
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 5, pp. 781–813 (2019)
DOI: 10.7155/jgaa.00512

Faster algorithms for shortest path and network
flow based on graph decomposition

Manas Jyoti Kashyop 1 Tsunehiko Nagayama 2

Kunihiko Sadakane 2

1Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India

2Department of Mathematical Informatics, Graduate School of Information
Science and Technology, The University of Tokyo, Tokyo, Japan

Abstract
We propose faster algorithms for the maximum flow problem and shortest

path problems based on graph decomposition. Our algorithms first construct

indices (data structures) from a given graph, then use them for solving the

problems. Time complexities of our algorithms depend on the size of the maxi-

mum triconnected component in the graph, say r. Max flow indexing problem is

a basic network flow problem, which consists of two phases. In a preprocessing

phase we construct an index and in a query phase we process the query using

the index. We can solve all pairs maximum flow problem and minimum cut

problem using the indices. Our algorithms run faster than known algorithms if

r is small. The maximum flow problem can be solved in O(nr) time, which is

faster than the best known O(nm) algorithm [29] if r = o(m), where n and m are

the numbers of vertices and edges in the given network, respectively. Distance

oracle problem is a basic problem in shortest path, consisting of two phases. In

preprocessing phase we construct index and in query phase we use the index

to find shortest path between two vertices. We use these indices to solve single

source shortest path and all pair shortest path problems. If the given graph

is undirected and all the weights are non-negative integers, then our algorithm

finds shortest path between two vertices in O(m) time. If the given graph is

directed or the weights are non-negative real numbers then our algorithm finds

shortest path between two vertices in O(m + n log r) time. If the edge weights

are real numbers (i.e some of the weights are negative) then our algorithm finds

shortest path between two vertices in O(m + nr) time.

Submitted:
March 2018

Reviewed:
February 2019

Revised:
March 2019

Accepted:
April 2019

Final:
Septemebr 2019

Published:
October 2019

Article type:
Regular Paper

Communicated by:
M.S. Rahman, W.-K. Sung, R. Uehara

Preliminary version of this work appeared in 12th International Conference and Workshops

on Algorithms and Computation (WALCOM), pages 80-92, 2018. The work is supported by

JSPS KAKENHI 16K12393 and JST CREST JPMJCR1402.

E-mail addresses: manasjk@cse.iitm.ac.in (Manas Jyoti Kashyop) tsunehiko nagayama@me2.mist.i.u-

tokyo.ac.jp (Tsunehiko Nagayama) sada@mist.i.u-tokyo.ac.jp (Kunihiko Sadakane)

http://dx.doi.org/10.7155/jgaa.00512
mailto:manasjk@cse.iitm.ac.in
mailto:tsunehiko_nagayama@me2.mist.i.u-tokyo.ac.jp
mailto:tsunehiko_nagayama@me2.mist.i.u-tokyo.ac.jp
mailto:sada@mist.i.u-tokyo.ac.jp

782 Kashyop et al. Faster algorithms for shortest path and network flow

1 Introduction

In this paper, we study shortest path problems and network flow problems.
We propose faster algorithms for shortest path problems and maximum flow
problem and their variants based on graph decomposition.

Network flows is one of the very well studied problems. This problem is
of both theoretical and practical importance[1]. A network is a directed or
undirected graph G(V,E) with non-negative real capacities (ce) associated with
every edge e ∈ E. Let |V | = n and |E| = m throughout this paper. The
terminals of network G are elements of Q ⊆ V . A flow f in G is an assignment
(f : E → R+) of non-negative real values (fe) to each edge e ∈ E such that
fe ≤ ce and net flow out of each nonterminal vertex is zero. Net flow out of a
vertex is the sum of flows on the edges going out of the vertex minus the sum of
flows on the edges coming into the vertex. We consider the following problems
in network flow:

Max Flow Indexing Problem(MFIP): Given a network, we preprocess it
to construct an index (data structure). This phase is called preprocessing
phase. Then given two vertices s and t, we compute the value of the
maximum s − t flow using the index. This phase is called query phase.
We measure preprocessing time, size of the index, and query time.

In this paper, we propose construction of new data structures for solving the
MFIP problem. We also consider the following problems using our algorithm
for MFIP:

Maximum s− t flow problem: Given a network and two vertices s and t,
compute the maximum s− t flow.

All Pairs Max Flow Problem (APMFP): Given a network, compute the
values of the maximum flow between every pair of vertices.

Minimum Cut Problem (MCP): Given a network, compute the value of
the minimum cut of the graph.

The MFIP problem consists of two phases: a preprocessing phase for construct-
ing an index from a given graph and a query phase for computing the desired
value using the index given two vertices. A graph is static if the vertices and
edges or properties associated with vertices and edges do not change with time.
If the graph is static and we need to compute the maximum flow values for
many pairs of vertices, by using an index (data structure) constructed in the
preprocessing phase, the queries can be done faster than computing the value
without preprocessing. The extreme case is that in the preprocessing phase we
compute maximum flow values for every pair of vertices and store them in a
two-dimensional array. Then a query is trivially done in constant time. How-
ever this approach is not efficient because the index uses O(n2) space even if
the input size is linear in n and a naive algorithm for constructing the index
solves the maximum flow problem O(n2) times. Another extreme case is to use

JGAA, 23(5) 781–813 (2019) 783

the input graph as the index. Then the preprocessing time is constant but the
query time is equal to that for solving a maximum flow problem. Therefore,
there is a trade-off between preprocessing time, query time, and index size.

The shortest path problem is very well studied across multiple disciplines in
literature [27]. Shortest path problem has been studied under different settings.
The graph contains either directed or undirected edges. The weights over the
edges can be negative or non-negative. The values of the weights can be real or
integer numbers.

In this paper, we work with the following setting: Given graph G(V,E),
where |V | = n and |E| = m, is either directed or undirected and static. The
weights on the edges are: 1) non-negative integers, 2) non-negative real numbers
and 3) real numbers (i.e some of the weights are negative). We consider the
following shortest path problems:

Distance Oracle: Given a graph G, a distance oracle consist of

1. A preprocessing algorithm that construct an index (data structure).

2. A query algorithm that uses the index and computes shortest path
between two given vertices.

In this paper, we propose construction of new data structures for distance oracle
problem. Our algorithms for distance oracle problem returns the exact distance.
Such an oracle is called exact distance oracle. Using our algorithms for distance
oracle problem, we have also considered the following problems:

SSSP (Single Source Shortest Path): Given a graph G(V,E) and a source
s ∈ V , compute the distance δ(s, v),∀v ∈ V where δ(s, v) is the path
between s and v of minimum weight.

APSP (All Pairs Shortest Paths): Given a graph G(V,E), compute the
distance δ(u, v),∀u, v ∈ V where δ(u, v) is the path between u and v
of minimum weight.

Thorup and Zwick proposed the term distance oracle [32]. Distance oracle
operates in two phases: a preprocessing phase and a query phase. In the pre-
processing phase, index is constructed from the given graph. In the query
phase, shortest path between two given vertices is computed using the index
constructed in preprocessing phase. A distance oracle provides a trade-off be-
tween preprocessing time, size of index, and query time.

For a problem consisting of a preprocessing phase and a query phase, an
algorithm is called a 〈p(n), q(n)〉 time algorithm if the preprocessing time is
p(n) and the query time is q(n).

1.1 Related work

The maximum flow problem is well studied [13, 11, 17, 26, 29]. Among them, the
fastest algorithm runs in O(nm) time [29]. There are also algorithms for special
cases of graphs, for example the O(n log log n) time algorithm for undirected

784 Kashyop et al. Faster algorithms for shortest path and network flow

planar graphs [24], the O(n log n) time algorithm for directed planar graphs [6],
and the linear time algorithm for constant tree-width graphs [21].

For MFIP and APMFP on undirected graphs, the Gomory-Hu tree [18] can
be used as an index. However it is known [5] that there is no such structure for
directed graphs. For constant tree-width graphs, APMFP is solved in O(n2 +
γ3 log γ) time on planar graphs, or O(n2 +γ4 log γ) time if m = O(n) [3], where
γ is the number of hammocks obtained by the hammock decomposition [15].

For the minimum cut problem, there are O(nm + n2 log n) time algorithm
for undirected graphs [28] and O(nm log(n2/m)) time algorithm for general
graphs [22]. Tables 1 and 2 summarize complexities of existing algorithms and
our algorithms.

Table 1: Complexities of max-flow problem, APMF, and MCP where n,m, γ, r
denote the number of nodes, the number of edges, the number of hammocks,
and the maximum size of triconnected components, respectively.

Problem Reference Graph class Time complexity

maximum flow

[26, 29] general O(nm)
[24] undirected planar O(n log log n)
[6] directed planar O(n log n)
[21] constant tree-width O(n)
Theorem 7 general O(m+ nr)

APMFP

[3] constant tree-width O(n2)
[3] planar O(n2 + γ3 log γ)
[3] m = O(n) O(n2 + γ4 log γ)
Theorem 9 general O

(
m+ nr3 + n2

)
MCP

[28] undirected O(nm+ n2 log n)
[22] general O(nm log(n2/m))
Theorem10 general O

(
nr3 + n2

)

Table 2: Complexities of MFIP. If T1(k, n) = λ(k, n), T2(k, n) = 1. If T1(k, n) =
1, T2(k, n) = α(n). The functions λ(k, n) and α(n) are the inverse Ackermann
functions defined in Section 2.5

Reference Graph class Complexity

[3] constant tree-width 〈O(nT1(k, n)),O(T2(k, n))〉
Theorem 8 general 〈O(m+ nT1(k, n) + nr3),O(T2(k, n))〉

The shortest path problem is very well studied. If the weights are non-
negative integers and the graph is undirected then SSSP problem is solved in
O(m) time [31]. If the weights are non-negative real numbers then SSSP is
solved in O(m+ n log n) time [16]. In the presence of negative weights SSSP is
solved in O(mn) time [4],[14]. APSP problem is solved in O(mn+n2 log n) time
[25] even in the presence of negative weights. Table 3 and Table 4 summarize
complexities of existing algorithms and our algorithms.

JGAA, 23(5) 781–813 (2019) 785

Table 3: Complexities of s-t shortest path problem, SSSP and APSP where
n,m, r, α(n) denote the number of vertices, the number of edges, the maximum
size of triconnected components, and inverse Ackermann function respectively.

Problem Reference Graph class Time complexity

s-t shortest path
Theorem 3 general O(m+ nr)
Theorem 3 undirected and non-

negative integer weights
O(m)

Theorem 3 non-negative real weights O(m+ n log r)

SSSP

[31] undirected and non-
negative integer weights

O(m)

[16] non-negative real weights O(m+ n log n)
[4],[14] general O(mn)
Theorem 5 general O(m+ nr2 + nα(n))

APSP
[25] general O(mn+ n2 log n)
Theorem 6 general O(m+ nr3 + n2α(n))

1.2 Our contribution

We propose faster algorithms for the above problems based on graph decompo-
sition. Namely, we use BC-trees [23] and SPQR-trees [10] for decomposition. A
BC-tree represents the biconnected components of a graph and an SPQR-tree
represents the triconnected components of a biconnected graph. The perfor-
mance of our algorithms depends on a parameter of graphs: the size of the
maximum triconnected components, denoted by r. If a given graph is decom-
posed into small triconnected components, our algorithms run faster than ex-
isting algorithms.

For MCP, our algorithm is faster than [28] if r = O(n1/3), and faster than
[22] if r = O(m1/3). For the maximum flow problem, our algorithm is faster
than [29] if r = o(m). For MFIP, the algorithm of Arikati et al. [3] works
efficiently for constant tree-width graphs. However the time complexities are
doubly exponential to the tree-width, and finding the tree decomposition is NP-
hard. On the other hand, the time complexity of our algorithm is polynomial
in r.

For computing shortest path between two vertices, if the given graph is
undirected and all the weights are non-negative integers, performance of our
algorithm is same as linear time algorithm due to Thorup [31]. If the graph
is directed or the weights are non-negative real numbers then our algorithm
is faster than the algorithm due to Fredman and Tarjan [16] if r = o(n). In
the presence of negative weights, our algorithm is faster than [4] and [14] if
r = o(m).

For SSSP, in the presence of negative weights our algorithm is faster than
[4] and [14] if r = o(

√
m). If the weights are non-negative real numbers than

our algorithm is faster than [16] if r = o(
√

log n).

For APSP, our algorithm is faster than [25] if r = o(m1/3).

786 Kashyop et al. Faster algorithms for shortest path and network flow

Table 4: Complexities of Exact Distance Oracle problem, where n,m, r, α(n)
denote the number of vertices, the number of edges, the maximum size of tricon-
nected components, and inverse Ackermann function respectively. Theorem 4
explains these results.

Graph class Time Complexity Space Complexity

undirected and non-
negative integer weights

〈O(m),O(m)〉 O(n)

non-negative real weights 〈O(m+ n log r),O(m+ n log r)〉 O(n)
undirected and non-
negative integer weights

〈O(m+ nr2),O(r)〉 O(m)

non-negative real weights 〈O(m+ nr2),O(r log r)〉 O(m)
general 〈O(m+ nr),O(m+ nr)〉 O(n)
general 〈O(m+ nr2),O(r2)〉 O(m)
general 〈O(m+ nr3),O(α(n))〉 O(mr)

2 Preliminaries

2.1 BC-trees

Let G = (V,E) be a connected graph. A vertex v ∈ V is called a cut vertex of
G if removing v from G makes the graph disconnected. A maximal connected
subgraph of G that does not have any cut vertex is called a block of G. BC-
trees [23] are trees representing the biconnected component decomposition of a
connected graph, defined as follows. A tree T = (B ∪ C,F) is called a BC-tree
of G if it satisfies the following.

• C is the set of cut vertices of G and B is the set of blocks of G.

• Any c ∈ C and any b ∈ B are adjacent in T i.e. (b, c) ∈ F ⇐⇒ the block
corresponding to b contains the cut vertex c.

For a given graph G with |V | = n and |E| = m, BC-tree T can be computed in
O(m+n) time [30]. Figure 1 shows an example. Cut vertices are the ones with
labeled 2, 6, 7, 8, 9, and 10. In the BC-tree, blocks are shown by squares.

2.2 SPQR trees

SPQR tree data structure is used to maintain the triconnected components
of a graph. Battista et al. introduced SPQR tree data structures in [9] for
planar graphs. In [10], Battista et al. extended the SPQR tree data structures
for general graphs. Given a graph G, its SPQR tree decomposition T can be
computed in linear time [20]. Battista et al. introduced dynamic SPQR trees
in [10]. A complete description about SPQR trees can be found in [19].

For a given biconnected graph G, a separation pair is a pair of vertices {u, v}
whose removal disconnects G. A pair of vertices {u, v} is called a split pair if
{u, v} is a separation pair or there is an edge between u and v. The split pair

JGAA, 23(5) 781–813 (2019) 787

5

2 1 7

6

4

3

9

8

11

10 13

12

2

6 9

10

1514

8

16

7

2

7
3

2

2

4 1

3 1

Figure 1: An input graph G (left) and its BC-tree (right). Numbers along
edges in G show the weights of the edges. Edge weights are omitted if they
are one. In the BC-tree, circle nodes and square nodes show cut vertices and
blocks, respectively. Cut vertices have the same labels as those in the input
graph. Numbers along cut vertices show the distance to the node to its parent
cut vertex.

{u, v} is said to be maximal with respect to edge (s, t) if for any other split pair
{u′, v′}, vertices u, v, s, and t are in the same split class graph.

Let {u, v} be a split pair of G. The edges in G can be partitioned into
sets E1, E2, . . . , Ek such that two edges belong to same set Ei if they lie in a
path which does not involved any vertex from the set {u, v} as an intermediate
vertex. Every such Ei, 1 ≤ i ≤ k is called a split class of the split pair {u, v}
and the graph Gi induced by the split class Ei is called split class graph.

Let {u, v} be a split pair of graph G. The pertinent graph of a split pair
{u, v} with respect to an edge e = (s, t) is the union of split class graphs of
{u, v} except the one containing the edge e. Informally, pertinent graph of split
pair {u, v} with respect to (s, t) is the portion of the original graph that can be
reached from s and t only via u or v.

SPQR tree T for a biconnected graph G is a tree with nodes labeled as S,
P, Q and R. Every node µ in SPQR tree is associated with a graph Gµ called
skeleton of the node. Skeletons are also referred to as triconnected components
of G. SPQR tree T satisfy the following properties:

• For every node µ in T , vertices in Gµ, denoted by V (Gµ), is a subset of
V .

• For every edge (µ1, µ2) in SPQR tree, V (Gµ1
) ∩ V (Gµ2

) is a split pair
{u, v} in G and there is a virtual edge (u, v) in each of Gµ1

and Gµ2
.

• For every node µ in the SPQR tree, every edge in Gµ is either an edge in
E or a virtual edge corresponding to an edge in the SPQR tree.

• If µ is an R-node, then Gµ is a triconnected graph.

788 Kashyop et al. Faster algorithms for shortest path and network flow

• If µ is an S-node, then Gµ is a polygon (a cycle).

• If µ is a P-node, then Gµ is a triconnected multigraph consisting of bundle
of multiple edges.

• If µ is a Q-node, then Gµ is a biconnected multigraph consisting of two
multiple edges. T has a Q-node associated with every edge of G.

SPQR tree is constructed by decomposing the original graph into tricon-
nected components. The decomposition starts at any arbitrary edge e = (s, t)
of the graph which is called as reference edge of the decomposition. The Q-node
corresponding to this edge is the root of the tree, say µr. The trivial case is
when the graph has only one edge. In that case µr is the only node in the
SPQR tree. In all other cases, µr has children µ1, µ2, . . . , µk (k ≥ 1). For every
children µi, 1 ≤ i ≤ k, the split pair V (µr)∩V (µi) is considered as the reference
edge. If we regard SPQR trees as unordered trees, they are uniquely determined
from the graph.

Figure 2 shows an example of SPQR tree. The tree consists of one R-node
(red in color), one P-node (purple in color), three S-nodes (sepia in color) and
twelve Q-nodes. The S-nodes are labeled as α, β, and γ. Root of the SPQR tree
is the Q-node corresponding to the edge (7, 5). Reference edge for the R-node
is (7, 5), for the P-node is (1, 2), for the node α is (1, 2), for the node β is (4, 5),
and for the node γ is (7, 8). Battista et al. [10] proved the following :

Lemma 1 [10] Suppose m be the number of edges and n be the number of
vertices in G. The SPQR tree T of G has m Q-nodes, O(n) S, P, R-nodes.
Also the total number of vertices of the skeletons stored at the nodes in T is
O(n).

Gutwenger et al. [20] presented a linear time implementation of SPQR trees.

Theorem 1 [20] Given a biconnected graph G with m edges and n vertices,
SPQR tree decomposition T can be computed in time O(m+ n).

2.3 Mimicking Networks

In this section, we review mimicking networks [21].
Let N = (G = (V,E), c) be a network and let Q = {q1, . . . , qk} ⊆ V . If a

function f : E → R≥0 satisfies f(e) ≤ c(e) for all e ∈ E, and if (v) = 0 for
all v ∈ V \Q, where if (v) =

∑
e∈δ+(v) f(e)−

∑
e∈δ−(v) f(e), δ+(v) denotes the

set of edges going out of v and δ−(v) denotes the set of edges entering v and
f is called a Q-flow. For a Q-flow f , (if (q1), . . . , if (qk)) is called the external
flow with respect to f . If we consider all feasible Q-flows, the set of all external
flows define a subset of RQ. We call it the external flow pattern of N with
respect to Q. It is proved [21] that any external flow pattern is expressed by a
set of 2k + 1 linear inequalities. External flow patterns can be also expressed
by mimicking networks. Let N ′ = (G′ = (V ′, E′), c′) be a network satisfying
Q ⊆ V ′. If the external flow pattern of N ′ with respect to Q coincides with that

JGAA, 23(5) 781–813 (2019) 789

of N with respect to Q, N ′ is called a mimicking network of N with terminal
set Q. Hagerup et al. [21] proved the following.

Lemma 2 [21] For any network and its vertex subset Q, there exists a mim-
icking network N ′ = (G′ = (V ′, E′), c′) with terminal set Q ⊆ V ′ such that

|V ′| ≤ 22
|Q|

.

Therefore, if the number of terminals is constant, the size of the mimicking net-
work is also constant. Furthermore, for undirected graphs with four terminals,
there exists a mimicking network with five nodes [7]. We denote a mimick-
ing network of N with terminal set Q satisfying the condition in Lemma 2 as
M(N,Q).

2.4 Range Minimum Queries

Range minimum query: Given an array A[1, n] of length n and a range
[s, t] ⊂ [1, n], compute the position of the minimum value in the sub-array
A[s, t].

Given the array A, after linear time processing, a range minimum query can be
solved in constant time. The size of the data structure is 2n + o(n) bits [12].
Note that the algorithm does not use the input array A at query time; it works
just using the 2n+ o(n) bit data structure.

2.5 Tree Product Queries

We use algorithms for the tree product query problem, defined as follows.

Tree product query: Given a semi-group (S, ◦), a tree T = (V,E), and a
function f : V → S, compute f(u) ◦ f(w1) ◦ f(w2) ◦ · · · ◦ f(v) for given
u, v ∈ V , where (u,w1, . . . , v) denotes the u− v path.

If the preprocessing time is p(n) and the time for a query is q(n), we denote the
time complexity by 〈p(n), q(n)〉. The following is known.

Theorem 2 [2, 8] There exists algorithms for tree product queries with time
complexity 〈O(knλ(k, n)),O(k)〉 and 〈O(kn),O(α(n))〉 for any k > 0 where
λ(k, n) and α(n) are the inverse Ackermann functions. The index sizes are
O(knλ(k, n)) and O(kn), respectively.

Inverse Ackermann Hierarchy: The inverse Ackermann hierarchy is a class
of functions αc(n), c = 1, 2, 3, . . . defined as follows:

α1(n) = dn2 e
For c ≥ 2,
αc(1) = 0
αc(n) = 1 + αc(αc−1(n)), n ≥ 2

790 Kashyop et al. Faster algorithms for shortest path and network flow

Inverse Ackermann Function: The inverse Ackermann Function is defined
as:

α(n) = min{c : αc(n) ≤ 3}
λ(k, n) = min{c : αc(n) ≤ 3 + k

n}

3 Basic Idea

Here we explain the basic idea of our algorithms. Consider the BC-tree T =
(B ∪ C,F) of a connected graph G = (V,E), which represents the biconnected
component decomposition.

Consider to compute the shortest path from vertices v to w in G. Let tv and
tw be nodes of T containing v and w, respectively. Note that these nodes are
either cut vertices or blocks. First assume that tv 6= tw and both tv and tw are
cut vertices. Consider the unique path P from tv to tw in T . We assume that
the graph has no cycles with negative weights. Then, the shortest path lies on
P and its length is obtained as follows: for each node in P which is a block,
it has two cut vertices on P and we amount the shortest path length between
them inside the block. If tv is a block, let cv be the cut vertex in tv which is on
P . We compute the shortest path length from v to cv inside the block and add
to the shortest path length from cv to w. If tw is a block, we do similarly.

To compute the max flow value from v to w in G, we do similarly to the
shortest path case, except we take the minimum value instead of summation.

To accelerate this computation, we precompute some values and store them
in a data structure. We choose an arbitrary leaf node r of T and make T a
rooted tree with root node r. For each block t, let t0 be the cut vertex of t
which is the closest to r among all cut vertices of t, and let t1, t2, . . . , tk be other
cut vertices of t. We call t0 as the parent of ti’s. For the shortest path case, we
compute the shortest path length from each of ti (1 ≤ i ≤ k) to t0 inside t and
store it in ti. We also compute the shortest path length from t0 to ti and store
it in ti if the graph is directed.

In Figure 1, the distance from vertex 7 to 6 is 2, and it is stored in node 7 of
the BC-tree. The distance from vertex 2 to 6 is 4 and it is stored in node 2. The
node 10 of the BC-tree stores weight 1, which is the distance from vertex 10 to
9. In nodes 6 and 9 of the BC-tree, we store the distance from those vertices to
8.

Consider to compute the distance from vertex 2 to 10. The shortest path
can be divided into three paths: 2 to 6, 6 to 9, and 9 to 10. The first and the
third values are stored in nodes 2 and 10 of the BC-tree. To obtain the second
value, we compute the distance from 6 to 9 in the block. In general, the shortest
path from v to w is divided into five paths: v to t0, t0 to av, av to aw, aw to
u0, and u0 to w, where t0 and u0 are the cut vertices of the blocks containing
v and w, respectively, that are on the shortest path, av (aw) is the cut vertex
of the lowest common ancestor node a between v and w in the BC-tree that is
on the path between t0 (u0) and a. We compute the first, the third, and the

JGAA, 23(5) 781–813 (2019) 791

fifth values using some data structure for the blocks. To compute the second
and the fourth values, we use the tree product query. We set ◦ to be addition,
and use two tree product queries. To compute the max flow value, we set ◦ to
be the minimum operator.

In summary, shortest path lengths and max flow values are computed by
using at most two tree product queries and computation of shortest path lengths
and max flow values inside at most three blocks. Thus the problem can be
reduced to the case the graph is biconnected.

4 Shortest Path Algorithms

4.1 Preprocessing

In this section we describe preprocessing algorithms for distance oracle problem
using SPQR tree. Let G be a weighted graph with m edges and n vertices. If
G is directed, we assume that whenever there is an edge from u to v, there is
also an edge from v to u (possibly of weight ∞). First we assume that G is
biconnected and describe our preprocessing algorithms. Then we describe the
extension to general graphs. Given a biconnected graph G, we obtain the SPQR
tree decomposition T of G in O(m+ n) time. We construct data structures for
the nodes of T in the preprocessing stage.

4.1.1 Constructing D0 structure

We define the data structure D0 as follows.

Definition 1 Let µ be a node of SPQR tree T and {u, v} be the reference edge
of µ. The data structure D0 for node µ stores an edge between u and v whose
weight is the length of the shortest path between u and v in the pertinent graph
of the pair {u, v} with respect to {u, v}, that is, the skeleton of node µ after
removing the reference edge {u, v}.

Therefore, D0 data structure of a node µ with reference edge {u, v} stores the
shortest path between u and v which is computed using the portion of the
graph G corresponding to the skeleton of µ. If the graph is directed, we store
two weights of the edge.

When we compute the shortest path from s to t, The D0 data structure of
node µ is used if both s and t are outside of the pertinent graph of the pair {u, v}
with respect to {u, v}. Because the pertinent graph is connected to the rest of
the graph at only u and v, if the shortest path from s to t goes through the
pertinent graph, the length of the shortest path between u and v in the pertinent
graph does not depend on the vertices s and t, and therefore the length can be
precomputed and stored as the D0 data structure.

If µ is a Q-node then its skeleton is two parallel edges, one of them is the
reference edge and the other is an edge {u, v} in the original graph. Then D0

data structure of node µ stores the edge {u, v} and its associated distance is the
weight of that edge.

792 Kashyop et al. Faster algorithms for shortest path and network flow

If µ is an S-node then its skeleton is a polygon. The skeleton consists of
reference edge {u, v} and a path between u and v. Here the reference edge
corresponds to the portion of the graph outside the skeleton. After removing
the reference edge, remaining skeleton is a path between u and v. Suppose
this path consists of edges {u, v0} of weight w0, {v0, v1} of weight w1, . . . , and
edge {vd−1, v} of weight wd. Then D0 data structure of node µ stores an edge

between u and v with weight
∑d
i=0 wi. If the graph G is directed, D0 data

structure for node µ stores two edges u → v and v → u. The weight of the
edge u→ v is the shortest path from u to v computed as described above in the
skeleton of node µ. Similarly the weight of the edge v → u is the shortest path
from v to u in the skeleton of node µ.

If µ is a P-node then its skeleton consists of two vertices u and v and k (k ≥ 3)
multiple edges between them. One of those k edges is a reference edge. The D0

structure of node µ is an edge between u and v whose weight is the minimum of
the weights of the k− 1 edges after removing the reference edge in the skeleton
of µ. If the graph G is directed then D0 structure for node µ stores two edges
u→ v and v → u whose weights are computed analogously.

If µ is an R-node, its skeleton is a triconnected graph. Let {u, v} be the
reference edge of µ. In the skeleton of µ we remove the reference edge {u, v}
and compute the shortest path between u and v (Let w be the length of the
shortest path). The D0 structure for node µ stores an edge between u and v
whose weight is w. If the graph G is directed then after removing the reference
edge in the skeleton of µ we compute u to v shortest path (Let w1 be the length
of the shortest path) and v to u shortest path (Let w2 be the length of the
shortest path). The D0 structure for node µ stores an edge u→ v with weight
w1 and an edge v → u with weight w2.

Figure 2 shows an SPQR tree. In the SPQR tree, there are one R-node (red
in color), one P-node (purple in color), and three S-nodes (sepia in color). The S-
nodes are labeled α, β, and γ. Numbers beside nodes of the SPQR tree show the
D0 data structure. The number associate with S-node α is 12 which is obtained
by summation of edge weights 5 on edge (2, 3) and 7 on edge (3, 1). Similarly
we obtain 30 for node β and 15 for node γ. The number associated with the
P-node is 3 which is minimum between 3 and 12. The number associated with
the R-node is 6 which is the value of shortest path between 7 and 5 (7−4−8−5)
in the skeleton after removing edge (7, 5).

Lemma 3 Given SPQR tree decomposition T of a biconnected graph G with n
nodes and m edges, D0 data structures are stored in O(n) space. The construc-
tion time for D0 data structures are as follows:

1. If the weights are non-negative integers and G is undirected then total time
to compute D0 data structures is O(m).

2. If G is directed or the weights are non-negative real numbers then total time
to compute D0 data structures is O(m+n log r), where r is the maximum
size of the triconnected component in T .

JGAA, 23(5) 781–813 (2019) 793

5

7

4

8

4

2 1 6

5 7

9

8

2 1

2

3

1

57

6124

56

32 13

12

97

89

47
84

58

12 = 5 + 7
3 = min {12,3}

30 = 10 + 8 + 3 + 9
15 = 8 + 7

10

8 9

8

7

2
3

1

5

3

75

6

5

97

4

8

6

1

2

3

5

2

8 7
1

3

10

8

9

3
5

7

Figure 2: An input graph G (upper left) and its SPQR tree and the D0 data
structure. In the graph, numbers beside edges show edge weights. In the SPQR
tree, dotted edges are reference edges.

794 Kashyop et al. Faster algorithms for shortest path and network flow

3. If the weights are real numbers (i.e some of the weights are negative) then
total time to compute D0 data structure is O(m + nr), where r is the
maximum size of the triconnected component in T .

Proof: Let µ be a node in the SPQR tree T with reference edge {u, v}.
If µ is an S-node then time required to construct D0 for µ is proportional to

the length of the path between u and v. If µ is a P-node then time required to
construct D0 for µ is proportional to the number of edges between u and v. By
property of SPQR tree, two S-nodes cannot be adjacent in T . Similarly two P-
nodes cannot be adjacent in T . An S-node adjacent to a P-node shares exactly
one edge. But this edge is a reference edge for one of the nodes and hence
considered only once in the computation of D0 structure. Therefore, total time
in the computation of D0 structure for all the S-nodes and P-nodes is O(m).

If µ is an R-node, then we divide the analysis into following three cases:

1. G is undirected and all the weights are non-negative integers. Then we use
linear time algorithm by Thorup [31] to compute shortest path between u
and v. Let ri be the number of edges and ni be the number of vertices in
µ. Therefore, time required to compute D0 for one R-node µ is O(ri). For
all the R-nodes total time required is O(

∑
i ri) ≈ O(m). Therefore, total

time to compute D0 data structures for all the nodes is O(m) + O(m) =
O(m).

2. G is directed or the weights are non-negative real, then we use algo-
rithm by Fredman and Tarjan [16] to compute shortest path between
u and v. Therefore, time required to compute D0 for one R-node is
O(ri+ni log ni) ≤ O(ri+ni log r), where r is the maximum size of the tri-
connected component. Total R-nodes in T is O(n). Therefore, total time
to compute D0 structure for all the R-nodes is O(

∑
i(ri + ni log r)) ≈

O(m+ n log r). Therefore, total time to compute D0 structure for all the
nodes is O(m)+O(m+ n log r) = O(m+ n log r).

3. G has negative weights. We use algorithm by Bellman [4] and Ford [14] to
compute shortest path between u and v. Let ri be the number of edges and
ni be the number of vertices in µ. Therefore, time required to compute
D0 for one R-node µ is O(niri) ≤ O(nir). For all the R-nodes total time
required is O(

∑
i nir) = O(nr). Therefore, total time to compute D0 data

structures for all the nodes is O(m) + O(nr) = O(m+ nr).

For every S-node, P-node, and R-node of T we are storing an edge as D0 struc-
ture. Since the total number of S-, P-, and R-nodes in T is O(n), therefore, the
total space required by D0 data structure is O(n). �

4.1.2 Constructing D1 structure

We define D1 data structure as follows.

Definition 2 Let ν be a node of an SPQR tree T and µ be the parent of ν.
Let {s, t} and {u, v} be the reference edge of ν and µ, respectively. The D1

JGAA, 23(5) 781–813 (2019) 795

data structure for ν is a network with at most four vertices {s, t, u, v} storing
the lengths of shortest paths between the vertices in the union of the pertinent
graphs of children of µ except that of ν.

When we compute the shortest path from s to t, the D1 data structure of
ν is used if s is in the pertinent graph of ν and t is in the rest of the pertinent
graph of µ. In this case, the shortest path from s to t goes through one of s, t
and one of u, v (we break tie arbitrarily). The shortest path may go through the
pertinent graphs of children of µ other than ν, but its length does not depend
on s or t. Therefore we can precompute shortest path lengths between the four
vertices {s, t, u, v} and store them as the D1 data structure.

To compute D1 data structure for each node of the SPQR tree T , we use
the following lemma.

Lemma 4 Let ν be a node of an SPQR tree T and µ be the parent of ν. Let
{s, t} and {u, v} be the reference edge of ν and µ, respectively, and Gµ be the
skeleton of µ. We assign the weight we of an edge e = (ui, vi) of Gµ so that we is
equal to the weight of the D0 data structure for the child node of µ corresponding
to e. Then the D1 data structure for ν is obtained by computing shortest paths
among s, t, u, v in Gµ\{{s, t}∪{u,v}}.
Proof: Let Ḡ be the union of the pertinent graphs of children of µ except that
of ν. Consider to compute the shortest path from s to u in Ḡ. If it passes the
pertinent graph Gi of a child of µ, its length inside Gi is equal to that of the
reference edge for the child, and it is stored in the D0 data structure for the edge.
Therefore, the shortest path lengths are the same in Ḡ and Gµ\{{s, t}∪{u, v}}.

�

We compute D1 data structure which stores in each node of the SPQR tree
a constant size graph with at most four vertices (maximum graph is a K4, i.e.,
complete graph with four vertices). Let µ be a node in SPQR tree T with
reference edge {u, v} and let v1,v2,. . . ,vk−1 be its children.

If µ is an S-node, its skeleton is a polygon. Let q1 = u, q2,. . . , qk = v
be the nodes of the skeleton. The weights of the edges {q1, q2}, {q2, q3}, . . . ,
{qk−1, qk} are stored in the D0 data structures of the nodes corresponding to
the edges. Let wi be the weight of the edge {qi, qi+1}. For the node of the SPQR
tree corresponding to the edge {qi, qi+1}, we store the following graph with at
most four vertices {qi, qi+1, u, v}. The graph has at most two edges {u, qi} and

{qi+1, v}. The weight of the edge {u, qi} is
∑i−1
j=1 wj and the weight of the edge

{qi+1, v} is
∑k−1
j=i+1 wj . The weights of the edges {u, q2}, . . . , {u, qk−1} and

{q1, v}, {q2, v}, . . . , {qk−1, v} can be computed in O(k) time. Therefore, time
required for computing D1 data structure for all the children of µ is O(k). In
case of directed graph we store at most four edges {u, qi}, {qi, u}, {qi+1, v} and
{v, qi+1}. The weights of all these edges are defined similarly to the undirected
case. It is an easy observation that in case of directed graphs also, time required
for computing D1 data structure for all the children of µ is O(k).

If µ is a P-node, its skeleton has k(k ≥ 3) edges between u and v. Let e1,
e2, . . . , ek corresponds to those edges and ek be the reference edge. Let wi be

796 Kashyop et al. Faster algorithms for shortest path and network flow

the weight of the edge ei and edge ei corresponds to child vi of µ. For each
vi, in D1 structure we store a graph consisting of a single edge between u and
v. The weight of this edge is min{w1, w2, . . . , wi−1, wi+1, . . . , wk−1}. By using
range minimum data structure, D1 data structures for all the children of µ can
be computed in O(k) time. In case of directed graphs, we store two edges (u, v)
and (v, u) whose weights are defined analogously. It is an easy observation that
in case of directed graphs also, time required for computing D1 data structure
for all the children of µ is O(k).

If µ is an R-node, its skeleton is a triconnected graph. Let vi is a child of µ
with reference edge {s, t}. In the skeleton of µ we remove edge {u, v} and {s, t}.
In this reduced skeleton graph we compute shortest path between every pair of
vertices in the set {u, v, s, t} and add an edge between every pair whose weight is
the value of the shortest path computed between the two vertices. This results
in a K4 graph and we store it as D1 structure for node vi.

If G is directed, D1 data structures are defined analogously.

5

7

4

8

4

2 1 6

5

7

9

8

2 1

2

3

1

57

6124

56

32 13

12

97
89

47
84

58

7
3 1

3
2 1

 8 19
2

4 5

1

8
7 9

4

57
2 4

8

57
5 1

6

6

Figure 3: The D1 data structure for the graph.

Figure 3 shows the D1 data structure (green in color) for the S-nodes (α, β
and γ), P-node (purple in color) and Q-nodes (2, 3) and (9, 8) (blue in color).
Each node has a constant size graph with at most four vertices.

Lemma 5 Given SPQR tree decomposition T of a biconnected graph G with
n nodes and m edges, D1 data structures are stored in O(m) space. The con-

JGAA, 23(5) 781–813 (2019) 797

struction time for D1 data structures is O(m + nr2). Here G may be directed
or undirected and weights may be real or integers and may be negative.

Proof: As shown in Lemma 3, time required to compute D1 data structure for
k−1 children of an S-node or P-node is O(k). Therefore, total time to compute
D1 data structures for children of all the S-nodes and P-nodes is O(m).

For an R-node, let ni and ri be the number of vertices and edges in the
skeleton and {u, v} be the reference edge. We use Bellman [4] and Ford [14]
algorithm to compute shortest path. Therefore, time required to compute D1

data structure for one child of an R-node is O(niri). Therefore, total time
required to compute D1 structure for all the children of the R-node is O(niri

2) ≤
O(nir

2). Since total R-nodes in T is of O(n), total time required to compute
D1 data structures for the children of all the R-nodes is O(nr2). Therefore,
total time to compute D1 data structures for all the nodes is O(m) + O(nr2)
= O(m+ nr2).

We store a constant size graph for all the nodes of T . Total S-nodes,P-nodes
and R-nodes in T is O(n) and there are m Q-nodes. Therefore, total space
requirement is O(m). �

4.1.3 Constructing D2 structure

The D2 data structure is constructed for the R-nodes. Let µ be an R-node with
reference edge {u, v}. Let v1 be a child of µ with reference edge {s1, t1} and v2
be a child of µ with reference edge {s2, t2}. The D2 data structure for the pair v1
and v2 is a K4 (complete graph with four vertices) with vertices {s1, t1, s2, t2}.
Weight of every edge is the shortest path between the two endpoints of the edge.
We store such a structure for every pair of children of µ. We use Bellman [4]
and Ford [14] algorithm to compute shortest path. If G is directed then D2 data
structures are defined analogously.

When we compute the shortest path from s to t, the D2 data structure of µ
for the pair v1 and v2 is used if s is in the pertinent graph of v1 and t is in the
pertinent graph of v2.

Lemma 6 Given SPQR tree decomposition T of a biconnected graph G with
n nodes and m edges, D2 data structures are stored in O(mr) space and con-
structed in O(nr3) time, where r is the maximum size of the triconnected compo-
nent. Here G may be directed or undirected and edge weights are real or integers
and may be negative.

Proof: Let µ be an R-node with ni vertices and ri edges. As explained in
section 4.1.3, time required to compute D2 data structure for one pair of children
of µ using Bellman and Ford algorithm is O(niri) ≤ O(nir). Therefore, total
time to compute D2 structure for all the pairs of children of the R-node is
O(nir

3). Therefore, total time required to compute D2 structure for all the
R-nodes is O(nr3).

Since for every child of an R-node we need to store at most r − 1 constant
size graphs, total space required by D2 data structures is O(mr). �

798 Kashyop et al. Faster algorithms for shortest path and network flow

For general graph, first we compute BC-tree in O(m + n) time. Every block
in the BC-tree is a biconnected component of the given graph. Two adjacent
blocks share exactly one vertex i.e. the cut vertex and all the blocks are edge
disjoint. So we compute SPQR tree for every block and then compute data
structures D0, D1 and D2 for every block. Overall time and space requirement
is same as in the case of biconnected graphs.

4.2 Computing s − t shortest path in O(m + nr) time and
faster

In this section we present an algorithm to compute s− t shortest path using the
D0 data structure. First we will consider G to be biconnected.

Given a graph G, we first compute the SPQR tree. Then for every node of
the SPQR tree we compute D0 data structure. For each of the given nodes s
and t, let µs be an arbitrary Q-node containing s and let µt be an arbitrary
Q-node containing t. Let p be the lowest common ancestor of nodes µs and µt.
Let v0 = µs, v1, v2, , vd = p be the nodes in the SPQR tree along the
path from µs to p. For each node vi in v1,. ,vd−1 we compute a constant
size graph with at most four vertices. Let {u, v} be the reference edge for node
vi+1 and {x, y} be the reference edge for node vi. We remove edge {u, v} and
{x, y} from the skeleton of vi+1 and compute shortest path between all the pairs
in the set {u, v, x, y}. As explained in section 4.1.2 , this graph is the same as
D1 for node vi. Therefore, resultant graph is a K4 where weight of every edge
is the shortest path computed between the two vertices. We draw the attention
of reader to the fact that we do not compute it for all the children of vi+1 and
compute only for the child having Q-node for s in its subtree. Let ri be the
number of edges and ni be the number of vertices in vi+1. Therefore, if G is
undirected and all the weights are non-negative integers, then time required to
construct the constant size graph for node vi is O(ri) [using algorithm [31]]. If
G is directed or the weights are non-negative real numbers then time required
to construct the constant size graph for vi is O(ri + ni log ni) [using algorithm
[16]]. If G has negative weights then time required to construct the constant size
graph for vi is O(niri) [using algorithm [4],[14]]. Similarly for nodes between µt
and p we compute the constant size graph. We also compute the constant size
graph for nodes between p and the root of the SPQR tree.

Finally we merge all these constant size graphs. Two adjacent nodes in
SPQR tree has exactly two vertices in common. Let G(c1) be a constant size
graph with vertices u, u′, x, y and G(c2) be an adjacent constant size graph with
vertices x, y, v, v′. In the merging process of G(c1) and G(c2), we create a new
graph G(c) with vertices {u, u′, v, v′} where weight of every edge is equal to
shortest path length between the two endpoints of the edge computed using
G(c1) ∪ G(c2). The graph G(c1) ∪ G(c2) contains all the vertices and edges in
G(c1) and G(c2) with the exception that for a common edge between G(c1) and
G(c2), G(c1) ∪G(c2) will contain the edge with minimum weight. Therefore, if
G(c1) and G(c2) are of constant size, then construction of G(c) takes constant
time. Therefore, total time required by the merging operation is proportional

JGAA, 23(5) 781–813 (2019) 799

to the length of the paths from µs to p, µt to p and p to the root of the SPQR
tree. Finally we will have a constant size graph with vertices s, s′, t and t′

where s′ and t′ are the other endpoints in µs and µt respectively. Since this
final graph is of constant size, we will compute shortest path length between s
and t in constant time.

7
3 1

3
2 1

 8 19
2

4 5

1

4

57
2 4

6

8

57
5 1

6
8

7 9

5
2 3

4

5 7

8

5
5 7

3

2 1

7
8 9

Figure 4: Computing the shortest path between 3 and 9.

Suppose we want to compute shortest path between 3 and 9 in the example
graph G. In Figure 3, Q-node (2, 3) (blue in color) is chosen as µ3 and Q-
node (9, 8) (blue in color) is chosen as µ9. R-node (red in color) is the lowest
common ancestor p of µ3 and µ9. All the constant size graphs (green in color)
are computed along the path from µ3 to p and µ9 to p. Figure 4 shows how to
merge the constant size graphs to compute the shortest path between 3 and 9.

For general graph, first we compute BC-tree in O(m+n) time. We get SPQR
tree decomposition and then compute D0 data structure for every biconnected
component. If s and t belongs to the same biconnected component then we
are done. Otherwise different biconnected components are separated by cut
vertices. So from the biconnected component containing s to the biconnected
component containing t we compute shortest path along the cut vertices.

Theorem 3 For a graph G with n vertices and m edges whose maximum tri-
connected component size is r, shortest path between s and t is computed in

1. O(m) time if G is undirected and all the weights are non-negative integers.

800 Kashyop et al. Faster algorithms for shortest path and network flow

2. O(m + n log r) time if G is directed or the weights are non-negative real
numbers.

3. O(m+ nr) time if G has negative weights.

Proof: We first consider G to be biconnected. We get the SPQR tree decom-
position in O(m+ n) time.

1. G is undirected. We construct the D0 data structure in O(m) time
[Lemma 3]. As explained in section 4.2, time required to construct the
constant size graph for node vi is O(ri) where ri is the number of edges in
the skeleton of the parent node of vi in the path. Since all these skeletons
are edge disjoint, total time required to compute the constant size graphs
for all the nodes along the three paths i.e. µs to p, µt to p and p to the
root of SPQR tree is

∑
iO(ri) = O(m). Merging of all these graphs takes

time proportional to length of the paths which is again O(m). Therefore,
overall time taken to compute s to t shortest path in G is O(m).

2. G is directed or weights are non-negative real numbers. We construct
D0 data structure in O(m + n log r) time [Lemma 3]. As explained in
section 4.2, time required to construct the constant size graph for one node
is O(ri + ni log ri) where ri is the number of edges and ni is the number
of vertices in the skeleton of the parent node of vi in the path. Since all
these skeletons are edge disjoint and total number of S-nodes,P-nodes and
R-nodes are O(n), total time required for construction for all the nodes
along the paths is

∑
iO(ri+ni log ni) ≤ O(ri+ni log r) ≈ O(m+n log r).

Merging of all these graphs takes time proportional to length of the paths
which is O(m). Therefore, overall time taken to compute s to t shortest
path in G is O(m+ n log r).

3. G has negative weights. We construct D0 data structure in O(m + nr)
time [Lemma 3]. As explained in section 4.2, time required to construct
the constant size graph for one node is O(niri) where ri is the number
of edges and ni is the number of vertices in the skeleton of the parent
node of vi in the path. Since all these skeletons are edge disjoint and total
number of S-nodes,P-nodes and R-nodes are O(n), total time required for
construction for all the nodes along the paths is

∑
iO(niri) ≤ O(nir) ≈

O(nr). Merging of all these graphs takes time proportional to length of
the paths which is O(m). Therefore, overall time taken to compute s to t
shortest path in G is O(m+ nr).

If G is not biconnected, then we compute the BC-tree decomposition in time
O(m+n). Since two adjacent blocks in the BC-tree have exactly one cut vertex
in common and they are edge disjoint, the remaining computation takes same
time as in the case of biconnected graph. �

JGAA, 23(5) 781–813 (2019) 801

4.3 Algorithms for Distance Oracle Problem

Suppose we want to compute the shortest path between two vertices s and t in
a graph G. Let x be a cut vertex in G and G \ {x} results in two components
G1 and G2. Suppose s belongs to G1 and t belongs to G2. So we will compute
shortest path from s to x in G1 and shortest path from x to t in G2 and combine
the solution to find the shortest path between s and t. The order in which solu-
tion is computed in the subgraph G1 and G2 does not have any impact on the
final solution. Similar arguments holds true if we assume s and t are separated
by a split pair {x, y}. Therefore, merging operation mentioned section 4.2 for
the shortest path problem is an associative operation. Therefore, we can use
Tree-Product-Query data structures. Given the SPQR tree decomposition, we
can construct the Tree-Product-Query data structures in O(m) time and per-
form the merging operation in time O(α(n)) where α(n) is inverse Ackermann
function.

4.3.1 Algorithm using D0 data structure

We have already explained this algorithm in section 4.2. For the given graph
G with m edges and n vertices, preprocessing time is O(m) and query time is
O(m) if G is undirected and all the weights are non-negative integers. If G is
directed or weights are non-negative real numbers then preprocessing time is
O(m + n log r) and query time is O(m + n log r). In the presence of negative
weights, preprocessing time is O(m+ nr) and query time is O(m+ nr). Size of
index (data structure D0) is O(n).

4.3.2 Algorithm using D1 data structure

As explained in section 4.2, the constant size graphs that we construct using D0

data structure are exactly the D1 structures. Therefore, if we use more space
then we can reduce the query time. So total time required for preprocessing
stage i.e. construction of D0 and D1 data structures is O(m+ nr2). Let {u, v}
be the reference edge of p. Let {x, x′} be the reference edge for the child of
p in the path from µs to p and {y, y′} be the reference edge for the child of
p in the path from µt to p. In the query stage we need to construct a graph
with four vertices {x, x′, y, y′} using skeleton of p. This is stored in the D2

data structure and therefore we have to construct it at query time. Time for
this construction is O(r) if G is undirected and all the weights are non-negative
integers and O(r log r) if G is directed or the weights are non-negative real
numbers and O(r2) if the weights are negative. For merging operations we will
use tree product query data structures and hence total time required for all the
merging is O(α(n)).

4.3.3 Algorithm using D2 data structure

If we use D2 data structure then in the preprocessing stage we compute D0,D1

and D2 data structures. Total preprocessing time is O(m + nr3). In the

802 Kashyop et al. Faster algorithms for shortest path and network flow

query stage we use tree product query data structures and hence query time
is O(α(n)).

Theorem 4 For a graph G with n vertices and m edges,

1. If G is undirected and all the weights are non-negative integers then after
O(m) preprocessing time, using index of size O(n), the shortest path be-
tween two vertices is computed in O(m) time. If G is directed or weights
are non-negative real numbers then after O(m+n log r) preprocessing time,
using index of size O(n), the shortest path between two vertices is computed
in O(m+ n log r) time. If the weights are negative then after O(m+ nr)
preprocessing time, using index of size O(n), the shortest path between two
vertices is computed in O(m+ nr) time.

2. If G is undirected and all the weights are non-negative integers then after
O(m+nr2) preprocessing time, using index of size O(m), the shortest path
between two vertices is computed in O(r) time. If G is directed or weights
are non-negative real numbers then after O(m+ nr2) preprocessing time,
using index of size O(m), the shortest path between two vertices is com-
puted in O(r log r) time. If the weights are negative then after O(m+nr2)
preprocessing time, using index of size O(m), the shortest path between
two vertices is computed in O(r2) time.

3. For G (directed or undirected) with weights integers or real (negative weights
allowed), after O(m+nr3) preprocessing time, using index of size O(mr),
the shortest path between two vertices is computed in O(α(n)) time.

where r is the maximum size of the triconnected component in the SPQR tree
decomposition of the given graph.

4.4 Algorithm for SSSP and APSP

Using data structures D0, D1, D2 and tree product query data structures, we
can compute shortest path from a given vertex to all other vertices and between
all the pairs of vertices. Recall that r is the maximum size of the triconnected
component in the SPQR tree decomposition of G.

Theorem 5 Given G (directed or undirected and weights may be negative) and
a source vertex, SSSP problem is solved in O(m+nr2+nα(n)) time using D0,D1

and tree product query data structures which uses O(m) space

Theorem 6 Given G (directed or undirected and weights may be negative),
APSP problem is solved in O(m+nr3 +n2α(n)) time using D0,D1,D2 and tree
product query data structures.

JGAA, 23(5) 781–813 (2019) 803

5 Network Algorithms

5.1 Preprocessing

In this section, we show preprocessing algorithms for solving max-flow problem
using SPQR trees. Let G be a network with m edges and n vertices. If G
is directed, we assume that whenever there is an edge from u to v, there is
also an edge from v to u (possibly of capacity 0). First we assume G to be
biconnected and describe our preprocessing algorithms. Then we describe the
extension to general graphs. Given a biconnected graph G, we obtain the SPQR
tree decomposition T of G in O(m+ n) time. We construct data structures for
nodes of T in the preprocessing stage.

In this section, let D′0, D′1, D′2 denote the data structures for computing max-
flow, which correspond to D0, D1, D2 data structures for computing shortest
paths.

5.1.1 Constructing D′0 data structure

First we give a data structure D′0 which stores in each node µ of the SPQR
tree T for a graph G = (V,E), the edge capacity of the mimicking network
corresponding to the node µ.

If µ is an S-node, its skeleton is a polygon, consisting of the reference edge
{u, v} and a path connecting u and v. Here the reference edge can be considered
as the network outside of the skeleton. If we see the skeleton from outside, it
is the path between u and v. Then we can regard the path as an edge between
u and v. Its capacity is the minimum among edges on the path if the graph
is undirected. If the graph is directed, we create two directed edges (u, v) and
(v, u). Their edge capacities are defined analogously.

If µ is a P-node, its skeleton is a graph with two vertices u, v and k multiple
edges between them. Among k edges, one is the reference edge. Therefore we
store an edge between u and v whose capacity is the summation of those of the
edges except the reference edge.

If µ is an R-node, its skeleton is a triconnected graph. Let {u, v} be the
reference edge. If the graph is undirected, we compute the minimum cut value
c between u and v in the skeleton without the edge {u, v}, and we store an edge
with capacity c. If the graph is directed, we compute both u − v and v − u
minimum cut values and store two edges whose capacities are those values.

We analyze the time complexity of the above algorithm. For S- and P-node,
it takes time proportional to the number of edges in the SPQR tree, which is
O(m). For each R-node, we compute max-flow constant times. Let ni and ri
be the numbers of nodes and edges in the skeleton of a node µi of the SPQR
tree. Then it takes O(niri) time for computing max-flow [29]. Therefore the
total time for computing the D′0 data structure is∑

µi

O(niri) = O(
∑
µi

nir) = O(nr)

804 Kashyop et al. Faster algorithms for shortest path and network flow

where r = max ri is the maximum size of skeletons.

Lemma 7 Given an SPQR tree of a biconnected graph which has n nodes and
the maximum size of whose triconnected components is r, the D′0 data structure
is stored in O(m) space and constructed in O(nr) time.

1

2
34

7 9 8

5 6

2
3
1

2 1

2
4 5

61

4
7 8
5

7 9 8

2 3 3 1

2 1

7 9 9 86 5 4 2 1 6

7 4

7 5

4 8 8 58

2 3

8 7

5 1

10

9

7

3

5

5 7

5 = min{5, 7}
3

10 8

9 8 7

2 3 1

7 = min{8, 7}

8 = min{10, 8, 8, 9}

8 = 5+3

5

6

Figure 5: An input graph G (upper left) and its SPQR tree and the D′0 data
structure. In the graph, numbers beside edges show edge capacities. In the
SPQR tree, dotted edges are reference edges.

Figure 5 shows an SPQR tree. In the SPQR tree, there are one R-node (red
in color), one P-code (purple in color), and three S-nodes (sepia in color). The
S-nodes are labeled α, β, and γ. Numbers beside nodes of the SPQR tree show
the D′0 data structure. Each node of the SPQR tre has one number, which is
the capacity of the edge made by merging the edges in the node. In node α,
the value is 5 because it is the minimum of {5, 7}, which are capacities of edges
2–3 and 3–1. In the P-node, the value is 8 because there are two parallel edges
between node 2 and node 1 and their edge capacities are 5 and 3. In the R-node,
the value is 6, which is obtained by computing the minimum cut between node
5 and node 7 in the skeleton of the R-node. The edge capacities of the edges in
the skeleton are stored in the children. It is directly obtained that the minimum
cut between node 5 and node 7 is 11 because we can consider that there are two
parallel edges between them and their edge capacities are 5 (for the edge 5–7)
and 6 (for the merged graph stored in the R-node).

JGAA, 23(5) 781–813 (2019) 805

5.1.2 Constructing D′1 data structure

Next we compute D′1 data structure which stores in each node of the SPQR
tree, a mimicking network with four terminals, that is, of constant size. Let µ
be a node of the SPQR tree, v1, v2, . . . , vk−1 be its children, and {u, v} be the
reference edge of µ.

If µ is an S-node, let q1 = u, q2, . . . , qk = v be the nodes of the skeleton. The
capacities of edges {q1, q2}, {q2, q3}, . . . , {qk−1, qk} are stored in the D′0 data
structure. For node vi, we store the following graph with at most four terminals
{qi, qi+1, u, v}. The graph has at most two edges: {u, qi}, {qi+1, v}. The edge
capacities are the minimum of those of {q1, q2}, . . . , {qi−1, qi}, the minimum of
those of {qi, qi+1}, . . . , {qk−1, qk}, respectively. That is, the graph is obtained by
deleting the edge {qi−1, qi} merging other edges into two. The edge capacities
are computed in O(k) time as follows. If we know the minimum edge capacity
of {q1, q2}, . . . , {qj−1, qj}, the minimum edge capacity after adding another edge
{qj , qj+1} is computed in constant time. By repeating this, we obtain all the
edge capacities.

If µ is a P-node, let e1, e2, . . . , ek be the edges of the skeleton, and ek be the
reference edge. Assume that the edge ei corresponds to the children vi. Then
for each vi, we store a graph with two terminals {u, v}. The edge capacity is∑k−1
j=1 c(ej)− c(ei) where c(ej) is the capacity of ej for undirected graphs. For

directed graphs it is computed analogously. We can compute those graphs for
all children of µ in O(k) time.

If µ is an R-node, for each child vi of µ, we compute a mimicking network
M(Gµ\{{u, v}, {s, t}}, {u, v, s, t}) where s, t are end points of the reference edge
of vi. If the skeleton of µ has ni nodes and ri edges, the mimicking network is
computed in O(niri) time. Therefore for each R-node, it takes O(nir

2
i) time.

The total time for all R-nodes is O(nr2).

Lemma 8 Given an SPQR tree of a biconnected graph which has n nodes and
the maximum size of whose triconnected components is r, the D′1 data structure
is stored in O(m) space and constructed in O(nr2) time.

Figure 6 shows the D′1 data structure for the example graph. Each node has
a mimicking network with at most four terminals. The mimicking network for
the P-node is obtained by merging edges 1–6 and 6–5 into one. The mimicking
network for node β is obtained from the skeleton in the R-node by eleminating
node 8.

5.1.3 Constructing D′2 data structure

The D′2 data structure is to store for each pair {s1, t1}, {s2, t2} of edges of each
R-node µ whose reference edge is {u, v}, the mimicking network with at most six
terminals M(Gµ\{{u, v}, {s1, t1}, {s2, t2}}, {u, v, s1, t1, s2, t2}). For the node µ
with ni nodes and ri edges, it takes O(nir

3
i) time. Then the total time is O(nr3).

The space is O(mr) because for each node we store at most r − 1 mimicking
networks of constant size.

806 Kashyop et al. Faster algorithms for shortest path and network flow

2
3
1

2 1

2
4 5

61

4
7 8
5

7 9 8

2 3 3 1

2 1

7 9 9 86 5 4 2 1 6

7 4

7 5

4 8 8 5

3 17 2 35

2 13

2 15

4 5
8
2 1

9

5 7

4
5 7

8

7 98

9 87

4 5

6 108

Figure 6: The D′1 data structure for the graph.

Lemma 9 Given an SPQR tree of a biconnected graph which has n nodes and
the maximum size of whose triconnected components is r, the D′2 data structure
is stored in O(mr) space and constructed in O(nr3) time.

5.2 Computing s− t Max Flow in O(m+ nr) time

In this section, we show an algorithm for computing s − t max flow in O(m +
nr) time using the D′0 data structure. First we consider an input graph is
biconnected. We compute the SPQR tree in O(n+m) time, then construct the
D′0 data structure in O(nr) time.

From each of the given nodes s, t, we choose an arbitrary Q-node containing
the node. Let µs, µt be the nodes, and p be their lowest common ancestor. Let
v0 = µs, v1, . . . , vd = p be the nodes in the SPQR tree on the path from µs to
p. For each node vi in v1, . . . , vd−1, we compute the mimicking network with at
most four terminals by merging the mimicking networks for siblings of vi. This
is actually the same as M(Gvi+1

\{{u, v}, {x, y}}, {u, v, x, y}), which is in the D′1
data structure, where {u, v} and {x, y} are the reference edges of vi+1 and vi,
respectively. Note that we do not compute those networks for all children of an
R-node; only for the child having the Q-node for s in its subtree. Similarly for
nodes between µt and p, we compute mimicking networks. We also compute for
nodes between p and the root of the SPQR tree, the mimicking networks with

JGAA, 23(5) 781–813 (2019) 807

at most four terminals.
Finally we merge all the mimicking networks computed above. Because two

mimicking networks adjacent in the tree have two common vertices, we can
merge them. Let n1, r1 and n2, r2 be the number of nodes and edges in the two
skeletons, respectively. The time complexity to merge the mimicking networks
is O((n1 + n2)(r1 + r2)) = O((n1 + n2)r). Then the total time complexity is
O(nr). Now we have a mimicking network with four terminals s, s′, t, t′ where
s′ and t′ are the other end points of the edges in the Q-node containing s and t.
By adding the edges {s, s′} and {t, t′} to the mimicking network and computing
the s − t minimum cut, we obtain the answer. This is done in constant time
because the mimicking network is of constant size.

Once the value of the s − t max flow is obtained, we can compute the flow
itself. If the external flow of a mimicking network is fixed, we can obtain the
flow in a skeleton by computing max flows constant times. And once the flow
value of an edge of a skeleton is fixed, we can recursively compute the flow for
the skeleton. The time complexity is the same as computing the max flow value.

Next we consider a general graph. First we compute the BC-tree in O(n+m)
time. If s and t belong to the same biconnected component, we are done.
Otherwise, for all blocks in the BC-tree on the path from the one containing s
to the one containing t, we compute minimum cut values, and obtain the result.
The time complexity is O(m+ nr).

Theorem 7 For a graph with n nodes and m edges whose maximum tricon-
nected component is of size r, an s − t max flow is computed in O(m + nr)
time.

5.3 Algorithms for MFIP

In this section we give algorithms for the MFIP. The results are summarized as
follows.

Theorem 8 For a directed network with n vertices and m edges,

(i) after O
(
m+ nλ(k, n) + nr3

)
-time preprocess, using an index of size

O (m+ nλ(k, n) +mr), the value of the maximum flow is computed in
constant time, or

(ii) after O
(
m+ nr3

)
-time preprocess, using an index of size O (m+mr), the

value of the maximum flow is computed in O(α(n)) time,

(iii) after O
(
m+ nr2

)
-time preprocess, using an index of size O (m), the value

of the maximum flow is computed in O(α(n) + r2) time,

where r is the maximum size of triconnected components in the underlying undi-
rected graph.

The proof is in the following subsections.

808 Kashyop et al. Faster algorithms for shortest path and network flow

5.3.1 Algorithms for fast queries

To solve MFIP in a biconnected graph, we use the D′1 and the D′2 data structures
and the tree product query data structure. In each node of the SPQR tree, a
mimicking network is stored as D′1. Because merging of mimicking networks
is associative, we can use the data structure for tree product queries for those
mimicking networks. The preprocess and query times are either O(nλ(k, n))
and O(1), or O(n) and O(λ(k, n)) for any k ≥ 0.

Assume that vertices s, t are given as a query. For each of s, t, we choose an
arbitrary Q-node containing the node. Let µs, µt be the nodes, and p be their
lowest common ancestor. Let qs and qt be children of p on the path between µs
and p and on the path between µt and p, respectively. Then the mimicking net-
work Ms between µs and qs is computed by using the tree product query data
structure. Similarly the mimicking network Mt between µt and qt is computed.
We also compute the mimicking network Mp for nodes between p and the root
of the SPQR tree using the tree product query data structure. Then we merge
Ms,Mt,Mp, and the mimicking networkM(Gp\{{u, v}, {s1, t1}, {s2, t2}}, {u, v, s1, t1, s2, t2})
where {u, v} are the common vertices betweenMp andM(Gp, {u, v, s1, t1, s2, t2}),
{s1, t1}) are the common vertices between Ms and M(Gp, {u, v, s1, t1, s2, t2}),
and {s2, t2} are the common vertices betweenMt andM(Gp, {u, v, s1, t1, s2, t2}).
Because M(Gp, {v, u, s1, t1, s2, t2}) is stored in the D′2 data structure and it is of
constant size (six terminals), we can merge them in constant time, and compute
the max flow value in constant time.

If the graph is not biconnected, in the preprocessing stage we construct the
BC-tree and for each biconnected component we construct the SPQR tree and
the tree product query data structure. Then for the BC-tree, we preprocess it
for tree product queries.

5.3.2 An algorithm with small index

Here we give an algorithm using O(m) space based on the D′1 data structure
and the tree product query data structure. The algorithm is different from that
in the previous subsection that we do not use the D′2 data structure. Therefore
for a query we have to solve max-flow problems in two nodes (p and the root).
Because the number of edges in a skeleton is at most r, the max-flow can be
solved in O(r2) time.

In Figure 6, mimicking networks in blue boxes and ovals are used to compute
the min-cut between node 3 and node 9.

Figure 7 shows how to merge mimicking networks to compute the min-cut
between node 3 and node 9 using the D′1 data structure.

5.4 Algorithms for Other Problems

The APMFP can be solved by computing the values of maximum flows for every
pair of vertices using the D′2 data structure and the tree product query data
structure.

JGAA, 23(5) 781–813 (2019) 809

2

3

5
3

1

7

4

5

82

1
9

4

5

7 9
8 9

8

7

5
7

83

2
1

75

Tree product query

Tree product query

2

1

3

Figure 7: Computing the min-cut between node 3 and node 9.

Theorem 9 The values of maximum flows of all pairs of vertices is computed
in O

(
nr3 + n2

)
time.

The minimum cut problem is also solved trivially by finding the maximum
of all maximum flow values.

Theorem 10 The value of the minimum cut is computed in O
(
nr3 + n2

)
time.

6 Conclusion

We have proposed faster algorithms for network problems, especially the short-
est path, the maximum flow and the minimum cut problems, based on a graph
decomposition. Different from an existing work [3] based on the tree decompo-
sition whose time complexity is doubly exponential to the tree-width, time com-
plexities of our algorithms depend polynomially on a parameter r, the size of the
maximum triconnected component. More importantly, triconnected component
decomposition can be done in linear time, whereas finding a tree decomposition
with minimum tree-width is NP-hard if the tree-width is not constant. Though
r = m in the worst case, our algorithms are faster than existing ones for small r
cases. For the s− t maximum flow problem, our algorithm runs in O(nr) time,
which is faster than the fastest algorithm [29] if r = o(m).

810 Kashyop et al. Faster algorithms for shortest path and network flow

For s − t shortest path problem, our algorithm runs in O(m) if the graph
is undirected and weights are non-negative integers. If the weights are non-
negative real numbers then our algorithm solves s− t shortest path problem in
O(m+ n log r) time which is faster than [16] if r = o(n). If the weights are real
numbers (i.e some of the weights are negative) then our algorithm solves s − t
shortest path problem in O(m+nr) time which is faster than Bellman and Ford
algorithm [4],[14] if r = o(m).

Our approach based on triconnected component decomposition can be easily
applied for other network problems such as the network reliability problem.
Our future work is to extend the scope of our approach and to show practical
performance on real networks.

JGAA, 23(5) 781–813 (2019) 811

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

[2] N. Alon and B. Schieber. Optimal preprocessing for answering on-line
product queries. Technical report, 1987.

[3] S. R. Arikati, S. Chaudhuri, and C. D. Zaroliagis. All-pairs min-cut in
sparse networks. Journal of Algorithms, 29(1):82 – 110, 1998. doi:10.

1006/jagm.1998.0961.

[4] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[5] A. A. Benczúr. Counterexamples for directed and node capacitated
cut-trees. SIAM J. Comput., 24(3):505–510, 1995. doi:10.1137/

S0097539792236730.

[6] G. Borradaile and P. Klein. An o(n log n) algorithm for maximum st-
flow in a directed planar graph. J. ACM, 56(2):9:1–9:30, Apr. 2009. doi:

10.1145/1502793.1502798.

[7] S. Chaudhuri, K. V. Subrahmanyam, F. Wagner, and C. D. Zaroliagis.
Computing mimicking networks. Algorithmica, 26(1):31–49, 2000. doi:

10.1007/s004539910003.

[8] B. Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2:337–361, 1987. doi:10.1007/BF01840366.

[9] G. Di Battista and R. Tamassia. Incremental planarity testing. In 30th An-
nual Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages 436–441,
1989. doi:10.1109/SFCS.1989.63515.

[10] G. Di Battista and R. Tamassia. On-line maintenance of triconnected
components with spqr-trees. Algorithmica, 15(4):302–318, 1996. doi:

10.1007/BF01961541.

[11] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM, 19(2):248–264, 1972. doi:

10.1145/321694.321699.

[12] J. Fischer and V. Heun. Space-Efficient Preprocessing Schemes for Range
Minimum Queries on Static Arrays. SIAM J. Comput., 40(2):465–492,
2011. doi:10.1137/090779759.

[13] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8:399–404, 1956.

[14] L. R. Ford Jr. Network flow theory. RAND paper, 1956.

http://dx.doi.org/10.1006/jagm.1998.0961
http://dx.doi.org/10.1006/jagm.1998.0961
http://dx.doi.org/10.1137/S0097539792236730
http://dx.doi.org/10.1137/S0097539792236730
http://dx.doi.org/10.1145/1502793.1502798
http://dx.doi.org/10.1145/1502793.1502798
http://dx.doi.org/10.1007/s004539910003
http://dx.doi.org/10.1007/s004539910003
http://dx.doi.org/10.1007/BF01840366
http://dx.doi.org/10.1109/SFCS.1989.63515
http://dx.doi.org/10.1007/BF01961541
http://dx.doi.org/10.1007/BF01961541
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1137/090779759

812 Kashyop et al. Faster algorithms for shortest path and network flow

[15] G. Frederickson. Using cellular graph embeddings in solving all pairs
shortest paths problems. Journal of Algorithms, 19(1):45 – 85, 1995.
doi:10.1006/jagm.1995.1027.

[16] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. J. ACM, 34(3):596–615, 1987.
doi:10.1145/28869.28874.

[17] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

[18] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of
the Society for Industrial and Applied Mathematics, 9:551–570, 1961. doi:
10.1137/0109047.

[19] C. Gutwenger. Application of SPQR-trees in the planarization approach
for drawing graphs. Ph.D thesis, Dortmund University of Technology, 2010.

[20] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In Graph Drawing, 8th International Symposium, GD 2000, Colonial
Williamsburg, VA, USA, September 20-23, 2000, Proceedings, pages 77–90,
2000. doi:10.1007/3-540-44541-2_8.

[21] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizations
of k-terminal flow networks and computing network flows in partial k-trees.
In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, 22-24 January 1995. San Francisco, California., pages 641–
649, 1995.

[22] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in
a directed graph. J. Algorithms, 17(3):424–446, 1994. doi:10.1006/jagm.
1994.1043.

[23] J. E. Hopcroft and R. E. Tarjan. Algorithm 447: Efficient algorithms for
graph manipulation. Commun. ACM, 16(6):372–378, 1973. doi:10.1145/
362248.362272.

[24] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs.
In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 313–322, 2011.
doi:10.1145/1993636.1993679.

[25] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks.
J. ACM, 24(1):1–13, 1977. doi:10.1145/321992.321993.

[26] V. King, S. Rao, and R. E. Tarjan. A faster deterministic maximum flow
algorithm. J. Algorithms, 17(3):447–474, 1994. doi:10.1006/jagm.1994.

1044.

http://dx.doi.org/10.1006/jagm.1995.1027
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/48014.61051
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1145/1993636.1993679
http://dx.doi.org/10.1145/321992.321993
http://dx.doi.org/10.1006/jagm.1994.1044
http://dx.doi.org/10.1006/jagm.1994.1044

JGAA, 23(5) 781–813 (2019) 813

[27] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, and S. M.
Basalamah. A survey of shortest-path algorithms. CoRR, abs/1705.02044,
2017.

[28] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–
66, 1992. doi:10.1137/0405004.

[29] J. B. Orlin. Max flows in O(nm) time, or better. In Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 765–774, 2013. doi:10.1145/2488608.2488705.

[30] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972. doi:10.1137/0201010.

[31] M. Thorup. Undirected single-source shortest paths with positive inte-
ger weights in linear time. J. ACM, 46(3):362–394, 1999. doi:10.1145/

316542.316548.

[32] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–
24, 2005. doi:10.1145/1044731.1044732.

http://dx.doi.org/10.1137/0405004
http://dx.doi.org/10.1145/2488608.2488705
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/1044731.1044732

	Introduction
	Related work
	Our contribution

	Preliminaries
	BC-trees
	SPQR trees
	Mimicking Networks
	Range Minimum Queries
	Tree Product Queries

	Basic Idea
	Shortest Path Algorithms
	Preprocessing
	Constructing D0 structure
	Constructing D1 structure
	Constructing D2 structure

	Computing s-t shortest path in O(m+nr) time and faster
	Algorithms for Distance Oracle Problem
	Algorithm using D0 data structure
	Algorithm using D1 data structure
	Algorithm using D2 data structure

	Algorithm for SSSP and APSP

	Network Algorithms
	Preprocessing
	Constructing D'0 data structure
	Constructing D'1 data structure
	Constructing D'2 data structure

	Computing s-t Max Flow in O(m+nr) time
	Algorithms for MFIP
	Algorithms for fast queries
	An algorithm with small index

	Algorithms for Other Problems

	Conclusion

