
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 3, pp. 499–524 (2019)
DOI: 10.7155/jgaa.00500

A Flow Formulation for Horizontal Coordinate
Assignment with Prescribed Width

Michael Jünger 1 Petra Mutzel 2 Christiane Spisla 1

1University of Cologne, Cologne, Germany
2TU Dortmund University, Dortmund, Germany

Abstract

We consider the coordinate assignment phase of the Sugiyama frame-
work for drawing directed graphs in a hierarchical style. The extensive
literature in this area has given comparatively little attention to a pre-
scribed width of the drawing. We present a minimum cost flow formu-
lation that supports prescribed width and optionally other criteria like
lower and upper bounds on the distance of neighboring nodes in a layer
or enforced vertical edge segments. In our experiments we demonstrate
that our approach can compete with state-of-the-art algorithms.

Submitted:
November 2018

Reviewed:
January 2019

Revised:
June 2019

Accepted:
June 2019

Final:
July 2019

Published:
September 2019

Article type:
Regular paper

Communicated by:
T. Biedl and A. Kerren

E-mail addresses: mjuenger@informatik.uni-koeln.de (Michael Jünger) petra.mutzel@cs.tu-dortmund.de

(Petra Mutzel) spisla@informatik.uni-koeln.de (Christiane Spisla)

http://dx.doi.org/10.7155/jgaa.00500
mailto:mjuenger@informatik.uni-koeln.de
mailto:petra.mutzel@cs.tu-dortmund.de
mailto:spisla@informatik.uni-koeln.de

500 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

1 Introduction

The Sugiyama framework [21] is a popular approach for drawing directed graphs.
It layouts the graph in a hierarchical manner and works in five phases: Cycle
removal, layer assignment, crossing minimization, coordinate assignment and
edge routing. If the graph is not already acyclic, some edges are reversed to
prepare the graph for the next phase. Then each node is assigned to a layer so
that all edges point from top to bottom. After that the orderings of the nodes
within each layer are determined. In the coordinate assignment phase that we
consider here, the exact positions of the nodes are fixed. Finally the edges are
drawn, e.g., as straight lines. A good overview over the different phases of the
framework can be found in [15].

After the nodes are assigned to layers and the orderings of the nodes within
their layers are fixed, the task of the coordinate assignment phase (and the
focus of this paper) is to compute x-coordinates for all nodes. There are several,
sometimes contradicting, objectives in this phase, e.g., short edges, minimum
distance between neighboring nodes, straight edges, balanced positions of the
nodes between their neighbors in adjacent layers, and few bend points of edges
that cross multiple layers. The criterion “short edges” can be handled by exact
algorithms as well as fast heuristics that give pleasant results, possibly also
considering other aesthetic criteria.

When it comes to the width of the drawing one usually tries to restrict
the maximum number of nodes in one layer during the layer assignment phase,
see e.g. [8]. Long edges, i.e. edges that span more than two layers, are often
split into paths with one dummy node on each intermediate layer. Healy and
Nikolov [14] present a branch-and-cut approach to compute a layering that takes
the influence of the number of dummy nodes on the width into account. Jabray-
ilov et al. [16] do the same in a mixed integer program that treats the first two
phases of the Sugiyama framework simultaneously. Indeed, finding a layering
with a bound on the width (and the height) considering original and dummy
nodes is NP-hard [5]. Minimizing the height of a layering while complying with
a given maximum width and considering only original nodes is NP-complete
(via a reduction from precedence-constrained multiprocessor scheduling problem,
see [13]), unless the maximum width is less than or equal to two. In this case,
the Coffman-Graham algorithm [8] is exact. But still, the maximum number
of nodes in one layer does not necessarily define the actual width of the final
drawing, as illustrated in Figure 1. There we see that a minimum total horizon-
tal edge length, i.e. the sum of the horizontal distances between the end points
of all edges, and a minimum width can be two contradicting objectives. The
main objective of most methods for the coordinate assignment phase is “short
edges”, which often leads to small drawings, but the width of the final layout is
not directly addressed.

There may be further requirements for the final drawing, such as an aspect
ratio in order to make optimal use of the drawing area [18], or a maximum
distance between two nodes on the same layer if they are semantically related
(compare the idea of compound graphs or cluster graphs, e.g. [11]). A common

JGAA, 23(3) 499–524 (2019) 501

· · ·

k

· · ·

k

Figure 1: Two different drawings of a graph with 2(k − 2) + 2 nodes and k − 1
edges, where k is the number of layers the graph is drawn on. In the left picture
the horizontal edge length is k − 3 and the width is 1, in the right picture the
horizontal edge length is 0 and the width is k − 2.

request is that inner segments of long edges are drawn as vertical straight lines
in order to improve readability.

Related work. Sugiyama et al. [21] present a quadratic programming formulation
that has a combination of two asthetic criteria as objective function, short edges
(closeness to adjacent nodes) and a balanced layout (positioning nodes close to
the barycenter of their upper and lower neighbors). Gansner et al. [12] give a
simpler formulation in which they replace quadratic terms of the form (xv−xu)2

by |xv−xu| and leave out the balance terms. The coordinate assignment problem
can be interpreted as an instance of the layer assignment problem, and they
suggest to apply the network simplex algorithm to an auxiliary graph to obtain
a drawing with minimum horizontal edge length. Given an initial layout, some
heuristics sweep through the layers and try to shift the nodes to better positions
depending on the fixed x-coordinates of their neighbors in adjacent layers, see
e.g. [10, 20, 21]. Two fast heuristics that compute coordinates given only the
layering and the ordering, but no initial layout, are presented by Buchheim et
al. [6] and by Brandes and Köpf [4]. Both algorithms draw inner segments of
long edges straight and aim for a balanced layout with short edges.

Our Contribution. We formulate the coordinate assignment problem as a mini-
mum cost flow problem that can be solved efficiently. Within this formulation
we can fix the maximum width of the final drawing as well as a maximum and
minimum horizontal distance between nodes in the same layer and we can en-
force straightness of some edges. We compute x-coordinates such that the total
horizontal edge length is minimized subject to these further constraints. In
particular, we can compute a hierarchical layout with minimum total horizon-
tal edge length (Theorem 1) and width-minimum layouts with shortest possible
horizontal edge length (Theorem 2). In Section 4, we compare our approach to
state-of-the-art algorithms in terms of the drawing width, the total horizontal
edge length and the computation time.

502 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

2 Notation and Preliminaries

Let G = (V,E) be a directed graph with |V | = n nodes and |E| = m edges.
For a directed edge e = (u, v), start(e) = u denotes the start node of e and
target(e) = v denotes the target node of e. A path P from u to v of length k
is a set of edges {ei = (vi, vi+1) | i = 1, . . . , k where u = v1, v = vk+1 and vi 6=
vj for 1 ≤ i, j ≤ k}. We also write u

∗→ v for such a path. If vk+1 = v1 it
is called a cycle. A graph is called a directed acyclic graph (DAG) if it has no
cycles. A layering L of a graph assigns every v ∈ V to a layer Li, such that
i < j holds for every edge e = (u, v) with L(u) = Li and L(v) = Lj . The
layering is called proper if L(v) = L(u) + 1 for every edge (u, v), i.e., the layers
of every pair of adjacent nodes are consecutive. An edge that violates the latter
property is called a long edge. Every graph with a layering can be transformed
into a graph with a proper layering by subdividing every long edge into a chain
of edges. We use |L| to denote the number of layers and |Li| to denote the
number of nodes in layer Li.

An ordering ord defines a permutation of the nodes of each layer. For every
layer Li it assigns each node in Li its position within the layer. We write u < v
if ord(u) < ord(v) and u and v are in the same layer. The ordering ord defines
a partial ordering on V . We use vij to denote the j-th node in layer Li.

Given a graph G with a layering L and an ordering ord, the horizontal
coordinate assignment problem (HCAP) asks for x-coordinates for every node
so that x(u) < x(v) if u < v. We will restrict ourselves to integer coordinates.
The horizontal length of an edge e = (u, v) is defined as length(e) = |x(v)−x(u)|
and the total horizontal edge length is length(E) =

∑
e∈E length(e). The width

of the assignment is maxv∈V x(v) − minv∈V x(v). Unless otherwise stated, we
mean the horizontal length whenever we talk about the length of an edge.

HCAPminEL is the variant of HCAP in which we also want to mimimize
the total horizontal edge length and HCAPminW asks for x-coordinates that
minimize the width of the assignment. We use HCAPminW-EL to denote the
problem of finding a horizontal coordinate assignment with minimum width
and that has the shortest total horizontal edge length among all width-minimum
coordinate assignments.

We assume familiarity with minimum cost flows. Ahuja et al. [1] give a good
overview. Let N = (VN , EN) be a directed graph with a single source s and
a single sink t, so for all other nodes the amount of incoming flow equals the
amount of outgoing flow. We have lower and upper bounds on the edges and a
cost function cost : EN → R. Let f be a feasible flow. For a subset of nodes
V ′ ⊆ VN \ {s, t} we use f(V ′) =

∑
v∈V ′

∑
e=(v,w) f(e) =

∑
v∈V ′

∑
e=(u,v) f(e)

to denote the flow through V ′. For s we define f(s) to be the total amount of
flow leaving s. For a subset of edges E′ ⊂ EN we use f(E′) =

∑
e∈E′ f(e) to

denote the flow over E′ and with cost(E′) =
∑

e∈E′ cost(e) the cost of E′ and
with costf =

∑
e∈EN

f(e) · cost(e) the total cost of f .

JGAA, 23(3) 499–524 (2019) 503

w1
1

z11

w1
2

z12

w2
1

z21

z10

w1
0

w2
0

z20 z22

w2
2

z13

w1
3

Figure 2: Example graph together with the network nodes. Nodes of G are
white circles, nodes of N are green rectangles. Edges of G are gray.

3 Network Flow Formulation

In this section we describe the construction of a network for the horizontal
coordinate assignment problem on proper layered instances. Given a minimum
cost flow in this network we show how to obtain x-coordinates for all nodes such
that the total horizontal edge length is minimized. Minimizing edge lengths with
flow techniques goes back to the compaction of orthogonal layouts, see e.g. [9].
By a simple modification we can compute x-coordinates that give us minimum
total horizontal edge length with respect to a given maximum width of the
drawing. The basic idea is that flow represents horizontal distance and we send
flow from top to bottom through the layers.

3.1 Network Construction

Let G = (V,E) be a DAG with a proper layering L and an ordering ord. We
construct a flow network N = (VN , EN) to model the coordinate assignment
problem. For now we assume that consecutive nodes within a layer must be
placed so that they are at least a distance of one apart and that we have no
further requirements concerning the edges.

For every layer Li with i ∈ {1, . . . , |L|} we add nodes wi
0, w

i
1, . . . , w

i
|Li| and

zi0, z
i
1, . . . , z

i
|Li| toN . Imagine the node wi

j placed above the layer Li and between

vij and vij+1 (wi
0 is placed at the left end and wi

|Li| at the right end of the layer),

see Figure 2. The nodes zij are placed in the same way below layer Li. Although
we do not have a drawing of G at this moment we can still use terms like “above”
and “below” because the layering gives us a vertical ordering of the nodes of G
and we can talk about “left” and “right” because of the given ordering of the
nodes in each layer. Since we are placing the nodes wi

j and zij “between” the

nodes vij and vij+1 we extend the “<” relation to give a partial ordering on

V ∪ VN in the following way: wi
0 < vi1 < wi

1 < vi2 < · · · < vi|Li| < wi
|Li| and

zi0 < vi1 < zi1 < vi2 < · · · < vi|Li| < zi|Li|. We connect wi
j to zij with an edge aij

that has a lower bound of one and an upper bound of ∞ and a cost of zero.
The flow over these edges will define the distance between vij and vij+1. Let A
denote the set of these edges.

504 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

vj vj+1

wi
j

zij

aij

wi
j+1

zij+1

aij+1

wi
j−1

zij−1

aij−1

(a) (b)

Figure 3: (a) Illustration of edges of the set A. (b) Example graph together
with the edges of the set A. Nodes of G are white circles, nodes of N are green
rectangles. Edges of G are gray, edges of N are green. All depicted edges have
no cost.

vj

wi
j−1

zij−1

wi
j

zij

cost(
←−
bwi

j)= cost(
−→
bwi

j)= 1

cost(
←−
bzij)= cost(

−→
bzij)= 2

−→
bzij

←−
bzij

−→
bwi

j

←−
bwi

j

(a)

2 2

1

1 21

1 2

22

(b)

Figure 4: (a) Illustration of edges of the set B. (b) Example graph together
with the edges of the set B. Nodes of G are white circles, nodes of N are green
rectangles. Edges of G are gray, edges of N are green. Labels on network edges
denote the cost, unlabeled edges have no cost.

For every layer Li with i ∈ {1, . . . , |L|} and every j ∈ {1, . . . , |Li|} we add

edges
−→
bwi

j = (wi
j−1, w

i
j),
←−
bwi

j = (wi
j , w

i
j−1),

−→
bzij = (zij−1, z

i
j) and

←−
bzij = (zij , z

i
j−1)

to N , see Figure 4. The lower bound of these edges is zero and the upper bound
is ∞. The cost of these network edges equals the number of graph edges they

“cross over”. That means the cost of
←−
bwi

j and
−→
bwi

j equals the number of incoming

graph edges of node vij and the cost of
←−
bzij and

−→
bzij equals the number of outgoing

graph edges of vij . Positive flow over one of these edges will cause the crossed-
over graph edges to have positive horizontal length. Because of the positive

edge cost, a minimum cost flow will never use
−→
bwi

j and
←−
bwi

j simultaneously (the

same holds for
−→
bzij and

←−
bzij). Let B denote the set of these edges.

Now we connect the nodes of neighboring layers. We could add edges be-

JGAA, 23(3) 499–524 (2019) 505

vij vij′• • • • • •

vi+1
k vi+1

k′ • • •• • •

e1 e2

e3 e4

zij

wi+1
k

cijk

(a)

0 1 0

(b)

Figure 5: (a) Illustration of edges of the set C. (b) Example graph together
with the edges of the set C. Nodes of G are white circles, nodes of N are green
rectangles. Edges of G are gray, edges of N are green. Labels on network edges
denote the cost.

tween every zij and every wi+1
k , but we want to keep the number of edges between

layers as small as possible. We add edges only in special situations and will show
later that this suffices for correctness. For every layer Li with i ∈ {1, . . . , |L|−1}
we add edges ci00 = (zi0, w

i+1
0) and ci|Li||Li+1| = (zi|Li|, w

i+1
|Li+1|) to the network

with a lower bound of zero, an upper bound of∞ and a cost of zero. Additionally
(see Figure 5(a) for an illustration) we add edges cijk = (zij , w

i+1
k) if there exist

e1, e2, e3, e4 ∈ E with start(e1) = vij , start(e2) = vij′ , where vij′ is the next node

to the right of vij with an outgoing edge and target(e3) = vi+1
k , target(e4) = vi+1

k′ ,

where vi+1
k′ is the next node to the right of vi+1

k with an incoming edge and
the following conditions hold: start(e3) ≤ start(e1) < start(e2) ≤ start(e4)
and target(e1) ≤ target(e3) < target(e4) ≤ target(e2). We call this situation a
hug between zij and wi+1

k . These edges get a lower bound of zero, an upper
bound of ∞, and the cost equals the number of graph edges they cross over:
cost(cijk) = |{e = (vip, v

i+1
q) ∈ E | p ≤ j ∧ q ≥ k′ or p ≥ j′ ∧ q ≤ k}|. Like the

edges of B, flow on edges of this kind will cause horizontal length and we use
C to denote the set of all cijk. Figure 5(b) shows all edges of the set C for one
example graph.

Finally we add a source s and a sink t to the network. We connect s with

every w1
j , j ∈ {0, . . . , |L1|} and t with every z

|L|
k , k ∈ {0, . . . , |L|L||}. These

edges get a lower bound of zero, an upper bound of ∞ and a cost of zero.
Figure 6(a) shows a complete example network. In Figure 6(b) a feasible flow in
the example network is depicted. In the next subsection we show how a drawing
is derived from a feasible flow.

In this network flow can only run “from top to bottom ”. Although flow can
be shifted among the w and z nodes within each layer (by arcs of the set B), it
eventually has to take one of the arcs of the set C or A, respectively, to proceed
to t. Once a unit of flow has passed “through” a layer, it cannot go back. If it is
clear from the context which layer or which node is meant, we omit the nodes’
subscripts and superscripts.

506 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

t

s

(a)

1 1

1 1

1

1 1

t

s

1 1

1 1

(b)

Figure 6: (a) Example graph together with the full network. Nodes of G
are white circles, nodes of N are green rectangles. Edges of the set A are red
(solid), edges of the set B are blue (dashed) and edges of the set C are orange
(dashdotted). Network edge costs are omitted. (b) Network with feasible flow
shown as labels on network edges. Unlabeled edges carry no flow. The induced
drawing is also shown.

Lemma 1 The network described above has O(|V |) nodes and O(min{|V |2, |V |+
|E|+cross}) edges, where cross is the number of crossings in G with the layering
L and the ordering ord.

Proof: Basically we have two network nodes for each graph vertex. For vij we

have one wi
j and one zij plus one wi

0 and one zi0 for each layer. In addition we
have the source s and the sink t. That gives us 2|V |+2|L|+2 = O(|V |) network
nodes.

Now for the network edges. The set A contains |V |+ |L| network arcs, one to
the right of each graph node and one to the left of each layer. The set B consists
of two arcs above and below each graph node. Therefore we have |B| = 4|V |.

The set C is the crucial one. In the worst case the nodes zi and wi+1 build a
complete bipartite subgraph for every i. For instance if every pair of consecutive
layers of the input graph gives rise to a complete bipartite subgraph, then for
every zij and wi+1

k we have a hug and therefore an arc. This would result in

O(|V |2) edges in the set C. But the number of hug situations, and therefore the
size of C, is influenced by the number of edges of G and the way they cross.
Every edge e could be the right side of a hug , i.e. e = e1 = e3. Similarly, every
pair of crossing edges e′ = (vij1 , v

i+1
k1

) and e′′ = (vij2 , v
i+1
k2

) with vij2 < vij1 and

vi+1
k1

< vi+1
k2

could lead to a hug between zij1 and wi+1
k2

(i.e. e′ = e1 and e′′ = e3).
So the number of edges of G plus the number of crossings in G is another upper
bound for the size of C.

�

JGAA, 23(3) 499–524 (2019) 507

k
j

0 1 2 3

0 0 1 2 4
1 0 0 1 2
2 0 0 0 0

(a)

k
j

1 2 3

0 1 1 2
1 0 1 1
2 0 0 0

(b)

Table 1: The values for (a)−→p 1
jk = |{e = (v1` , v

2
r) ∈ E | v1` < z1j and v2r > w2

k}|
and (b)−→q 1

jk = |{e = (v1j , v
2
r) ∈ E | v2r > w2

k)}| for the example graph in Figure 6.

Lemma 2 The network described above can be constructed in O(|V |2) time.

Proof: The nodes of the network together with the edges of the sets A and B
can be built in O(|V |) time.

For the construction of the arc set C all O(|V 2|) possibilities for arcs need to
be checked. Checking if we have a hug between zij and wi+1

k and inserting the
appropriate arc into the network can be achieved in constant time with the right
data structure. Suppose we have direct access to the leftmost and rightmost,
respectively, incoming and outgoing edges for every node v ∈ V . Then we check
if the target node of the leftmost outgoing edge of vij is to the left of wi+1

k . This
edge is a candidate for e1 from the hug definition. If the target node of the
rightmost outgoing edge of vij+1(or the next node to the right, if vij+1 has no

outgoing edges) is to the right of wi+1
k , we have found a suitable edge for e2.

Similarly, we identify appropriate e3 and e4, if they exist, and add a network
arc cijk = (zij , w

i+1
k), if we have a hug situation.

To determine the cost of cijk we use dynamic programming. The set of

graph edges that are crossed by cijk, which defines its arc cost, can be divided

into the set of edges that start to the left of zij and end to the right of wi+1
k

and the set of edges that start to the right of zij and end to the left of wi+1
k .

Let us focus on the number of edges from the left of zij to the right of wi+1
k

and let −→p i
jk denote this number, see Table 1(a). The number of edges from

right to left can be computed similarly. We can recursively compute −→p i
jk for

0 ≤ j ≤ |Li| and 1 ≤ k ≤ |Li+1|, regardless of if there exists an arc cijk or not,

exploiting the fact that −→p i
0k = 0 for all k and −→p i

jk = −→p i
j−1,k + −→q i

jk, where
−→q i

jk = |{e = (vij , v
i+1
r) ∈ E | vi+1

r > wi+1
k)}| is the number of edges that start

at vij (directly to the left of zij) and end anywhere to the right of wi+1
k , see

Table 1(b). This number can be precomputed for all j and k in O(|V 2|) time in
total: We start with −→q i

j|Li+1| = 0 for all 1 ≤ j ≤ |Li| and set −→q i
jk = −→q i

j,k+1 +1

if there exists an edge (vij , v
i+1
k+1) or −→q i

jk = −→q i
j,k+1 otherwise (assuming G is

simple). So it takes O(|V 2|) time to construct the flow network.
�

508 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

3.2 Obtaining Coordinates and Correctness

Let f be a feasible flow in the network described above. We define the x-
coordinate of a node vij as

x(vij) :=

j−1∑
l=0

f(ai`). (1)

Together with y(vij) = i we get an induced drawing with a feasible coordinate
assignment, because for every vj , vk within the same layer x(vj) < x(vk) if and
only if vj < vk (since the amount of flow over edges a ∈ A is always positive).

Now we want to explain the correspondence between the cost of a flow f and
the total horizontal edge length of the resulting drawing. The intuition is, that
if flow is sent from the right of start(e) to the left of target(e) for some edge e,
then target(e) is “pushed” to the right because of the additional flow on the left.
This results in a horizontal expansion of e. We define for an edge e = (u, v) ∈ E

−→
E (e) := {bw ∈ B | start(bw) < v ∧ target(bw) > v}

∪ {bz ∈ B | start(bz) < u ∧ target(bz) > u}
∪ {c ∈ C | start(c) < u ∧ target(c) > v}

as the set of network edges that start to the left of e and end to the right of e,
thus cross over e from left to right. Analogously the set of network edges that
cross over a graph edge from right to left is

←−
E (e) := {bw ∈ B | start(bw) > v ∧ target(bw) < v}

∪ {bz ∈ B | start(bz) > u ∧ target(bz) < u}
∪ {c ∈ C | start(c) > u ∧ target(c) < v}.

We make the following observations:

Property 1 For every g ∈ B ∪ C we have:

cost(g) = |{e ∈ E | g ∈
−→
E (e)}|+ |{e ∈ E | g ∈

←−
E (e)}|.

Property 2 The amount of flow that passes through a layer is the same for

every layer:
∑|Li|

j=0 f(aij) =
∑|Lk|

j=0 f(akj) = f(s) for all i, k ∈ {1, . . . , |L|}.

Property 3 The width of the induced drawing is

max1≤i≤|L|

(∑|Li|−1
j=1 f(aij)

)
≤ f(s).

Property 4 Let e = (vij , v
i+1
k) be an edge. Then∑

start(ai+1
`)<vi+1

k
f(ai+1

`) =
∑

target(ai
`)<vi

j
f(ai`) + f(

←−
E (e))− f(

−→
E (e)).

The last property is illustrated in Figure 7. The total flow over all ai+1
`

that are to left of target(e) can be divided into flow f(
←−
E (e)) that crosses e from

JGAA, 23(3) 499–524 (2019) 509

right to left and flow that does not cross e. The latter has to pass exclusively
through nodes to the left of e and comes over some ai` to the left of start(e)
(
∑

target(ai
`)<start(e) f(ai`)). Flow over an arc ai` to the left of start(e) that does

not end up over some ai+1
` to the left of target(e) has to cross e from left to

right (f(
−→
E (e))).

Lemma 3 For a feasible flow f and its induced drawing, costf ≥ length(E)
holds.

Proof: Let e = (vij , v
i+1
k) be an edge of G. The length of e is length(e) =

|x(vij)− x(vi+1
k)| and together with (1) we have

length(e) =
∣∣∣j−1∑
l=0

f(ai`)−
k−1∑
l=0

f(ai+1
`)

∣∣∣
=

∣∣∣ ∑
target(ai

`)<vi
j

f(ai`)−
∑

start(ai+1
`)<vi+1

k

f(ai+1
`)

∣∣∣
=

∣∣∣f(
−→
E (e))− f(

←−
E (e))

∣∣∣ (by Property 4).

For the total edge length we obtain:

length(E) =
∑
e∈E

∣∣∣f(
−→
E (e))− f(

←−
E (e))

∣∣∣
≤

∑
e∈E

(∣∣∣f(
−→
E (e))

∣∣∣+
∣∣∣f(
←−
E (e)

∣∣∣)
=

∑
e∈E

(
f(
−→
E (e)) + f(

←−
E (e)

)
=

∑
g∈EN

f(g) · |{e ∈ E | g ∈
−→
E (e)} ∪ {e ∈ E | g ∈

←−
E (e)}|

=
∑

g∈EN

f(g) · cost(g) (by Property 1)

= costf .

�

Lemma 4 Let Γ be a drawing of G. There exists a flow f that induces Γ and
whose cost is equal to the total edge length of Γ.

Proof: If necessary, we set x(v) := x(v)−minv∈V x(v) so that the smallest x-
coordinate is zero. That gives us an equivalent drawing. Thus, there is always
a feasible flow that leads to the drawing Γ. We will argue that there is such
a feasible flow whose cost is equal to the total edge length of the drawing.

510 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

vj

vk

• •

• •

{z0, z1, ..., zj−1}

{w0, w1, ..., wk−1}

f(
−→
E (e))

f(
←−
E (e))

∑
target(ai

l)<vi
j
f(ail)

∑
start(ai+1

l)<vi+1
k

f(ai+1
l)

Figure 7: Illustration of Property 4. The rectangles represent all network nodes
to the left of vj and vk, respectively. The thick arrows represent the flow over
several network edges.

Let ω be the width of Γ. We send ω units of flow from s to t, so that the

k-th unit takes the path Pk = s
∗→ w1

j1

∗→ w2
j2

∗→ · · · ∗→ w
|L|
j|L|

∗→ t, where

wi
ji

is chosen so that x(viji+1) ≥ k and x(viji) < k (wi
ji

= wi
0, if x(vi1) ≥ k and

wi
ji

= wi
|Li|, if x(vi|Li|) < k). That means we send the k-th unit through the k-th

“column” of Γ. This is always possible, because we always have the subpaths
wi

ji
→ ziji

∗→ zi0 → wi+1
0

∗→ wi+1
ji+1

. So for every v there are x(v) units of flow
that pass by to the left of v, thus giving us correct coordinates for all nodes.

We define Ei
k := {e = (vij , v

i+1
`) ∈ E | x(vij) < k and x(vi+1

`) ≥ k} ∪
{e ∈ E | x(vij) ≥ k and x(vi+1

`) < k}, i.e. all edges that cross over the
k-th column between Li and Li+1. We show that there exists a path Pk that
produces the same cost as the number of graph edges that cross over the k-th

column in total, that is cost(Pk) =
∑|L|−1

i=1 |Ei
k|. Then we have

∑ω
k=1 cost(Pk) =∑ω

k=1

∑|L|−1
i=1 |Ei

k| = length(E) and we have proven the lemma.
Since we have a proper layered drawing, it suffices to focus on the subpath

P i
k from z = ziji to w = wi+1

ji+1
between two consecutive layers. Notice that

network edges (s, w1), (wi, zi) and (z|L|, t) do not contribute to the cost of the
flow. For better readability we use uj to denote the nodes of Li and vj for the
nodes of Li+1 and we omit the superscripts. If not stated otherwise, we use zj
for zij and wj for wi+1

j . We construct P ′ = P i
k so that cost(P ′) = |E′| = |Ei

k|.

Case 1: There is no edge e with start(e) < z and target(e) < w.
That means every edge e with start(e) < z has target(e) > w, and if target(e) < w

then start(e) > z. Then we set P ′ = z → zji−1
∗→ z0 → w0 → w1

∗→ w. For

every uj < z with p outgoing edges, P ′ uses exactly one
←−
bz with cost p. All

these edges are in E′. For every vj < w with q incoming edges we use exactly

JGAA, 23(3) 499–524 (2019) 511

one
−→
bw with cost q. Again these edges are in E′. So cost(P ′) = |E′|, since there

are no other edges in E′.

Case 2: There is no edge e with start(e) > z and target(e) > w.

Symmetrically to Case 1, we set P ′ = z
∗→ z|Li| → w|Li+1|

∗→ w. As before the
cost of P ′ equals |E′|.

Case 3: There is an edge e` with start(e`) < z and target(e`) < w and another
edge er with start(er) > z and target(er) > w.
Let e` be the edge with the biggest x(start(e)) of all edges e with start(e) < z
and target(e) < w, and let er be the edge with the smallest x(start(e)) of all
edges e with start(e) > z and target(e) > w.

Case 3.1: There is at least one node u′ with outgoing edges and
start(e`) < u′ < z.
The situation is depicted in Figure 8 and described as follows. Let ug = start(e`)
and vg′ = target(e`). We know vg′ < w. Let vh′ be the first node to the right of
vg′ with an edge er′ = (uh, vh′) and uh > ug. Such a node exists, since we have
er. Notice that vh′ might be to the right of w.

Then we have a hug: Set e1 = e`, set e2 to one outgoing edge of ug+1 (or the
next node to the right of ug, which has an outgoing edge), e4 = er′ and set e3
to one incoming edge of vh′−1 (or the next one to the left of vh′), see Figure 8.
Notice that e1 may coincide with e3 and e2 with e4.

We have start(e3) ≤ start(e1), because we chose e1 = e` with the biggest
x(start(e)) and vh′ is the first node to the right of vg′ with an adjacent node
to the right of ug. So every node between vg′ = target(e1) and vh′ , including
vh′−1 = target(e3), can only have adjacent nodes to the left of ug = start(e1).
It is clear that start(e1) < start(e2) and start(e2) ≤ start(e4), since start(e4) =
uh > ug. By the choice of e1, e3 and e4, target(e1) ≤ target(e3) < target(e4)
holds. We know that target(e2) > w because there is at least one node between
start(e1) and z whose outgoing edges have to end to the right of w because of
the choice of e1. If target(e4) > target(e2) then e2 would have been chosen for
er′ and therefore for e4. So target(e4) ≤ target(e2) also holds. So there exists

cg(h′−1) ∈ EN and we set P ′ = z
∗→ zg → wh′−1

∗→ w.
Now for the cost. A subset of E′ are the edges e with zg < start(e) < z and

target(e) > w, which are covered by the
←−
bz of P ′.

We have two options. First, if wh−1 > w then all edges e with start(e) < zg
and target(e) > wh′−1 are crossed by cg(h′−1) and therefore their lengths are
taken into account. The lengths of the remaining edges e with start(e) < zg

and w < target(e) < wh′−1 are accounted for by the
←−
bw of P ′. Edges e with

start(e) > z > ug and target(e) < w < wh′ are also considered by cg(h′−1).
There cannot be any edge e with z < start(e) and w < target(e) < wh′−1
or zg < start(e) < z and target(e) < w, which would be crossed over by two
different edges of P ′, due to the choice of edges e1 to e4.

Second, if wh−1 < w then cg(h′−1) covers all edges e with start(e) < zg and
target(e) > w > wh′−1 and all edges e with start(e) > z > zg and target(e) <
wh′−1 < w. Edges e with start(e) > z and wh′−1 < target(e) < w are covered

512 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

ug uh

vg′ vh′

e3

e1 e2

e4

z

w

Figure 8: Case 3.1. Only relevant network nodes and edges are depicted. Edges
that participate in the hug are black.

by the
−→
bw. Again there are no edges that are crossed over twice by P ′ due to

the choice of e1 to e4. And there are no edges in E′ that are not covered by
some edge of P ′.

Case 3.2: start(e`) is the first node to the left of z with outgoing edges, but
there is at least one node u′ with outgoing edges and start(er) > u′ > z.
This case is analogous to Case 3.1.

Case 3.3: start(e`) is the first node to the left of z with outgoing edges and
start(er) is the next node to the right of z with outgoing edges.
Let e` = (ug, vg′) and vh′ be the first node right of vg′ with an adjacent node
uh > ug. Again we have a hug. Set e1 = e`, e2 = er, e3 to an incoming edge
of vh′−1 (or a lower node, if necessary) and e4 = (uh, vh′).

With the same arguments as in Case 3.1 we convince ourselves that e1, e2,
e3 and e4 are indeed a hug and we have cji(h′−1). We set P ′ = z → wh′−1

∗→ w.
As before cost(P ′) = |E′|.

�

Theorem 1 Given a graph G = (V,E) together with a proper layering L and
an ordering ord, a minimum cost flow in a network with O(|V |) nodes and
O(min{|V |2, |V |+ |E|+ cross}) edges, where cross is the number of crossings in
G with the layering L and the ordering ord, solves HCAPminEL, i.e. computes
a drawing with minimum total horizontal edge length. The cost of each network
edge is in O(|E|).

Proof: The previous lemmas prove the first statement. The cost of a network
edge depends on the number of graph edges it crosses and is therefore in O(|E|).

�

Further constraints can be modelled by manipulating the network. By ad-
justing the lower and upper bounds of edges a ∈ A we can realize minimum

JGAA, 23(3) 499–524 (2019) 513

sC

e

Figure 9: Constraint graph for computing the minimum width with underlying
graph. The constraint graph is shown in blue. Edge e will be drawn as a vertical
line.

and maximum distances between two neighboring nodes on the same layer. By

removing every g ∈
←−
E (e) ∪

−→
E (e) from the network, we can enforce the edge e

to be drawn vertically. In the next subsection, we explain why we are also able
to minimize the total edge length while complying with a given width.

3.3 Width-Minimum Drawings with minimum
Total Horizontal Edge Length

In order to produce hierarchical drawings with minimum width and shortest
total horizontal edge length among all width-minimum drawings with our min-
imum cost flow approach, we first need to precompute the smallest possible
width. This can be done by computing longest paths in an auxiliary graph C,
see Figure 9. The ordering of G is modeled with C and computing longest paths
corresponds to pushing every node v ∈ V as far to the left as possible.

We construct the graph C as follows. For every vertex v ∈ G we have a
vertex v′ ∈ C. If u < v in G we add a directed edge (u′, v′) to C (transitive
edges can be omitted). The cost of these edges equals the required minimum
distance between the nodes of G. Finally, we add a source node sC to C and
connect it to the first node in each layer with an edge with cost zero. This
source represents the left border of the drawing. If a graph edge (u, v) should
be drawn as a vertical line, we merge the corresponding nodes u′ and v′ in C.
The merged nodes guarantee that the two – or more – original nodes in G get
the same x-coordinate.

The auxiliary graph C is acyclic by construction. We add edges according
to the ordering of G and we only merge nodes of different layers. So if the
constraints for vertical edge segments are not contradicting, i.e. two segments
that cross should both be drawn vertically, we do not create any cycle in C.
Hence a longest simple path to every node of C exists. By traversing the vertices
of C and updating the distances to successive nodes in topological order the
longest paths can be found in linear time [3].

514 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

The graph C is a subgraph of the auxiliary graph from [12] with which a
coordinate assignment with minimum total horizontal edge length is computed.
Gansner et al. [12] observe that assigning x-coordinates to the nodes of G can
be viewed as assigning layers in the auxiliary graph, using the x-coordinates as
layers. With unit minimum distances between neighboring nodes we can omit
the edge costs and the source node and run the longest-path layering algorithm
to get a coordinate assignment with minimum width.

Lemma 5 The distances of longest paths from sC to all other nodes u ∈ C
induce a solution to HCAPminW.

Proof: We set x(v) = dist(v′) for all v ∈ V , where v′ is the vertex in C corre-
sponding to v and dist(v′) is the distance of a longest path from sC to v′. Let
vj and vj+1 be two neighboring nodes within the same layer and let δ(vj , vj+1)
be the required minimum distance between them. Then the longest path dis-
tances guarantee a valid x-coordinate assignment, since x(vj+1) = dist(v′j+1) ≥
dist(v′j) + δ(vj , vj+1) > dist(v′j) = x(vj). If a node v is assigned a smaller x-
coordinate than dist(v′) then at least one of the minimum distance constraints
between some nodes that lie on the longest path to v must be violated. There-
fore a coordinate assignment with a smaller width than induced by the longest
paths would not be valid.

�

To control the maximum width of a layered drawing we make use of Prop-
erty 3, which states that the width of the drawing is at most the flow leaving s.
We can add an additional node s′ and an edge (s, s′) to the network from the
previous section and replace all edges of the form (s, w1

j) with (s′, w1
j). Now

we can limit the maximum width of the drawing by setting the upper bound of
(s, s′) to an appropriate value.

Theorem 2 Given a graph G together with a proper layering L and an ordering
ord, a minimum cost flow in a network with O(|V |) nodes and O(min{|V |2, |V |+
|E|+cross}) edges, where cross is the number of crossings in G with the layering
L and the ordering ord, solves HCAPminW-EL, i.e. computes a width-minimum
drawing with minimum total horizontal edge length. The cost of each network
edge is in O(|E|).

4 Experimental Results

With our experiments we want to demonstrate that we are able to restrict the
width of the drawing without paying too much in terms of total (horizontal)
edge length and time.

We implemented the algorithm from Section 31, which we will call MCF,
within the Open Graph Drawing Framework [7] (OGDF) and used the OGDF

1available at https://informatik.uni-koeln.de/public/spisla/CoordAssign.zip

https://informatik.uni-koeln.de/public/spisla/CoordAssign.zip

JGAA, 23(3) 499–524 (2019) 515

 1

 1.2

 1.4

 1.6

MCF GKNV LP BJL BK

ra
ti

o
 t

o
 m

in
im

u
m width

edge length

(a)

 1

 1.2

 1.4

MCF GKNV LP BJL BK

ra
ti

o
 t

o
 m

in
im

u
m width

edge length

(b)

 1

 1.2

 1.4

MCF GKNV LP BJL BK

ra
ti

o
 t

o
 m

in
im

u
m width

edge length

(c)

 1

 1.2

 1.4

 1.6

MCF GKNV LP BJL BK

ra
ti

o
 t

o
 m

in
im

u
m width

edge length

(d)

Figure 10: Relative width and total horizontal edge length.
(a) North, (b) DAGmar, (c) Large and (d) Sparse.

516 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

MCF GKNV LP BJL BK

ru
n
n
in

g
 t

im
e
 i
n
 s

e
c.

total time

(a)

 0

 5

 10

 15

 20

 25

 30

MCF GKNV LP BJL BK

ru
n
n
in

g
 t

im
e
 i
n
 s

e
c.

total time

(b)

 0

 20

 40

 60

 80

 100

MCF GKNV LP BJL BK

ru
n
n
in

g
 t

im
e
 i
n
 s

e
c.

total time

(c)

 0

 0.5

 1

 1.5

 2

MCF GKNV LP BJL BK

ru
n
n
in

g
 t

im
e
 i
n
 s

e
c.

total time

(d)

Figure 11: Running time. (a) North, (b) DAGmar, (c) Large and (d)
Sparse.

JGAA, 23(3) 499–524 (2019) 517

network simplex software to solve the minimum cost flow problem. The im-
plementation includes the prior computation of the minimum width (see Sec-
tion 3.3), which is then used to compute width-minimum drawings with min-
imum total edge length. We also implemented the approach of Gansner et
al.2 [12] (GKNV) that also uses the network simplex algorithm. This algo-
rithm produces drawings with minimum total horizontal edge length, with no
control of the width. Additionally we used three other OGDF methods: an ILP
that also takes balancing the nodes between their neighbors into account (LP),
the algorithm of Buchheim, Jünger and Leipert [6] (BJL) and the algorithm of
Brandes and Köpf [4] (BK). All algorithms draw inner segments of long edges
as vertical lines. We used four test sets:

• North: A subset of the AT&T graphs from www.graphdrawing.org/

data.html consisting of 1277 graphs with 10 to 100 nodes.

• DAGmar: 1960 uniformly generated level graphs with 20 to 400 vertices
and varying density (the number of edges divided by the number of nodes)
from 1.6 to 10.6 [2], also available at www.graphdrawing.org/data.html.

• Large: To analyze the behaviour of the algorithms on larger graphs we
generated 600 random level graphs with the OGDF. The graphs have
between 500 and 1000 nodes and densities from 1.6 to 10.6.

• Sparse: Since level graphs from applications seem to have few edges (see
e.g. experiments in [19]) we also randomly generated 2500 relatively sparse
graphs with 20 to 500 nodes and densities ranging from 1.2 to 3.0.

The test was run on an Intel Xeon E5-2640v3 2.6GHz CPU with 128 GB
RAM. We investigated the relation of the output width to the minimum width,
the relation of the output total horizontal edge length to the minimum edge
length (computed by GKNV) and the running time. Figures 10 to 13, 18 and 19
show the results and Figures 14 to 17 display example drawings. The whiskers
in Figures 10 and 11 cover 95% of the data and outliers are omitted for better
readability.

4.1 Geometric Criteria

Figure 10 shows the computed width and total horizontal edge length relative
to the optimum for the five algorithms and the four test sets. We can see that
the total horizontal edge length of drawings produced with MCF is still close
to the optimum, even though MCF has the restriction of meeting the minimum
width. The average deviation of the total edge length to the optimum is 0.5%
over all instances. The maximum difference to the optimum is 141.3%.

On the other hand GKNV computes drawings with near-optimum width,
although the width is not explicitely targeted by the algorithm. On average

1also available at https://informatik.uni-koeln.de/public/spisla/CoordAssign.zip

www.graphdrawing.org/data.html
www.graphdrawing.org/data.html
www.graphdrawing.org/data.html
https://informatik.uni-koeln.de/public/spisla/CoordAssign.zip

518 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 200 400 600 800 1000

ra
ti

o
 t

o
 m

in
im

u
m

nodes

edge length
average

(a)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10

ra
ti

o
 t

o
 m

in
im

u
m

density

edge length
average

(b)

Figure 12: Ratio of the total horizontal edge length of MCF drawings to possible
minimum depending on (a) the number of nodes and (b) the density.

the drawings of GKNV are 2.1% wider than width-minimum drawings. In an
extreme example with minimum width 1, GKNV results in width 15.

Except for the North set, there seems to be no significant difference between
MCF and GKNV concerning the total horizontal edge length and the width.
Figures 12 and 13 show the total edge length computed by MCF and the width
computed by GKNV relative to the optimum depending on the number of nodes
and the density of the input graphs. Again we see that for most of the test
instances minimizing one criterion also leads to good results in the other one.

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

ra
ti

o
 t

o
 m

in
im

u
m

nodes

width
average

(a)

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

ra
ti

o
 t

o
 m

in
im

u
m

density

width
average

(b)

Figure 13: Ratio of the width of GKNV drawings to possible minimum depending
on (a) the number of nodes and (b) the density.

Now we take a closer look at the outliers. The instances on which GKNV
performs worst (9 graphs, where the computed width is more than twice as
large as the optimum width) consist of a long path with some small parallel
structure, see Figure 14, whereas graphs that lead to outputs of MCF with
horizontally long edges (5 graphs with a more than 1.5 larger total horizontal
edge length compared to the optimum) have a tree-like structure, see Figure 15.
But the performance of both algorithms does not only depend on properties

JGAA, 23(3) 499–524 (2019) 519

(a) (b)

Figure 14: Example drawings of a North graph with 20 nodes and 21 edges.
(a) MCF: width: 1, edge length: 8. (b) GKNV: width: 6, edge length: 8.

(a)

(b)

Figure 15: Example drawings of a North graph with 43 nodes and 51 edges.
(a) MCF: width: 21, edge length: 352. (b) GKNV: width: 30, edge length: 220.

520 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

(a) (b) (c)

Figure 16: Example drawings of a North graph with 14 nodes and 13 edges.
(a) MCF: width: 5, edge length: 18. (b) GKNV: width: 7, edge length: 12.
(c) hand-made ordering and coordinate assignment: width:5, edge length 10.

(a) (b)

Figure 17: Example drawings of a North graph with 27 nodes and 34 edges.
(a) MCF: width: 10, edge length: 49. (b) GKNV: width: 11, edge length: 48.

of the input graphs. The decisions made in the Sugiyama framework in prior
phases highly influence the outcome of the coordinate assignment phase. In
Figure 16 we see a graph for which neither MCF nor GKNV achieved both, the
minimum width and the minimum horizontal edge length. Figure 16(c) depicts
a width-minimum drawing of the same graph with a hand-made ordering that
allows a smaller total edge length than GKNV computed. Figure 17 shows the
drawings for graph that has neither a path-like nor a tree-like structure.

4.2 Running Time

Figure 11 displays the running time of the five algorithms and the four test
sets. The heuristics BJL and BK are the fastest (0.5 seconds and 1.0 seconds
on average over all instances), but MCF and GKNV are only a bit slower (1.4
seconds and 1.8 seconds). The computation time for the DAGmar and Large
test sets are significantly higher than the time needed for North and Sparse.

Figure 18 shows the absolute running time of MCF over all instances depend-

JGAA, 23(3) 499–524 (2019) 521

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000

ru
n
n
in

g
 t

im
e
 i
n
 s

e
co

n
d

s

nodes

total time
average

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

ru
n
n
in

g
 t

im
e
 i
n
 s

e
co

n
d

s

density

total time
average

(b)

Figure 18: Absolute running time for MCF over all instances depending on (a)
the number of nodes and (b) the density.

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

re
la

ti
v
e
 t

im
e

nodes

MCF/GNKV
average

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

re
la

ti
v
e
 t

im
e

density

MCF/GNKV
average

(b)

Figure 19: Ratio of the running time of MCF to the running time of GKNV
depending on (a) the number of nodes and (b) the density.

ing on the number of nodes and the density of the input graphs. The longest
running time is 32.8 seconds.

Figure 19 shows the relative running time of MCF compared to the time
GKNV takes. In Figure 19(a) the relative running time is plotted against the
number of nodes and in Figure 19(b) against the density of the input instances.
On average the computation time of MCF is 17.6% longer that the computation
time of GKNV. MCF is at most roughly 2.5 times slower than GKNV and takes
at best 60.4% of the time needed by GKNV. We see that for larger and denser
graphs MCF is faster than GKNV.

5 Conclusion

We presented a minimum cost flow formulation for the coordinate assignment
problem that minimizes the total edge length with respect to several optional
criteria like the maximum width or lower and upper bounds on the distance of

522 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

neighboring nodes in a layer. In our experiments we showed that our approach
can compete with state-of-the-art algorithms.

Future research can involve investigating how the flow approach presented
here could be used or adjusted for compacting graph drawings in other drawing
styles. Flow-based methods for the compaction of orthogonal drawings were
adopted from VLSI design and are very efficient [17]. Since our flow technique
does not affect the relative positions of the nodes to each other, it might be
suitable for planar drawings.

JGAA, 23(3) 499–524 (2019) 523

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

[2] C. Bachmaier, A. Gleißner, and A. Hofmeier. Dagmar: Library for
dags. Technical Report MIP-1202, University of Passau, Germany,
2012. URL: https://www.infosun.fim.uni-passau.de/~chris/down/

MIP-1202.pdf.

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applica-
tions. Monographs in Mathematics. Springer, 2008.

[4] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assign-
ment. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing,
9th International Symposium, GD 2001, volume 2265 of LNCS, pages 31–
44. Springer, 2001. doi:10.1007/3-540-45848-4_3.

[5] J. Branke, S. Leppert, M. Middendorf, and P. Eades. Width-restricted
layering of acyclic digraphs with consideration of dummy nodes. Informa-
tion Processing Letters, 81(2):59–63, 2002. doi:10.1016/S0020-0190(01)
00200-9.

[6] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k -level
graphs. In J. Marks, editor, Graph Drawing, 8th International Symposium,
GD 2000, volume 1984 of LNCS, pages 229–240. Springer, 2000. doi:

10.1007/3-540-44541-2_22.

[7] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The open graph drawing framework (OGDF). In R. Tamas-
sia, editor, Handbook on Graph Drawing and Visualization., pages 543–569.
Chapman and Hall/CRC, 2013.

[8] E. G. Coffman and R. L. Graham. Optimal scheduling for two-processor
systems. Acta Informatica, 1(3):200–213, 1972. doi:10.1007/BF00288685.

[9] W. W.-M. Dai and E. S. Kuh. Global spacing of building-block layout.
In Proceedings of the IFIP International Conference on Very Large Scale
Integration, VLSI’87, pages 193–205, 1987.

[10] P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing a hierarchical
graph. Int. J. Comput. Geometry Appl., 6(2):145–156, 1996. doi:10.1142/
S0218195996000101.

[11] M. Forster. Applying crossing reduction strategies to layered compound
graphs. In Graph Drawing, 10th International Symposium, GD 2002,
volume 2528 of LNCS, pages 276–284. Springer, 2002. doi:10.1007/

3-540-36151-0_26.

https://www.infosun.fim.uni-passau.de/~chris/down/MIP-1202.pdf
https://www.infosun.fim.uni-passau.de/~chris/down/MIP-1202.pdf
http://dx.doi.org/10.1007/3-540-45848-4_3
http://dx.doi.org/10.1016/S0020-0190(01)00200-9
http://dx.doi.org/10.1016/S0020-0190(01)00200-9
http://dx.doi.org/10.1007/3-540-44541-2_22
http://dx.doi.org/10.1007/3-540-44541-2_22
http://dx.doi.org/10.1007/BF00288685
http://dx.doi.org/10.1142/S0218195996000101
http://dx.doi.org/10.1142/S0218195996000101
http://dx.doi.org/10.1007/3-540-36151-0_26
http://dx.doi.org/10.1007/3-540-36151-0_26

524 Jünger et al. Horizontal Coordinate Assignment with Prescribed Width

[12] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique
for drawing directed graphs. Software Engineering, 19(3):214–230, 1993.
doi:10.1109/32.221135.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[14] P. Healy and N. S. Nikolov. A branch-and-cut approach to the di-
rected acyclic graph layering problem. In S. G. Kobourov and M. T.
Goodrich, editors, Graph Drawing, 10th International Symposium, GD
2002, volume 2528 of LNCS, pages 98–109. Springer, 2002. doi:10.1007/
3-540-36151-0_10.

[15] P. Healy and N. S. Nikolov. Hierarchical drawing algorithms. In R. Tamas-
sia, editor, Handbook on Graph Drawing and Visualization., pages 409–453.
Chapman and Hall/CRC, 2013.

[16] A. Jabrayilov, S. Mallach, P. Mutzel, U. Rüegg, and R. von Hanxleden.
Compact layered drawings of general directed graphs. In Y. Hu and
M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th
International Symposium, GD 2016, volume 9801 of LNCS, pages 209–221.
Springer, 2016. doi:10.1007/978-3-319-50106-2_17.

[17] G. W. Klau, K. Klein, and P. Mutzel. An Experimental Comparison of Or-
thogonal Compaction Algorithms (Extended Abstract). In J. Marks, editor,
Graph Drawing, 8th International Symposium, GD 2000, volume 1984 of
LNCS, pages 37–51. Springer, 2000. doi:10.1007/3-540-44541-2_5.

[18] L. Nachmanson, G. G. Robertson, and B. Lee. Drawing graphs with GLEE.
In S. Hong, T. Nishizeki, and W. Quan, editors, Graph Drawing, 15th
International Symposium, GD 2007, volume 4875 of LNCS, pages 389–394.
Springer, 2007. doi:10.1007/978-3-540-77537-9_38.

[19] U. Rüegg, C. D. Schulze, J. J. Carstens, and R. von Hanxleden. Size-
and port-aware horizontal node coordinate assignment. In E. Di Giacomo
and A. Lubiw, editors, Graph Drawing and Network Visualization - 23rd
International Symposium, GD 2015, volume 9411 of LNCS, pages 139–150,
2015. doi:10.1007/978-3-319-27261-0_12.

[20] G. Sander. A fast heuristic for hierarchical manhattan layout. In F. Bran-
denburg, editor, Graph Drawing, Symposium on Graph Drawing, GD ’95,
volume 1027 of LNCS, pages 447–458. Springer, 1995. doi:10.1007/

BFb0021828.

[21] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, Feb. 1981. doi:10.1109/TSMC.1981.4308636.

http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1007/3-540-36151-0_10
http://dx.doi.org/10.1007/3-540-36151-0_10
http://dx.doi.org/10.1007/978-3-319-50106-2_17
http://dx.doi.org/10.1007/3-540-44541-2_5
http://dx.doi.org/10.1007/978-3-540-77537-9_38
http://dx.doi.org/10.1007/978-3-319-27261-0_12
http://dx.doi.org/10.1007/BFb0021828
http://dx.doi.org/10.1007/BFb0021828
http://dx.doi.org/10.1109/TSMC.1981.4308636

	Introduction
	Notation and Preliminaries
	Network Flow Formulation
	Network Construction
	Obtaining Coordinates and Correctness
	Width-Minimum Drawings with minimum Total Horizontal Edge Length

	Experimental Results
	Geometric Criteria
	Running Time

	Conclusion

