et al. [2] into account, our result can be used to test whether
an abstract clustered graph with connected clusters has a DC-framed straight-
line drawing. The example in Figure 2 shows that in general clusters cannot
be augmented to be biconnected, if the embedding is fixed. Hence, our result
is generalization of the result of Alam et al. [3]. In Section 3, we show that
the problem is NP-hard in the case that the disk arrangements is not pipe-disk
intersection free. More specifically, we show that the problem is NP-hard in
case of arrangements of unit disks and as well as in the case of axis-aligned unit
squares. This answers the aforementioned open question of Angelini et al. [4].
From now on we refer to a DC-framed straight-line drawing of G simply as a
DC-framed drawing of G.

2 Drawing on Disk Arrangements that are Pipe-
Disk Intersection Free

Let C = (G,V) be a clustered planar graph, let DC be a disk arrangement
with pairwise disjoint disks that is pipe-disk intersection free, and let ψ be a
DC-framed embedding of C. In this section we prove that C has a DC-framed
drawing that is homeomorphic to ψ. We prove the statement by induction on
the number of intra-cluster edges. In Lemma 1 we show that we can indeed
reduce the number of intra-cluster edges by contracting intra-cluster edges. In
Lemma 2, we prove that the statement is correct if the outer face of C is a
triangle and C is connected, i.e., each cluster Gi is connected. In Theorem 1 we
extend this result to clustered graphs whose clusters are not connected.

A triangle T in an embedded planar graph G is separating if the interior
and exterior of T each contain a vertex of G. Let e = uv be an intra-cluster
edge of G that is not an edge of a separating triangle. We obtain a contracted
clustered graph C/e of C by removing v from G and connecting the neighbors of
v to u. We obtain a corresponding embedding ψ/e from ψ by routing the edges
vw ∈ E,w 6= u close to the original drawing of uv.
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Figure 3: (a) Since uv is not an edge of a separating triangle edges xu, xv do
not exist. (b) Moving u within disk du preserves the embedding of G/uv. (c)
Drawing of G obtained from (b) by placing v in rv.

Lemma 1 Let C = (G,V) be a connected clustered planar graph, DC be a disk
arrangement with pairwise disjoint disks that is pipe-disk intersection free and let
ψ be DC-framed embedding of C. Let e be an intra-cluster edge that is not an edge
of a separating triangle. Then C has a DC-framed drawing that is homeomorphic
to ψ if C/e has a DC-framed drawing that is homeomorphic to ψ/e.

Proof: Let e = uv and denote by u0, u1, . . . , uk the neighbors of u and denote by
v0, v1, . . . , vl the neighbors of v in C in clockwise order; see Figure 3a. Without
loss of generality, we assume that u0 = v and v0 = u. Since e is not an edge
of a separating triangle the set I := {u2, . . . , uk−1} ∩ {v2, . . . , vl−1} is empty.
Denote by u the vertex obtained by the contraction of e. Let Gi be the cluster
of u and v, and let Di be the corresponding disk in DC .

Consider a DC-framed drawing Γ/e of C/e homeomorphic to ψ/e; see Fig-
ure 3b. Then there is a small disk Du ⊂ Di around u such that for every point p
in Du moving u to p yields a DC-framed drawing that is homeomorphic to ψ/e.

We obtain a straight-line drawing Γ of C from Γ/e as follows; see Figure 3c.
First, we remove the edges uvi from Γ/e. The edges uu1, uuk partition Du

into two regions ru, rv such that the intersection of rv with uui is empty for
all i ∈ {2, . . . , k − 1}. We place v in rv and connect it to u and the vertices
v1, . . . , vl. Since rv is a subset of Du and I = ∅, we have that the new drawing Γ
is planar. Since v is placed in rv, the edge uv is in between uu1 and uuk in the
rotational order of edges around u. Hence, Γ is homeomorphic to ψ. Finally,
Γ is a DC-framed drawing since, Du is entirely contained in Di and thus are u
and v. �

Lemma 2 Let C be a connected clustered graph with a triangular outer face
T , let DC be a disk arrangement with pairwise disjoint disks that is pipe-disk
intersection free, and let ψ be a DC-framed embedding of C. Moreover, let ΓT be a
DC-framed drawing of T . Then C has a DC-framed drawing that is homeomorphic
to ψ with the outer face drawn as ΓT .

Proof: We prove the theorem by induction on the number of intra-cluster edges.
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(a) (b) (c)

Figure 4: Instances with a triangular outer face that do not contain contractable
intra-cluster edges.

First, consider the case that every intra-cluster edge of C is an edge on the
boundary of the outer face. Note that there are at most three vertices in the
interior of a single disk. Thus, C is either a triangle as depicted in Figure 4a and
Figure 4b, or each cluster is a single vertex. Since DC is pipe-disk intersection
free, the graph in Figure 4a and Figure 4b C does not contain any further
vertices. Let Γ be the drawing obtained from ΓT by placing every vertex that
does not lie on the outer face on the center point of its corresponding disk.
Since DC is a pipe-disk intersection free and ΓT is convex, the resulting drawing
is planar and thus a DC-framed drawing of C that is homeomorphic to the
embedding ψ.

Let S be a separating triangle of C that splits C into two subgraphs Cin and
Cout so that Cin ∩ Cout = S and the outer face of Cout and C coincide. Note
that Cin and Cout are connected as otherwise C itself would not be connected.
Then by the induction hypothesis Cout has the DC-framed drawing Γout with the
outer face drawn as ΓT and Cin has a DC-framed drawing Γin with the outer face
drawn as Γout[S], where Γout[S] is the drawing of S in Γout. Then we obtain a
DC-framed drawing of C by merging Γin and Γout.

Consider an intra-cluster edge e that does not lie on the boundary of the
outer face and is not an edge of a separating triangle. Then by the induction
hypothesis, C/e has a DC-framed drawing with the outer face drawn as ΓT . It
follows by Lemma 1 that C has a DC-framed drawing homeomorphic to ψ. �

Theorem 1 Every clustered graph C with a DC-framed embedding ψ has a DC-
framed drawing homeomorphic to ψ if the disk arrangement DC is pairwise dis-
joint and pipe-disk intersection free.

Proof: We obtain a clustered graph C′ from C by adding a new triangle T to
the graph and assigning each vertex of T to a newly constructed cluster. Let
ΓT be a drawing of T that contains all disks in DC in its interior. We obtain a
new disk arrangement D′C from DC by adding a sufficiently small disk for each
vertex of ΓT . The embedding ψ together with ΓT is a D′C-framed embedding ψ′

of C′.
According to Feng et al. [10] there is a simple connected clustered graph C′′

that contains C′ as a subgraph whose embedding ψ′′ is DC-framed and contains
ψ′. By Lemma 2 there is a DC-framed drawing Γ′′ of C′′ homeomorphic to ψ′′
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with the outer face drawn as ΓT . The drawing Γ′′ contains a DC-framed drawing
of C. �

3 Drawing on Arrangements with Pipe-Disk In-
tersections

In this section we study the following problem referred to as DC-framed Draw-
ings with Pipe-Disk Intersections. Given a planar clustered graph C =
(G,V), a disk arrangement DC with pairwise disjoint disks that is not disk-pipe
intersection free, and a DC-framed embedding ψ of C, is there a DC-framed
drawing Γ that is homeomorphic to ψ?

Note that if the disks DC are allowed to overlap and G is the intersection
graph of DC , the problem is known to be NP-hard [6]. Thus, in the following
we require that the disks do not overlap, but there can be pipe-disk intersec-
tions. By Alam at al. [3] it follows that the problem restricted to thin touching
rectangles instead of disks is NP-hard. Their reduction heavily relies on the
fact that the rectangles are thin. We strengthen this result and prove that in
case that the rectangles are either axis-aligned unit squares or unit disks and
are not allowed to touch the problem remains NP-hard.

To prove NP-hardness we reduce from Planar Monotone 3-SAT [8]. For
each literal and clause we construct a clustered graph C with an arrangement
of disks (squares) DC of C such that each disk (square) contains exactly one
vertex. We refer to these instances as literal and clause gadgets. In order to
transport information from the literals to the clauses, we construct a copy and
inverter gadget. For each gadget we first construct an arrangement of unit
squares and state its important properties in this case. This is followed by the
corresponding arrangement of unit disks. We emphasize the differences that
have to be dealt with to preserve the properties of the gadgets when considering
unit disks instead of unit squares. The design of the gadgets is inspired by Alam
et al. [3], but the restriction to unit disks and squares rather than thin touching
rectangles, requires a more complex construction and a careful placement of
the geometric objects. The green and red regions in the figures of the gadget
correspond to positive and negative drawings of the literal gadget. The green
and red line segments indicate that for each truth assignment of the variables
our gadgets indeed have DC-framed straight-line drawings. Negative versions
of the literal and clause gadget are obtained by mirroring vertically. Hence,
we assume that variables and clauses are positive. Each gadget covers a set
of checkerboard cells. This simplifies the assembly of the gadgets in the final
reduction. Note that in the following constructions all squares and disks will be
of unit size. Moreover, we consider only axis-aligned squares.

3.1 Regulator

A line l separates the euclidean plane in two half planes ha and hb and we
denote by ha the complement of ha. These half planes are spanned by l. We
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Figure 5: Regulator gadget

say that l supports ha (hb). Let B be an axis-aligned square that contains a
vertex v in its interior and let ha, hb be two half planes whose supporting lines
have a unique intersection point q that lies in the interior of B; see Figure 5.
We describe the construction of a gadget that restricts the feasible placements
of v in a DC-framed drawing by a half plane h that excludes a placement of v
in ha ∩ hb but allows for a placement in ha ∩ B or hb ∩ B. Since q lies in the
interior of B, there is a half plane h that does not contain q and for each i = a, b,
h ∩ hi ∩B is not empty, but h ∩ ha ∩ hb = ∅.

Let h, ha, hb and B as described before. We construct a regulator gadget of
v in B with respect to ha and hb as follows. Let lh be the supporting line of
h. We create two axis-aligned squares R and O such that R,O and B intersect
lh in this order and h neither intersects the interior of R nor the interior of O.
Place a vertex u in R and route an edge uv through h ∪R ∪B. In case that h
instead of ha and hb is given, we refer to the gadget as the regulator of v with
respect to a (single) half plane h.

Lemma 3 Let W be a regulator gadget of v in B with respect to ha and hb.
For every point pv ∈ h ∩ B there is a DC-framed drawing Γ such that v lies on
pv. There is no DC-framed drawing of W such that v lies in h ∩B.

Proof: By construction of W , there is for every point pv ∈ h ∩B a DC-framed
drawing Γ such that v lies on pv.

The supporting line lh of h intersects the boundary of R and does not inter-
sect the interior of O. Let r and o be points in the intersection of lh with R and
O, respectively. Since Γ is homeomorphic to W the edge uv intersects lh on the
ray starting in o in the direction towards r. Therefore, u and v lie on different
sides of lh. Since u ∈ R, it follows that v ∈ h. �

We refer to the intersection h ∩ B as the regulated region of v in B. Thus,
by the construction of W , the regulated region Q has a non-empty intersection
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Figure 6: (a) The literal gadget. (b) The positive regions Pi are depicted in
green and the negative regions Ni are red. The grey regions Qi are infeasible.
The green / red squared indicate that there are positive and negative realizations
of the literal gadget.

with ha ∩ B and hb ∩ B. Thus, by the lemma for each placement of v in
Q ∩ hi ∩ B, i = a, b, there is a DC-framed drawing. On the other hand, since
h∩ha∩hb∩B = ∅, there is no DC-framed drawing such that v lies in ha∩hb∩B.

3.2 Literal Gadget

In this section we construct a clustered graph C with an arrangement of squares
DC that models a literal u. The positive literal gadget is depicted in Figure 6a.
We obtain the negative literal gadget by mirroring vertically.

The center block is a unit square C with corners α1, α2, α3, α4 in clockwise
order. For each corner αi of C consider a line li that is tangent to C in αi, i.e,
li ∩ C = {αi}. Let pi be the intersection of the lines li−1 and li where l0 = l4;
refer to Figure 6a. Let R1, . . . , R4 be four pairwise non-intersecting squares
that are disjoint from C such that Ri contains pi in its interior. We add a cycle
v1v2v3v4v1 to the graph such that vi ∈ Ri. We refer to the vertex vi as the cycle
vertex of the cycle block Ri. For each i, let ηi be a half plane that contains Ri+1

but does not intersect C. Within ηi we place a regulator Wi of vi with respect
to hi−1 and hi, where hi is the half plane spanned by li that does not contain
C. This finishes the construction.

We now show that there exist two disjoint regions Pi and Ni in Ri that
correspond to a positive and negative drawing of the literal gadget. Consider
R1 and its two adjacent squares R4 and R2. Let Qi be the regulated region
of Ri with respect to Wi. Then the intersection I1 := h4 ∩ h1 ∩ Q1 6= ∅. We
refer to I1 as the infeasible region of R1. The intersection h1∩Q1 is the positive
region P1 of R1. The region h4 ∩ Q1 is the negative region N1 of R1. Regions
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Figure 7: Since vi does not lie in hi ∩ Ri (green) and li is tangent to C, vi+1

lies in the hi+1 ∩Ri+1 (red).

P1, N1, I1 are by construction not empty. The positive, negative and infeasible
region of Ri, i 6= 1 are defined analogously.

Property 2 If Γ is a DC-framed drawing of a literal gadget, then no cycle vertex
vi lies in the infeasible region of Ri. Moreover, either each cycle vertex vi lies
in the positive region Pi or each vertex vi lies in the negative region Ni.

Proof: Consider a DC-framed drawing Γ with an edge vivi+1 such that vi lies
in Pi, i.e., vi lies in hi∩Ri; see Figure7. We show that vi+1 lies in Ni+1. If vi+1

lies in hi, then vi and vi+1 lie on the same side of li. Since li is tangent to αi,
vivi+1 intersects C. It follows that vi+1 lies in hi and therefore in the negative
region Ni+1.

Assume that v1 lies in its infeasible region I1, then v2 lies in N2 by the above
observation. Likewise, v3, v4, v1 lie in N3, N4, N1, respectively. This contradicts
N1 ∩ I1 = ∅. Similarly, we get that each vertex vi, i 6= 1, cannot lie in the
invisible region Ii. Thus, each vi either lies in Pi or in Ni. Moreover, if one
vi lies in Ni the above observation yields that all of them lie in their negative
region. �

The green and red squares in Figure 6a indicate that there is a positive and
a negative realization of the literal gadget, i.e., there is a DC-framed drawing of
the literal gadget where all cycle vertices lie either in a positive or in a negative
region. In order to simplify the following constructions, we fix the position of
the green and red squares as depicted. We refer to these positions as the positive
and negative placement of the vertices vi and denote them by p+X,i and p−X,i. To

reduce the notation, we drop the index i and simply refer to p+X and p−X as the
positive and negative placements of the literal X. Thus, the literal gadget has
the following property.

Property 3 The positive and negative placements induce a DC-framed drawing
of the literal gadget, respectively.



JGAA, 24(2) 105–131 (2020) 115

R1

R2

R3

R4

C

Figure 8: The literal gadget with unit disks. The endpoints of the blue segment
in the interior of the central disk C are the points βi.

Unit Disks

The construction of the literal gadget with unit disks follows the same princi-
ple as the construction using unit squares; see Figure 8. Only instead of the
four corners αi we choose four points βi that are equally distributed along the
boundary of the central disk. The position of the disk Ri have to be adjusted
so that the it contains the intersection of the tangents of the central disks in
the points βi−1 and βi.

3.3 Copy and Inverter Gadget

In this section, we describe the copy and inverter gadget; see Figure 9. The
copy gadget connects two positive or two negative literal gadgets X and Y such
that a drawing of X is positive if and only if the drawing of Y is positive.
Correspondingly, the inverter gadget connects a positive literal gadget X to a
negative literal gadget Y such that the drawing of X is positive if and only if
the drawing of Y is negative. The construction of the inverter and the copy
gadget are symmetric.

Let X and Y be two positive literal gadgets whose center blocks are aligned
on the x-axis with a sufficiently large distance. We construct the copy gadget
that connects X and Y as follows. Let RX and RY be the two cycle blocks of
the literal gadgets X and Y , respectively, with minimal distance on the x-axis.
For A ∈ {X,Y }, let PA and NA be the positive and negative regions of RA.
Since PA and NA are convex and their intersection is empty, there exists a half
plane hA that contains NA but not PA, and vice versa. In a reversed manner,
we call hA a positive half-plane h+Z of A if it contains the negative region NA,
otherwise it is negative and we denote it by h−A.

Consider a positive half-plane h+X of X and a negative half-plane h−Y of Y ;
refer to Figure 9a. We create two non-intersecting squares O+

X and O−Y that are
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contained in the intersection of h+X and h−Y such that a corner of O+
X and O−Y

lie on the supporting line of h+X and h−Y , respectively. Recall that we denote the
complement of a half-plane h by h. Let I be the intersection of the supporting
lines of h+X and h−Y . We place a square B with a vertex b in interior so that
the intersection I lies in the interior of B. Additionally, we add a regulator of
b with respect to h+X and h−Y to exclude the intersection h+X ∩ h

−
Y as feasible

placement of b. We route the edges bvX and bvY through RX ∪ h+X ∪ B and
RY ∪h−Y ∪B respectively. This construction ensures that in a DC-framed drawing
a placement of the vertex vX in the positive region PX excludes the possibility
that the vertex vY lies in the negative region NY . In order to ensure that vX
cannot lie at the same time in NX as vY in PY , we construct a square B′ with
respect to a negative half-plane h−X of X and a positive half-plane h+Y of Y
analogously to B. If the distance between X and Y is sufficiently large, we can
ensure that the intersection of B and B′ is empty. In the construction of the
inverter gadget the square B is constructed with respect to h+X and h+Y , and B′

with respect to h−X and h−Y . We refer to the corresponding gadgets as copy and
inverter gadget. We say that the copy and inverter gadget connect two literals.

Property 4 Let Γ be a DC-framed drawing of two positive (negative) literals
gadgets X and Y connected by a copy gadget. Then the DC-framed of X in Γ is
positive if and only if the DC-framed drawing of Y is positive.

Proof: By Property 2 the vertices vX and vY of X and Y cannot lie in the in-
feasible regions of X and Y , respectively. Thus, similar to the proof of Lemma 2
we can assume for the sake of contradiction that the vertex b of the block B lies
in the intersection of h+X and h−Y . Thus, vertex vX lies in the negative region of
RX and vY in the positive region of RY . But then vertex b′ of the block B′ lies
in h−X and h+Y . However, this is not possible due to the regulator of b′. �

The same argumentation is applicable to the inverter gadget.

Property 5 Let Γ be a DC-framed drawing of a positive literal gadget X and a
negative literal gadget Y connected by an inverter gadget. Then the DC-framed
drawing of X in Γ is positive if and only if the DC-framed drawing of Y is
negative.

The green and red squares in Figure 9b and in Figure 10 indicate that for
a positive and a negative placement of X there is DC-framed drawing of copy
and inverter gadget, respectively. Thus, the copy and inverter gadget have the
following property.

Property 6 The positive (negative) placement of two literals gadgets X,Y in-
duces a DC-framed straight-line drawing of a copy [inverter] gadget that connects
X and Y .
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Figure 11: Observation

Unit Disks

Squares have the property that there is a set of tangents through a corner point
of the square. On the other hand, at each point on the boundary of a disk the
tangent to the disk is unique. The following observation helps to show that this
restriction does not invalidate the correctness of the unit-disk gadgets.

Observation 7 Let A and B be two disks and let P be a non-empty subset of
A; see Figure 11. Moreover, let p ∈ P and q ∈ B. Let i be the intersection
of the segment pq and the supporting line of a half plane h that contains q and
such that h∩P = ∅. Let C be a disk such that pq is tangent to C in the point i.
Let Q be the set of points in B so that for each q′ ∈ Q there is a point p′ ∈ P
such that the segment p′q′ does not intersect C. Then Q is a strict subset of
h ∩B.

Recall that, for A = X,Y , let p+A and p−A be the positive and negative
placements of X and Y . Denote by h+A and h−A the positive and negative half-
planes, respectively, of the disk DA; see Figure 12. Moreover, let q+ and q− be
points in h+X ∩B and h−Y ∩B. Let O+

X (O−Y ) be a disk such that p+Xq
+ (p−Y q

−)
is tangent to O+

X (O−Y ) in intersection of p+Xq
+ (p−Y q

−) with the supporting line
of h+X (h−Y ). The disks O−X and O+

Y are positioned accordingly. The regulators
of B and B′ and Observation 7 ensure X has a positive DC-framed drawing if
and only if Y has a positive DC-framed drawing.

3.4 Clause Gadget

We construct a clause gadget with respect to three positive literal gadgets
X,Y, Z arranged as depicted in Figure 13. The negative clause gadget, i.e.,
a clause with three negative literal gadgets, is obtained by mirroring vertically.

We construct the clause gadget in two steps. First, we place a transition
block TA close to each literal gadget A ∈ {X,Y, Z}. In the second step, we
connect the transition block to a vertex k in a clause block K such that for
every placement of k in K at least one drawing of the literal gadgets has to be
positive.
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Figure 13: Clause gadget.

Consider the literal gadget X and let RX be the rightmost cycle block of
X. Let h−X be a negative half-plane of RX , i.e., h−X contains the positive region
but not the negative region; refer to Figure 14. We now place a transition block
TX such that the intersection TX ∩ h−X has small area. Recall that p+X and p−X
denote the positive and negative placements of X, respectively. Let q−X be a
point in TX ∩ h−X . Note that, in the following l− and l+ denote lines and not
the half-planes left or right of a line l. Let i be the intersection point of the
supporting line l−X of h−X and the line segment p−Xq

−
X . We place a square QX

such that l−X is tangent to QX at point i. We place a transition vertex tX in the
interior of TX and route the edge vXtX through h−X ∪TX ∪RX , where vX ∈ RX .

Observe that q−X allows for a negative drawing of X; see Figure 14. Let l+X
be a line that is tangent to QX and that contains p+X . Then each point on l+X
that lies in the interior of TX allows for a positive drawing of X. Let q+X be
the point on l+X that maximizes the distance to q−X . We refer to q+X and q−X as
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Figure 14: DC-framed drawings of the transition block of literal X

f−X

f−Y

nZ
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nX

q∅

f−Z

(a)

f−X

f−Y

f−Z

nZ

nY

nX

iX,Z

iY,Z

iX,Y

(b)

Figure 15: (a) Initial placement of q∅ and the corresponding half planes
h−A. (b) Setting after perturbing h−A. The green segments indicate that each
q+A , A = X,Y, Z can be connected with a line segment to each intersection
iX,Y , iX,Z , iY,Z .

the positive and negative placements of tX , respectively. Further, if X has a
negative drawing, then tX lies in the region h−X ∩ TX . In order to reduce the
visibility of tX in case that X is negative, we place a regulator gadget of TX
with respect to a half plane h′ as follows. Let h′ be a half plane that contains
q−X and q+X and reduces the possible positions of tX in this case to h′∩h−X ∩TX ;
see Figure 14. In the following, we refer to h′ ∩ h−X ∩ TX as the negative region
of TX . The transition blocks of Y and Z are constructed analogously with only
minor changes.

Let K be the clause block as depicted in Figure 13. Further, let q∅ be a point
in the interior of K. Let f−A , for A ∈ {X,Y, Z}, be half planes such that the
supporting lines of all three half planes intersect at q∅ and such that f−A does
not contain the negative region NA of the transition block TA; see Figure 15.
Recall that q−A denotes the negative placement of tA in the transition block TA.
Let nX and nY be two lines whose intersection lies in the interior of f−X ∩f

−
Y ∩K

and that contain q−X and q−Y , respectively. Moreover, denote by nZ a line that
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OX

nX

h−X q+X iY,Z

Figure 16: Intersection pattern near square OX .

contains q−Z with a non-empty intersection with f−Z ∩K. We position a square
OA that is tangent to nA at point nA ∩ l−A , where l−A is the supporting line of
f−A and such that the intersection of the interior of OA and f−A is empty. By
construction of OA all three literals gadgets X,Y, Z have negative DC-framed
drawings if and only if k lies on q∅. Slightly perturbing the positions of the
squares OA ensures that the intersection f−X ∩ f

−
Y ∩ f

−
Z is empty. Denote by

iB,C , for B,C ∈ {X,Y, Z} with B 6= C, the intersection of nB and nC . To ensure
that there are the necessary positive and negative drawings, the perturbation
operation has to ensure that the intersection of the line through q+X and iX,Y
with nB and f−X has the pattern as depicted in Figure 16 and correspondingly
for the literals Y and Z. Thus, the clause gadget has the following property.

Property 8 There is no DC-framed drawing of the clause gadget such that the
DC-framed drawing of each literal gadget is negative. For all remaining combi-
nations of positive and negative drawings of the literal gadgets X,Y and Z there
is a DC-framed drawing of the clause gadget.

Unit Disks

We utilize Observation 7 twice to ensure the correctness of the clause gadget
with unit disks. First, recall that the square QX in Figure 14 is positioned such
that QX is tangent to the supporting line of h−X and the line l− that contains
p−X and q−X , in point i. Replacing QX by a disk Q′X that such that the disk is
tangent to l− in point i ensures that q−X corresponds to negative drawing of X.
Moreover, by Observation 7 the set of points that possibly allow for a negative
drawing is a subset of h−X ∩Q′X . The disks Q′Y , Q

′
Z are constructed analogously.

Second, recall the construction of the square OA for A = X,Y, Z. The disk
O′A that corresponds to the square OA is placed such that the line nA is tangent
to O′A in the intersection of nA with the supporting line of the half place f−A .
Figure 18 shows the final clause gadget with unit disks.
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Figure 17: DC-framed drawings of the clause gadgets.

3.5 Reduction

A 3-SAT instance (U,C) on a set U of n boolean variables and m clauses C
is monotone if each clause either contains only positive or only negative lit-
erals. It is planar if the bipartite graph GU,C = (U ∪ C, {uc | u ∈ c or u ∈
c with u ∈ U and c ∈ C}) is planar. A rectilinear representation of a monotone
planar 3-SAT instance is a drawing of GU,C where each vertex is represented
as an axis-aligned rectangle and the edges are vertical line segments touching
their endpoints; see Figure 19a. Further, all vertices corresponding to variables
lie on a common line l, the positive and negative clauses are separated by l.
The problem Monotone Planar 3-SAT asks whether a monotone planar 3-
SAT instance with a given rectilinear representation is satisfiable. De Berg and
Khosravi [8] proved that Monotone Planar 3-SAT is NP-complete. We
use this problem to show that the DC-framed Drawings with Pipe-Disk
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Figure 18: Clause Construction
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Figure 19: Example of planar monotone 3-SAT instance with a corresponding
rectilinear representation.

Intersections problem is NP-hard.
In the following a disk dk is an obstacle of a pipe pij , for i, j with i, j 6= k,

if dk ∩ pij 6= ∅. The obstacle number of a pipe pij is the number of obstacles of
pij . The obstacle number of a disk arrangement DC is the maximum obstacle
number over all pipes pij with Vi × Vj ∩ E 6= ∅.

Theorem 9 The problem DC-framed Drawings with Pipe-Disk Inter-
sections with axis-aligned unit squares and unit disks is NP-hard even when
the clustered graph C has maximum vertex degree 5 and its obstacle number is 2.

Proof: Let (U,C) be a planar monotone 3-SAT instance with a rectilinear
representation Π. Let l be a horizontal or vertical line that intersects Π. The line
l splits Π into two drawings ΠL and ΠR that are left and right of l, respectively.
For a positive factor x, we obtain from Π a new rectilinear representation by
moving ΠR x units to the right. We fill the resulting gap between ΠL and ΠR

with infinitely many copies of l∩Π. This operation of stretching the drawing at
line l allows us to do the following necessary modifications.

In the following we modify Π to fit on a checkerboard of O(|C|) rows and
columns where each column has width d and every row has height d. A row or
column is odd if its index is an odd number, otherwise it is even. The pair (i, j)
refers to the cell in column i and row j. We align all vertices corresponding to
variables in the rectilinear representation in row 0 so that the leftmost variable
vertex is in column 1; refer to Figure 19b. The width of each rectangle ru of
variable u is increased to cover 2 · nu − 1 columns, where nu is the number of
occurrences of u and ū in C. To ensure that each ru starts in an odd column,
we increase the distance between two consecutive variables so that the number
of columns between the variables is odd and is at least three. Since we are
able to add an arbitrary number of columns between two consecutive variables,
we can assume without loss of generality that no two edges of the rectilinear
representation share a column and that their columns are odd. We adapt the
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rectangle of a clause so that it covers five rows and at least six columns, and
so that its left and right sides are aligned with the leftmost and rightmost
incoming edges, respectively. Note that the positive clauses lie in rows with
positive indices and the negative clauses in rows with negative indices. Each
operation adds at most a constant number of columns and rows per vertex and
per edge to the layout. Thus, the width and height of the final layout is in
O(|C|). Further, it can be computed in time polynomial in |C|.

In the following we construct a planar embedded graph C and an arrangement
of squares DC of C. We use the modified rectilinear layout to locally replace the
variable by a sequence of positive and negative literals connected by either a
copy or an inverter gadget. Clauses are replaced with the clause gadget and
then connected with a sequence of literals and copy gadget to the respective
literal in the variable.

Observe that the literal gadget is constructed so that all its squares fit in
a larger square S. The copy and inverter gadget together with two literals is
constructed so that they fit in rectangle three times the size of S. The clause
gadget fits in a rectangle of width six times the size of the square S and its
height is five times the height of S.

We assume that the size of the square S and the size of the squares of the
checkerboard coincide. Let r = 0 be the row that contains the variable vertices.
Every column contains at most one edge of the rectilinear representation. Thus,
we place a positive literal gadget in cell (i, r) if the edge in column i connects
a variable u to a positive clause. Otherwise, we place a negative literal gadget
in cell (i, r). Since every edge of the rectilinear representation lies in an odd
column, we can connect two literals of the same variable by either a copy or
inverter gadget depending on whether both literals are positive or negative, or
one is positive and the other negative.

We substitute an edge e of the rectilinear representation that connects a
variable to a positive clause as follows. Let i be the column of e. If the cell
(i, re) is covered by e and re is odd, we place a positive literal gadget in cell
(i, re). The copy gadget can be rotated in order to connect a literal gadget in
cell (i, re) to a literal gadget in a cell (i, re + 2).

Let Rc be the rectangle that corresponds to the positive clause c in the
modified rectilinear representation. We insert a clause gadget in Rc and justify
it on the right of it so that the literal gadget Z lies in an odd column. Note that
by the construction of clause gadget this fixes the position of the corresponding
literal gadgets X and Y . Finally, the literal gadget X,Y and Z can be connected
to their variables x, y and z as depicted in Figure 19b. A negative clause is
obtained by vertically mirroring the construction of a positive clause.

We now argue that the embedding of the graph C is planar and that the pair-
wise intersections of squares in the arrangement DC are empty. Observe that,
every gadget is entirely embedded in the modified rectilinear representation.
Recall that the rectilinear representation is planar and all gadget are placed in
disjoint cells. Therefore, the pairwise intersection of squares in DC is empty.
Moreover, each literal gadget is planar embedded in a single cell, each clause
is embedded in a rectangle that covers five rows and six columns, and finally



128 Mchedlidze et al. Drawing Planar Graphs on Disks

each copy and inverter gadget together with its two literal gadget is embedded
in either a single row and 3 columns or in 3 rows and a single column. Thus,
since the modified rectilinear representation is planar and the pairwise intersec-
tions of squares in DC are empty, the graph C has a planar embedding. Finally,
the maximal vertex degree of the literal gadget is three, the maximal degree a
clause gadget is four. Connecting two literal gadgets by copy or inverter gadget
increases the maximum vertex degree of C to five. Further, the obstacle number
of the clause gadget is one and the obstacle number of the literal, copy and the
inverter gadget is two.

It is left to show that the layout can be computed in polynomial time. As
already argued the modified rectilinear representation Π of the monotone planar
3-SAT instance can be computed polynomial time. Moreover, the height and
width of Π is linear in |C|. Thus, we inserted a number of gadgets linear in |C|.
Further, the coordinates of each gadget are independent of the instance (U,C),
thus overall the representation of the final arrangement DC is polynomial in
|U | and |C|. Placing a single gadget requires polynomial time, thus overall
the clustered graph C and the arrangement DC of squares can be computed in
polynomial time.

Correctness Assume that (U,C) is satisfiable. Depending on whether a vari-
able u is true or false, we place all cycle vertices on a positive placement of a
positive literal gadget and on the negative placement of negative literal gadget of
the variable. Correspondingly, if u is false, we place the vertices on the negative
and positive placements, respectively. By Property 3, the placement induces
a DC-framed drawing of all literal gadgets. Property 6 ensures that the copy
and the inverter gadgets have a DC-framed drawing. Since at least one variable
of each clause is true, there is a DC-framed drawing of each clause gadget by
Property 8.

Now consider the clustered graph C has a DC-framed drawing. Let X and
Y be two positive literal gadgets or two negative literal gadgets connected with
a copy gadget. By Property 4, a drawing of X is positive if and only if the
drawing of Y is positive. Property 5 ensures that the drawing of a positive literal
gadget X is positive if and only if the drawing of the negative literal gadget Y
is negative, in case that both are joined with an inverter gadget. Further,
Property 2 states that each cycle vertex lies either in a positive or negative
region. Thus, the truth value of a variable u can be consistently determined by
any drawing of a positive or negative literal gadget of u. By Property 8, the
clause gadget has no DC-framed drawing of the clause gadget such that all literal
gadgets have a negative drawing. Thus, the truth assignment indeed satisfies C.

�

4 Conclusion

We proved that every clustered planar graph with a pipe-disk intersection free
disk arrangement DC and with a DC-framed embedding ψ has a DC-framed
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straight-line drawing homeomorphic to ψ. In case of arrangements of unit disks
and unit squares with pipe-disk intersections the problem becomes NP-hard.
This answers an open question of Angelini et al. [4]. We are not aware whether
the problem is known to be in NP. Due to the geometric nature of the problem,
we ask whether techniques developed by Abrahamsen et al. [1] can be used
to prove ∃R-hardness. The cycles in the literal and copy gadget are crucial
for our reduction. Thus, we ask whether the problem becomes tractable for
restricted graph classes, e.g., trees, outerplanar graphs, or planar graphs that
have maximum vertex degree 4.
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[13] A. Ribó Mor. Realization and Counting Problems for Planar Structures.
PhD thesis, FU Berlin, 2006. URL: https://refubium.fu-berlin.de/
handle/fub188/10243.

https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-58950-3_377
https://doi.org/10.1007/978-3-030-10564-8_13
https://refubium.fu-berlin.de/handle/fub188/10243
https://refubium.fu-berlin.de/handle/fub188/10243

	Introduction
	Drawing on Disk Arrangements that are Pipe-Disk Intersection Free
	Drawing on Arrangements with Pipe-Disk Intersections
	Regulator
	Literal Gadget
	Copy and Inverter Gadget
	Clause Gadget
	Reduction

	Conclusion

