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Density decompositions of networks
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Abstract

We introduce a new topological descriptor of a graph called the density
decomposition which is a partition of the vertices of a graph into regions
of uniform density. The decomposition we define is unique in the sense
that a given graph has exactly one density decomposition. The number
of vertices in each partition defines a density distribution which we find is
measurably similar to the degree distribution of given real-world networks
(social, internet, etc.) and measurably dissimilar in synthetic networks
(preferential attachment, small world, etc.).

We also show how to build networks having given density distributions,
which gives us further insight into the structure of real-world networks.
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1 Introduction

A better understanding of the topological properties of real-world or naturally-
occurring networks can be advantageous for two major reasons. First, knowing
that a network has certain properties, e.g., bounded degree or planarity, can
sometimes allow for the design of more efficient algorithms for extracting infor-
mation about the network or for the design of more efficient distributed protocols
to run on the network. Second, it can lead to methods for generating artificial
networks that more accurately match the properties of real-world networks thus
allowing for more accurate predictions of future growth of the network and more
accurate simulations of distributed protocols running on such a network.

We show that graphs decompose naturally into regions of uniform density, a
density decomposition. The decomposition we define is unique in the sense that
a given graph has exactly one density decomposition. The number of vertices in
each region defines a distribution of the vertices according to the density of the
region to which they belong, that is, a density distribution (Section 2). Although
density is closely related to degree, we find that the density distribution of a
particular graph is not necessarily similar to the degree distribution of that
graph. For example, in many generated networks, such as those generated by
popular network models (e.g. preferential attachment and small worlds), the
density distribution is very different from the degree distribution (Section 3.1).
On the other hand, for all of the real-world networks (social, internet, etc.)
in our data set, the density and degree distributions are measurably similar
(Section 3). Similar conclusions can be drawn using the notion of k-cores [33],
which we discuss in Section 2.3.

As others before us, we would like a method for generating networks hav-
ing certain properties that are believed to match those of real-world networks.
Having observed that many real-world networks have the property that their
degree distributions match their density distributions, we describe a method for
generating networks that have that property. We develop an abstract model,
that, given a particular density distribution, produces a network having that
density distribution (Section 4). Applied näıvely, given a density distribution
of a real-world network, this model generates networks with realistic average
path lengths (average number of hops between pairs of vertices) and degree
distributions; that is similar to the given real-world network (Section 4.1). In
addition to having short average path lengths, large-scale, real-world networks
also tend to have high clustering coefficients [29]. The clustering coefficient of
a vertex v is the ratio of the number of pairs of neighbors of v that are con-
nected to the number of pairs of neighbors of v; the clustering coefficient of a
graph is the average clustering coefficient of its vertices. Our model, näıvely
applied, unfortunately, but not surprisingly, results in networks with very low
clustering coefficients. However, we show that applying the abstract model in
a more sophisticated manner, using ideas from the small world model of Watts
and Strogatz [37], results in much higher clustering coefficients (Section 4.2)
suggesting that real-world networks may indeed be hierarchies of small worlds.
Our hierarchies of small worlds specification is just one way to tune our abstract
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model; our model is quite flexible, allowing for the easy incorporation of other
network generation techniques, which we discuss in Section 4.4.

1.1 Related work

In this paper we consider undirected graphs, G = (V,E). The density of a graph

is the ratio of the number of edges to the number of vertices, |E||V | .

The density decomposition of a graph is a partition of the vertices into regions
of uniform density [9]. We can obtain such a decomposition by first orienting
the edges of the graph in an egalitarian1 manner. Then we partition the vertices
based on their indegree and connectivity in this orientation.

Egalitarian orientations are one example of fair orientations that have been
studied frequently in the past. For example, Venkateswaran shows how to
find an orientation that minimizes the maximum indegree of any vertex [39].
Asahiro, Miyano, Ono, and Zenmyo consider the edge-weighted version of this
problem [3]. They give a combinatorial {wmax

wmin
, (2−ε)}-approximation algorithm

where wmax and wmin are the maximum and minimum weights of edges respec-
tively, and ε depends on the average weights of the input graph [3]. Kloster-
meyer considers the problem of reorienting edges (rather than whole paths) so
as to create graphs with given properties, such as strongly connected graphs
and acyclic graphs [19]. De Fraysseix and de Mendez show that they can find
an indegree assignment of the vertices given particular properties [13]. Biedl,
Chan, Ganjali, Hajiaghayi, and Wood give a 13

8 -approximation algorithm for
finding an ordering of the vertices such that for each vertex v, the neighbors
of v are as evenly distributed to the right and left of v as possible [8]. For the
purpose of deadlock prevention [38], Wittorff describes a heuristic for finding
an acyclic orientation that minimizes the sum over all vertices of the function
δ(v) choose 2, where δ(v) is the indegree of vertex v [39].

Often it is of interest to find the densest subgraph of a graph, a set of vertices,

S, such that the density of the induced subgraph on S, |E(S)|
|S| , is maximized.

In our work we show that the density decomposition can isolate the densest
subgraph. The densest subgraph problem has been studied a great deal. Gold-
berg gives an algorithm to find the densest subgraph in polynomial time using
network flow techniques [15]. There is a 2-approximation for this problem that
runs in linear time [10]. As a consequence of our decomposition, we find a sub-
graph that has density no less than the density of the densest subgraph minus
one.

There are algorithms to find dense subgraphs in the streaming model [4, 14].
There are algorithms that find all densest subgraphs in a graph (there could be
many such subgraphs) [32].

1An egalitarian orientation is one in which the indegrees of the vertices are as balanced as
possible as allowed by the topology of the graph.
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2 The density decomposition

In order to obtain the density decomposition (a partition of the vertices into
regions of uniform density) of a given undirected graph we first orient the edges
of this graph in an egalitarian manner. Then we partition the vertices based on
their indegree and connectivity in this orientation.

The following procedure, the Path-Reversal algorithm, finds an egalitar-
ian orientation [9]. A reversible path is a directed path from a vertex v to a
vertex u such that the indegree of v, δ(v), is greater than the indegree of u plus
one: δ(v) > δ(u) + 1

Arbitrarily orient the edges of the graph.
While there is a reversible path

reverse this path.

Since we are only reversing paths between vertices with differences in indegree
of at least 2, this procedure converges; the running time of this algorithm is
quadratic [9]. The orientation resulting from this termination condition suggests
a hierarchical decomposition of its vertices: Let k be the maximum indegree in
the orientation. Ring k, denoted Rk, contains all vertices of indegree k and all
vertices that reach vertices of indegree k. By the termination condition of the
above procedure, only vertices of indegree k or k−1 are in Rk. Iteratively, given
Rk, Rk−1, . . . , and Ri+1, Ri contains all the remaining vertices with indegree i
along with all the remaining vertices that reach vertices with indegree i. Vertices
in Ri must have indegree i or i−1 by the termination condition of the procedure.
By this definition, an edge between a vertex in Ri and a vertex in Rj is directed
from Ri to Rj when i > j and all the isolated vertices are in R0. See Figure 1
for an example of the density decomposition of a graph.

Recall that we define the density of a graph to be the ratio of the number of

edges to the number of vertices, |E||V | . This definition of density is closely related

to vertex degree (the number of edges adjacent to a given vertex): the density
of a graph is equal to half the average total degree.

We identify a set S of vertices in a graph by merging all the vertices in S
into a single vertex s and removing any self-loops (corresponding to edges of
the graph both of whose endpoints were in S). Our partition Rk, Rk−1, . . . , R0

induces regions of uniform density in the following sense:

Density Property For any i = 0, . . . , k, identifying the vertices in ∪j>iRj
and deleting the vertices in ∪j<iRj leaves a graph G
whose density is in the range (i−1, i] (for |Ri| sufficiently
large).

In particular, Rk isolates a densest region in the graph. Consider the graph
Gi formed by identifying the vertices ∪j>iRj and deleting the vertices in ∪j<iRj ;
this graph has one vertex (resulting from identifying the vertices ∪j>iRj) of
indegree 0 and |Ri| vertices of indegree i of i − 1, at least one of which must
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Figure 1: The upper left graph, G, is an example input graph. The bottom left
graph is the graphG with an egalitarian orientation imposed on its edges. Notice
that the maximum indegree in this orientation is 4. Therefore the topmost ring
for this graph is R4. The graph on the right illustrates the density decomposition
for G.

have indegree i. Therefore, for any i, the density of Gi is at most i and density
at least

(|Ri| − 1)(i− 1) + i

|Ri|+ 1

|Ri|�i−−−−→ i− 1.

The relationship between density and this decomposition is much stronger.
Let k denote the maximum index of a non-empty ring. In Section 2.1, we show
the following properties:

Property D1 The density decomposition of a graph is unique and does not
depend on the starting orientation.

Property D2 The density of a densest subgraph is at most k. That is, there
is no denser region Rj for j > k.

Property D3 Every densest subgraph contains only vertices of Rk.

These properties allow us to unequivocally describe the density structure of
a graph. We summarize the density decomposition by the density distribution:
(|R0|, |R1|, . . . |Rk−1|, |Rk|), i.e. the number of vertices in each region of uniform
density. We will refer to a vertex in Ri as having density rank i.
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Figure 2: Edges incident to S (grey region) in the proof of Theorem 1 in red
and blue orientations. S is the region in gray. Unoriented edges indicate that
the orientation could be in either direction.

2.1 Density and the Density Decomposition

We now prove that the partition of the rings does not rely on the initial ori-
entation, or, more strongly, vertices are uniquely partitioned into rings, giving
Property D1.

Theorem 1 The density decomposition is unique.

Proof: The maximum indegree of two egalitarian orientations for a given graph
is the same [9, 3, 35]. Suppose, for a contradiction, that there are two egali-
tarian orientations (red and blue) for G, resulting in density decompositions
R0, R1, . . . Rk and B0, B1, . . . Bk, respectively. Let i be the largest index such
that Ri 6= Bi.

We compare the orientation of the edges with one endpoint in S = Ri \ Bi
between the two orientations (illustrated in Figure 2). Since the orientations
are egalitarian:

1. All the edges between Bi and S are directed into S in the blue orientation.

2. All the edges between S and {∪kj=i+1Rj} \ S are directed into S with
respect to both red and blue orientations.

3. All edges between S and {∪i−1j=0Rj} \ S are directed out of S with respect
to the red orientation.

Based on these orientations, we have:
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Observation 1 The number of edges directed into S in the blue orientation is
at least the number of edges directed into S in the red orientation.

We will show that Ri ⊆ Bi; symmetrically Bi ⊆ Ri, completing the theorem.
With respect to the blue orientation, all vertices in S have indegree strictly

less than i. Further, by the observation, the total indegree shared amongst the
vertices in S with respect to the red orientation is at most that of the blue
orientation. Since all vertices in S have indegree i or i − 1 with respect to
the red orientation, and, by the observation, the total indegree shared amongst
the vertices in S with respect to the red orientation is at most that of the
blue orientation, all vertices in S have indegree i − 1 with respect to the red
orientation.

In order for every vertex in S to have indegree i−1 in the red orientation, all
vertices that are directed into S in the blue orientation, must also be directed
into S in the red orientation; in particular this is true about the edges between
S and Ri \ S. Therefore, none of the vertices in S (which have indegree i − 1)
reaches a vertex of Ri \S of indegree i with respect to the red orientation. This
contradicts the definition of Ri; therefore S must be empty. �

The subgraph of a graph G induced by a subset S of the vertices of G is
defined as the set of vertices S and the subset of edges of G whose endpoints
are both in S; we denote this by G[S]. We will show that both the densest
subgraph and the subgraph induced by the vertices of highest rank have density
between k − 1 and k. Recall that k is the maximum indegree of a vertex in an
egalitarian orientation of G and that Ri is the set of vertices in the ith ring of
the density decomposition. We will refer to Rk as the densest ring.

Note that Property D2 has been proven before in another context. It follows
from a theorem of Frank and Gyárfás [12] that if ` is the maximum outdegree
in an orientation that minimizes the maximum outdegree then the density of
the graph, d, is such that dde ≤ `. We use the following two lemmas to prove
Property D2. Recall that k is the maximum index of a non-empty ring.

Lemma 1 The density of the subgraph induced by the vertices in Rk is in the
range (k − 1, k].

Proof: All vertices in Rk have indegree k or k−1 in G. Since any edge incident
to a vertex in Rk but not in G[Rk] is directed out of Rk in G, the indegree of
every vertex in G[Rk] is k or k−1. Let nk be the number of vertices of indegree
k in G[Rk] and nk−1 be the number of vertices of degree k − 1 in G[Rk−1].
Therefore, the number of edges in G[Rk] is knk + (k − 1)nk−1 and:

density(G[Rk]) =
knk + (k − 1)nk−1

nk + nk−1
≤ k

Since there is at least one vertex of indegree k in G[Rk], nk > 0. Therefore:

knk + (k − 1)nk−1
nk + nk−1

=
(k − 1)(nk + nk−1) + nk

nk + nk−1
> k − 1

�
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Lemma 2 The density of the densest subgraph is in the range (k− 1, k], where
k the maximum index of a non-empty ring.

Proof: Let H be the densest subgraph and let each edge of H inherit the
orientation of the same edge in an egalitarian orientation of G. Every vertex of
H has indegree at most k (when restricted to H). Therefore

density(H) ≤ nHk

nh
≤ k

where nH is the number of vertices in H. Furthermore, by Lemma 1, the density
of G[Rk] is greater than k− 1 and so the densest subgraph must be at least this
dense. �

The upper bound given in Lemma 2 proves Property D2 of the density
decomposition.

Corollary 2 The subgraph induced by the vertices of Rk is at least as dense as
the density of the density subgraph less one.

The following theorem relies on the fact that the density decomposition is
unique and proves Property D3.

Theorem 3 The densest subgraph of a graph G is induced by a subset of the
vertices in the densest ring of G.

Proof: First note that the densest subgraph is an induced subgraph, for oth-
erwise, the subgraph would be avoiding including edges that would strictly in-
crease the density. Let S be a set of vertices that induces a densest subgraph of
G. Consider a density decomposition of G and let k be the maximum rank of a
vertex in G. Let Sk = S ∩Rk and let S̄k = S \ Sk.

Let A be the set of edges in G[Sk], let C be the set of edges in G[S̄k], and
let B be the edges of G[S] that are neither in G[Sk] or G[S̄k]. We get

|B|+ |C| ≤ (k − 1)|S̄k| (1)

because all the edges in B and C have endpoints in S̄k and all the vertices in
S̄k have indegree at most k − 1 in the egalitarian orientation of G.

density(G[S]) =
|A|+ |B|+ |C|
|Sk|+ |S̄k|

(2)
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density(G[Sk]) =
|A|
|Sk|

=
density(G[S])(|Sk|+ |S̄k|)− (|B|+ |C|)

|Sk|
using Equation (2) to replace the numerator

= density(G[S]) +
density(G[S])|S̄k| − (|B|+ |C|)

|Sk|

≥ density(G[S]) +
density(G[S])|S̄k| − (k − 1)|S̄k|

|Sk|
by Inequality (1)

> density(G[S]) +
(k − 1)|S̄k| − (k − 1)|S̄k|

|Sk|
by Lemma 2

= density(G[S])

Therefore, removing the vertices of G[S] that are not in Rk produces a graph
of strictly greater density. �

Note that there are indeed cases where the densest subgraph is induced by
a strict subset of vertices in the top ring. See Figure 3 for an example.

c

e

g

a b

fd

Figure 3: The orientation shown is an egalitarian orientation. In this graph all
vertices are in the top ring. However, only the vertices in K4, a, b, c and d are
in the densest subgraph.

2.2 Interpretation of density rank

We can interpret orientations as assigning responsibility: if an edge is oriented
from vertex a to vertex b, we can view vertex b as being responsible for that
connection. Indeed several allocation problems are modelled this way [9, 2, 35,
3, 16]. Put another way, we can view a vertex as wishing to shirk as many of its
duties (modelled by incident edges) by assigning these duties to its neighbors (by
orienting the linking edge away from itself). Of course, every vertex wishes to
shirk as many of its duties as possible. However, the topology of the graph may
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prevent a vertex from shirking too many of its duties. In fact, the egalitarian
orientation is the assignment in which every vertex is allowed to simultaneously
shirk as many duties as allowed by the topology of the graph. An example is
given in Figure 4; although vertices a and b both have degree 7, in the star
graph (left) a can shirk all of its duties, but in the clique graph (right) b can
only shirk half of its duties. There is a clear difference between these two cases
that is captured by the density rank of a and b that is not captured by the
degree of a and b. For example, if these were co-authorship graphs, the star
graph may represent a graph in which author a only co-authors papers with
authors who never work with anyone else whereas the clique graph shows that
author b co-authors with authors who also collaborate with others. One may
surmise that the work of author a is more reliable or respected than the work
of author b.

a b

Figure 4: Two egalitarian orientations for graphs with 9 vertices. This example
generalizes to any number of vertices (Theorem 4).

Theorem 4 For a clique on n vertices, there is an orientation where each vertex
has indegree either bn/2c or bn/2c − 1.

Proof: Give the vertices of the clique an ordering, v1, v2, . . . vn. Orient the
edges between v1 and v2, . . . , vbn/2c+1 toward v1 and edges between v1 and
vbn/2c+2, . . . vn toward vbn/2c+2, . . . vn. Clearly v1 has indegree bn/2c. Similarly,
for v2: Orient the edges between v2 and v3, . . . , vbn/2c+2 toward v2 and edges
between v2 and vbn/2c+3, . . . vn toward vbn/2c+3, . . . vn. Clearly v2 has indegree
bn/2c. Continue in this fashion until vn. It is immediate that v1, v2, . . . vbn/2c
have indegree bn/2c. Now for the remaining vertices: Consider vi, bn/2c < i ≤
n. vi has n− i incoming edges from vertices vi+1, . . . vn and also i− bn/2c − 1
incoming edges from v1, . . . , vi−bn/2c−1. Therefore vi has indegree bn/2c − 1.
Therefore all vertices in the clique have indegree bn/2c or bn/2c − 1. Clearly
such an orientation is egalitarian. �
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Figure 5: The top ring contains vertices c, d, e, f, h, i, k, l,m, n and o but c, d, n,
and o are not in the top core. The density of the subgraph induced by the top
ring is 21/12 = 1.75 while the density of the subgraph induced by the top core
is 13/8 = 1.625.

2.3 Relationship to k-cores

A k-core of a graph is the maximal subgraph whose vertices all have degree at
least k [33]. A k-core is found by repeatedly deleting vertices of degree less than
k while possible. For increasing values of k, the k-cores form a nesting hierarchy
(akin to our density decomposition) of subgraphs H0, H1, . . . ,Hp where Hi is an
i-core and p is the smallest integer such that G has an empty (p+ 1)-core. For
graphs generated by the Gn,p model, most vertices are in the p-core [22, 30] For
the preferential attachment model, all vertices except the initial vertices belong
to the c-core, where c is the number of edges connecting to each new vertex [1].

These observations are similar to those we find for the density distribution
(Section 3) and many of the observations we make regarding the similarity of
the degree and density distributions of real-world graphs also hold for k-core
decompositions [27]. However k-cores are defined by minimum induced degrees
and so are only indirectly related to density. We make formal this much looser
connection to density than the density decomposition in Lemma 3. See Figure 5
for an example of where the density of the top core is less then the density of
the top ring. Further, while the core decomposition of a graph can be found
in time linear in the number of edges [23, 6, 10] as opposed to the quadratic
time required for the density decomposition [9], core decompositions do not lend
themselves to a framework for building synthetic graphs, since it is not clear how
to generate a p-core at random, whereas density decompositions do (Section 4).

Recall that identifying the vertices in ∪j>iRj and deleting the vertices in
∪j<iRj leaves a graph G whose density is in the range (i − 1, i] (for |Ri| suffi-
ciently large). We find that the bound on density for the corresponding cores is
much looser.

Lemma 3 Given a core decomposition H0, H1, . . . ,Hk of a graph, the subgraph
formed by identifying the vertices in ∪j>iHj and deleting the vertices in ∪j<iHj
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has density in the range [ i2 , i) for |Hi| sufficiently large.

Proof: Let n be the number of vertices in the described subgraph: n = |Hi|+1.
Let d be the degree of the vertex resulting from the identification of ∪j>iHj .
Since every vertex in Hi has degree at least i in the subgraph, the density of the

subgraph is at most
1
2 (i·n+d)

n , from which the lower bound of the lemma follows
since d > 0. This lower bound is also tight when Hi induces an i-regular graph.

Further, the i-core is witnessed by iteratively deleting vertices of degree at
most i while such vertices exist. The subgraph will have the greatest density
(the most edges) if each deletion removes a vertex of degree exactly i. Then the

subgraph has density at most i·(n−1)
n . �

3 The similarity of degree and density distribu-
tions

In this section, we consider ten varied networks (see Table 1). We compare the
normalized density and normalized degree distributions of these networks. We
find our results to be consistent across biological, technical, and social networks.

The normalized density ρ and degree δ distributions for three networks (AS
2013, PHYS 2005, and DBLP) are given in Figure 6, illustrating the similarity
of the distributions. We quantify the similarity between the density and degree
distributions of these networks using the Bhattacharyya coefficient, β [7] (note
that we could use any similar distance metric for two probability distributions).
For two normalized p and q, the Bhattacharyya coefficient is:

β(p,q) =
∑
i

√
pi · qi.

β(p,q) ∈ [0, 1] for normalized, positive distributions; β(p,q) = 0 if and only
if p and q are disjoint; β(p,q) = 1 if and only if p = q. We denote the
Bhattacharyya coefficient comparing the normalized density ρ and degree δ
distributions, β(ρ, δ) for a graph G by βρδ(G). Specifically,

βρδ(G) = β(ρ, δ) =
∑
i

√
ρi · δi

where ρi is the fraction of vertices in the ith ring of the density decomposition of
G and δi is the fraction of vertices of total degree i in G; we take ρi = 0 for i > k
where k is the maximum ring index. Refer to Figure 7. For all the networks
in our data set, βρδ > 0.78. Note that if we exclude the Gnutella and Amazon
networks, βρδ > 0.9. We point out that the other networks are self-determining
in that each relationship is determined by at least one of the parties involved.
On the other hand, the Gnutella network is highly structured and designed and
the Amazon network is a is a one-mode projection of the buyer-product network
(which is in turn self-determining).
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Self-determining networks
Name Vertices # Vertices Edges # Edges Source

AS
autonomous
systems

44,729
routing agree-
ments

170,735 [42]

DBLP
computer sci-
entists

317,080
at least one
co-authored
paper

1,049,866 [41]

Enron
email ad-
dresses

36,692
at least
one email
exchanged

183,831 [18]

Epinions
epinions.com

members
75,879

self-indicated
trust

405,740 [34]

Facebook
Facebook
user

4,039
Facebook
friends

88234 [24]

PHYS
condensed
matter physi-
cists

40,421
at least one
co-authored
paper

175,692 [28]

Slashdot
slashdot.org

members
82,168

indication of
friend or foe

504,230 [21]

Wikivote
wikipedia.org

users
7,115

votes for
administrator
role

103,689 [20]

Non-self-determining networks
Name Vertices # Vertices Edges # Edges Source

Amazon products 334,863

pairs of
frequently
co-purchased
items

925,872 [41]

Gnutella network hosts 22,687
connections
for file shar-
ing

54,705 [31]

Table 1: Network data sets. For naturally directed networks (Enron, Epinions
and Wikivote), we ignore the directions and study the underlying undirected
network. We likewise ignore edge annotations (e.g. friend or foe in the Slashdot
network). We use three snapshots of the AS network (from 1999, 2005 and 2011)
and three snapshots of the PHYS network (for papers posted to arxiv.org prior
to 1999, 2003 and 2005). Note that the structure of the Gnutella network is
given by external system design specifications.
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Figure 6: In the AS network vertices represent autonomous systems and two
autonomous systems are connected if there is a routing agreement between
them [42]. In the PHYS network vertices represent condensed matter physi-
cists and two physicists are connected if they have at least one co-authored
paper [28]. In the DBLP network, vertices represent computer scientists and
two computer scientists are connected if they have at least one co-authored
paper [41]. The (truncated) normalized density and degree distributions are
displayed. The degree distributions have long diminishing tails. AS 2013 has 67
non-empty rings, but rings 31 through 66 contain less than 1.5% of the vertices;
ring 67 contains 0.75% of the vertices. DBLP has 4 non-empty rings denser than
ring 30 that are disconnected; rings 32, 40, 52 and 58 contain 0.02%, 0.01%,
0.03% and 0.04% of the vertices, respectively.
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Figure 7: Similarity (βρδ) of density and degree distributions for 9 diverse net-
works. We introduced AS, PHYS, and DBLP in Figure 6. In the EMAIL
network vertices represent Enron email addresses and two addresses are con-
nected if there has been at least one email exchanged between them [18]. In the
TRUST network vertices represent epinions.com members and two members
are connected if one trusts the other [34]. In the SDOT network vertices repre-
sent slashdot.org members and two members are connected if they are friends
or foes [21]. In the WIKI network vertices represent wikipedia.org users and
two users are connected if one has voted for the other to be in an adminis-
trative role [20]. In the Amazon network vertices represent products and two
products are connected if they are frequently purchased together [41]. In the
Gnutella network vertices represent network hosts and two hosts are connected
if they share files [31]. EMAIL , TRUST, and WIKI are naturally directed
networks. For these networks, we ignore direction and study the underlying
undirected networks. Notice that both the Amazon and Gnutella networks are
highly structured. It is not surprising that these networks would have a weaker
connection between the density and degree distributions.



640 Borradaile, Migler, Wilfong Density decomposition

Perhaps this is not surprising, given the close relationship between density
and degree; one may posit that the density distribution ρ simply bins the degree
distribution δ. However, note that a vertex’s degree is its total degree in the
undirected graph, whereas a vertex’s rank is within one of its indegree in an
egalitarian orientation. Since the total indegree to be shared amongst all the
vertices is half the total degree of the graph, we might assume that, if the density
distribution is a binning of the degree distribution, the density rank of a vertex
of degree d would be roughly d/2. That is, we may expect that the density
distribution is halved in range and doubled in magnitude (ρi ≈ 2δ2i). If this is
the case, then

β(ρ, δ) ≈
∑
d

√
ρiδi ≈

∑
d

√
2δdδ2d.

If we additionally assume that our graph has a power-law degree distribution
such as δx ∝ 1/x3,

β(ρ, δ) ≈
∫ ∞
1

√
2

x3

(
2

2

(2x)3

)
dx = 0.5

(after normalizing the distributions and using a continuous approximation of β).
Even with these idealized assumptions, this does not come close to explaining
βρδ being in excess of 0.78 for the networks in our data set. Further to that, for
many synthetic networks βρδ is close to 0, as we discuss in the next section. We
note that this separation between similarities of density and degree distributions
for the empirical networks and synthetic networks can be illustrated with almost
any divergence or similarity measure for a pair of distributions.

3.1 The dissimilarity of degree and density distributions
of random networks

In contrast to the measurably similar degree and density distributions of real-
world networks, the degree and density distributions are measurably dissimilar
for networks produced by many common random network models; including the
preferential attachment (PA) model of Barabasi and Albert [5] and the small
world (SW) model of Watts and Strogatz [37]. We will discuss the degree-
sequence model in Section 4.3. We use β̃ρδ(M) to denote the Bhattacharyya
coefficient comparing the expected degree and density distributions of a network
generated by a model M .

Preferential attachment networks In the PA model, a small number, n0,
of vertices seed the network and vertices are added iteratively, each attaching
to a fixed number, c, of existing vertices. Consider the orientation where each
added edge is directed toward the newly added vertex; in the resulting orienta-
tion, all but the n0 seed vertices have indegree c and the maximum indegree is
c. At most cn0 path reversals will make this orientation egalitarian, and, since
cn0 is typically very small compared to n (the total number of vertices), most
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of the vertices will remain in the densest ring Rc. Therefore PA networks have
nearly-trivial density distributions: ρc ≈ 1. On the other hand the expected
fraction of degree c vertices is δc ≈ 2/c3. Therefore β̃ρδ(PA) ≈

√
2/c3, which

quickly approaches 0 as c grows, and is ≤ 0.25 for c ≥ 2.

Small-world networks A small-world network is one generated from a d-
regular graph2 by reconnecting (uniformly at random) at least one endpoint
of every edge with some probability. For probabilities close to 0, a network
generated in this way is close to d-regular; for probabilities close to 1, a network
generated this way approaches one generated by the random-network model
(Gn,p) of Erdös and Rényi [11]. In the first extreme, β̃ρδ(SW ) = 0 (Lemma 4
below) because all the vertices have the same degree and the same rank. As the
reconnection probability increases, vertices are not very likely to change rank
while the degree distribution spreads slightly. In the second extreme, the highest
rank of a vertex is bc/2c+ 1 [40] and, using an observation of the expected size
of the densest subnetwork [26], with high probability nearly all the vertices have
this rank. It follows that

β̃ρδ(Gn,p) ≈

√
cc/2

e−c(c/2)!
,

which approaches 0 very quickly as c grows. We verified this experimentally
finding that β̃ρδ(Gn,p) < 0.5 for c ≥ 5.

Lemma 4 For d ≥ 3, βρδ(G) = 0 for any d-regular graph G with d ≥ 3.

Proof: We argue that ρd = 0, proving the lemma since δd = 1 for a d-regular
graph. For a contradiction, suppose ρd > 0. Then |Rd| = x for some x > 0,
where Rd is the set of vertices of G in the dth ring of G’s density decomposition.
Note that the highest rank vertex in G has rank at most d, since there are
no vertices with degree > d. Let H be the subgraph of H containing all the
vertices of Rd and all the edges of G both of whose endpoints are in Rd. H has
at least one vertex of indegree d and all other vertices have indegree at least
d − 1; therefore H must have at least d + (x − 1)(d − 1) edges. On the other
hand, the total degree of every vertex in H is at most d, so H has at most dx/2
edges. We must have d + (x − 1)(d − 1) ≤ dx/2, which is a contradiction for
d ≥ 3 and x > 0. �

Note that there are many other random networks models that we could have
analyzed. Our results are not intended to be exhaustive, rather they are simply
intended to be interesting observations.

2A graph in which every vertex has degree d.
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4 Random networks with given density distri-
butions

Motivated by our observations from Section 3.1, that many random network
models produce networks with dissimilar degree and density distributions, we
present a random network model based on the density distribution with an aim
to achieve a realistic similarity between the degree and density distributions as
observed in Section 3.

Given a density distribution ρ, we can generate a network with n vertices
having this density distribution using the following abstract model:

Input: density distribution ρ and target size n
Output: an network G with n vertices and density distribution ρ
1: Initialize G to be a network with empty vertex set V
2: for i = |ρ|, . . . , 0 do
3: Ri ← set of bρinc vertices
4: add Ri to V
5: for each vertex v ∈ Ri do
6: connect i vertices of V to v

Using this generic model, we propose two specific models, the random density
distribution model (RDD - Section 4.1) and the hierarchical small worlds model
(HSW - Section 4.2), by specifying how the neighbors are selected in Step 6.
First we show that this abstract model does indeed generate a network with the
given density distribution:

Lemma 5 The network resulting from the abstract model has density distribu-
tion ρ.

Proof: We argue that the orientation given by, in Step 6, directing the added
edges into v is egalitarian. For a contradiction, suppose there is a reversible
path. There must be an edge on this path from a vertex x to a vertex y such
that the in-degree of y is strictly greater than the degree of x. By construction,
then, x was added after y and so an edge between x and y must oriented into
x, contradicting the direction required by the reversible path.

Finally, since the vertices in set Ri have indegree i according to this ori-
entation, the orientation is a witness to a density decomposition of the given
distribution. �

Notice that in this construction, vertices in Ri will have indegree i while
a network with the same density decomposition may have vertices in Ri with
indegree i− 1. We could additionally specify the number of vertices in Ri that
have indegree i and indegree i − 1; this would additionally require ensuring
that there is an egalitarian orientation in which all the vertices destined to
have indegree i − 1 in Ri reach vertices of indegree i in Ri. We believe this is
needlessly over-complicated and, indeed, over-specification that will have little
affect on the generation large realistic networks.
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Further notice that this abstract model may generate a network that is not
simple. Without further constraint, in Step 6, v may connect to itself (introduc-
ing a self-loop) or to a vertex that v is already connected to (introducing parallel
edges). We adopt a simple technique used for generating d-regular graphs [25]:
we constrain the choice in Step 6 to vertices of V that are not v itself nor neigh-
bors of v. McKay and Wormald prove this constraint still allows for uniformity
of sampling of d-regular graphs when d is sufficiently small (d = O(n1/3)) [17];
likewise, since i is small compared to |Ri| for large networks, adopting this tech-
nique should not affect our sampling. In our two specific models, described
below, we ensure the final network will be simple using this technique.

4.1 Random density distribution model

For the RDD model, we choose i vertices from V uniformly at random in Step 6.
We use this to model four networks in our data set (AS, DBLP, EMAIL, and
TRUST). For each given network, we generate another random network having
the given network’s number of vertices and density distribution. Although we
are only specifying the distribution of the vertices over a density decomposition,
the resulting degree distributions of the RDD networks are very similar to the
original networks they are modeling. We use the Bhattacharyya coefficient to
quantify the similarity between the normalized degree distribution of an RDD
network and the normalized degree distribution of the original network; we
denote this by βδδ (to distinguish from our use of the Bhattacharyya coefficient
to compare degree distributions to density distributions. For all four models,
βδδ > 0.93 (Figure 8). Further, the average path lengths of the RDD networks
are realistic, within 2 of the average path lengths of the original networks
(Figure 9).

However, the clustering coefficients of the RDD networks are unrealistically
low (Figures 8 and 9). Upon further inspection, we find that, for example, the
PHYS networks have many more edges between vertices of a common ring of
its density decomposition than between rings as compared to the corresponding
RDD model. For the RDD model, we can compute the expected fraction of
edges that will have one endpoint in Ri and one endpoint in Rj . Since there are
|Rj ||Ri| such edges to choose from (for j > i) and at most |Ri|( 1

2 (|Ri| − 1) +∑
j>i |Rj |)) edges between Ri and Rj (for j > i), we would expect this fraction

to be:

|Rj |
1
2 (|Ri| − 1) +

∑
j>i |Rj |

for j > i and
1
2 (|Ri| − 1)

1
2 (|Ri| − 1) +

∑
j>i |Rj |

for i = j (3)

In Figure 10 we plot the difference between the actual fraction of edges connect-
ing Ri to Rj in the PHYS networks with this expected fraction for all values of
j− i. We see that when j− i = 0, or for edges with both endpoints in the same
ring, there is a substantially larger number of edges in the original networks
than is being captured by our model. This provides one explanation for the low
clustering coefficients produced by the RDD model.
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Figure 8: Clustering coefficient versus similarity of degree distribution (between
models and original networks, βδδ) for RDD and HSW models. Measurements
for the SW model networks are not shown as βδδ < 0.4 for all networks gener-
ated. Dotted lines represent the clustering coefficients for the original networks.

4.2 Hierarchical small worlds model

We provide a more sophisticated model which addresses the unrealistically low
clustering coefficients of the RDD model by generating a small world (SW)
network among the vertices of each ring of the density decomposition. Recall
that a SW network on n vertices, average degree d and randomization p network
is created as follows: order the vertices cyclically and connect each vertex to
the d vertices prior to it; with probability p reconnect one endpoint of each
edge to another vertex chosen uniformly at random. The SW model provides a
trade-off between clustering coefficient and average path length: as p increases,
the clustering coefficient and the average path length decreases [37].

In the hierarchical small worlds (HSW) model, for vertices in Ri, we create
a SW network on |Ri| vertices and average degree i in the same way, except
for how we reconnect each edge with probability p. For an edge uv where u is
a vertex within d vertices prior to v in the cyclic order, we select a vertex x
uniformly at random from ∪j>iRj and replace uv with xv. For the densest ring,
we select a vertex uniformly at random from the densest ring.

This process is exactly equivalent to the following: order Ri cyclically; for
each v ∈ Ri, with probability p, connect each of the i vertices before v in this
order to v; if c ≤ i neighbors for v are selected in this way, select i− c vertices
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Figure 9: Clustering coefficient versus average path length for RDD, HSW, SW
and DS models. Colors indicate the network being modelled. Squares denote
the data for the original networks.

uniformly at random from ∪j>iRj (or Ri if this is the densest ring) and connect
these to v. Clearly, this is a specification of neighbor selection for Step 6 of the
abstract model.

For the AS, DBLP, EMAIL, and TRUST networks in our data set, we gener-
ate a random network according to the HSW model that is of the same size and
density distribution of the original network. We do so for p = 0.1, 0.2, . . . , 0.9.
As with the SW model, the HSW model provides a similar trade-off between
clustering coefficient and average path length (Figure 9), although the relation-
ship is less strong. In addition, we observe a similar trade-off between p and
degree distribution: as p increases, the degree distribution approaches that of
the original network (Figure 8). This is in sharp contrast to the SW model
which have degree distributions far from the original (normal vs. close to power
law).

4.3 Comparing to the degree sequence model

We also compare our models (RDD and HSW) to a degree sequence (DS) model.
For a given degree distribution or sequence (assignment of degree to each vertex),
a DS model will generate a graph, randomly, having that degree sequence. We
use the model of Viger and Latapy which generates a connected, simple graph
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Figure 10: Range of difference between the actual fraction of edges connecting
Ri to Rj and expected fraction (Equation (3)) over all j ≥ i as a function of
j − i for three PHYS networks. Error bars show max and min values of these
differences and dots indicate the average.

by iteratively selecting neighbors for vertices (from highest remaining degree
to be satisfied to lowest) and randomly shuffling to prevent the process from
getting stuck (if no new neighbor exists that has not yet fulfilled its prescribed
degree) [36]. As with RDD and HSW we generate a network using this DS
model corresponding to the degree sequence of the AS, EMAIL, and TRUST
networks. The clustering coefficients of the resulting networks are much lower
than in the real-world networks (Figure 9); in the case of the AS network, this
mismatch is less extreme, most likely because this network has an extremely
long tail with a vertex with degree 4,171; many vertices would connect to these
high degree vertices, providing an opportunity for clustering. The average path
lengths are close to the original networks. Notably, the density distributions
of the networks generated by the DS model are very similar to their degree
distribution, all having βρδ > 0.9.

These observations for the DS model add evidence to our proposal that in
order to generate realistic networks, one must distinguish between types of ver-
tices; doing so results in networks that resemble real-world networks. However,
we must note that the DS model suffers from two drawbacks. First, the al-
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gorithms for generating such networks are much less efficient than our models
(RDD and HSW, which run in linear time); in order to guarantee simplicity
and connectivity, the reshuffling required incurs a large computational over-
head, particularly when the degree sequence includes very high degree vertices
(such as in the AS network). Second, the amount of information required to
specify network generation via the DS model is an order of magnitude greater
than our abstract model. In the former, the degree of every vertex must be
specified, or at least the number of vertices having each degree. For example,
the SLASH network has 457 unique degrees (and a maximum degree of 2553)
while only having 61 non-empty rings in the density decomposition.

4.4 Conclusion

We close by pointing out that the abstract model as presented at the start
of Section 4 is very flexible. One may specify any number of ways to choose
how neighbors are selected in Step 6. As an additional example, one may se-
lect neighbors with probability proportional to their current degree as in the
preferential attachment model; this would likely result in lower average path
lengths, but also unrealistically low clustering coefficients. Or, one could mod-
ify our HSW model by reconnecting to vertices in a preferential way; that is
one could combine the SW and PA model within our abstract model. More
than likely, different types of networks, such as autonomous system networks
versus social networks, would be best modeled by different specifications of the
abstract model. Needless to say, the most important quality that we believe our
model provides is a realistic partitioning of the vertices into classes.
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