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Abstract

In the present paper, we consider the graph mining problem of enu-
merating what we call connectors. Suppose that we are given a data set
(G, I, σ) that consists of a graph G = (V,E), an item set I, and a func-
tion σ : V → 2I . For X ⊆ V , we define Aσ(X) ,

⋂
v∈X σ(v). Note that,

for X,Y ⊆ V , X ⊆ Y implies that Aσ(X) ⊇ Aσ(Y ). A vertex subset
X is called a connector if (i) the subgraph G[X] induced from G by X
is connected; and (ii) for any v ∈ V \ X, G[X ∪ {v}] is disconnected or
Aσ(X ∪ {v}) ( Aσ(X). To enumerate all connectors, we propose a novel
algorithm named COOMA (components overlaid mining algorithm). The
algorithm mines connectors by “overlaying” an already discovered connec-
tor on a certain subgraph of G iteratively. By overlaying, we mean taking
an intersection between the connector and connected components of a
certain induced subgraph. Interestingly, COOMA is a total-polynomial
time algorithm, i.e., the running time is polynomially bounded with re-
spect to the input and output size. We show the efficiency of COOMA in
comparison with COPINE [Sese et al., 2010], a depth-first-search based
algorithm.

Submitted:
January 2019

Reviewed:
April 2019

Revised:
June 2019

Accepted:
July 2019

Final:
July 2019

Published:
July 2019

Article type:
Regular paper

Communicated by:
S.-H. Hong

E-mail addresses: haraguchi@res.otaru-uc.ac.jp (Kazuya Haraguchi) shurbevski@amp.i.kyoto-

u.ac.jp (Aleksandar Shurbevski) nag@amp.i.kyoto-u.ac.jp (Hiroshi Nagamochi)

http://dx.doi.org/10.7155/jgaa.00497
mailto:haraguchi@res.otaru-uc.ac.jp
mailto:shurbevski@amp.i.kyoto-u.ac.jp
mailto:shurbevski@amp.i.kyoto-u.ac.jp
mailto:nag@amp.i.kyoto-u.ac.jp


JGAA, 23(2) 434–458 (2019) 435

1 2 3

4 5 6

7 8 9

v v v

v v v

v v v

1i 1i 2i

1i 2i 3i 1i 2i 3i

3i

2i 3i

1i 3i1i 2i

2i

, ,

,,

, , , ,

Figure 1: An instance (G, I, σ)

1 Introduction

A lot of existing data is stored in the form of a graph [8]. In graph data, a
vertex is often associated with a set of items or attributes. For example, in a
social network, each vertex corresponds to a user and two users are joined by
an edge if they are friends. A user may be associated with products that he
or she has purchased so far. In a genetic network, each vertex may correspond
to an SNP (single nucleotide polymorphism), and two SNPs are joined by an
edge if they have a significant relationship in some context. An SNP may be
associated with patients who possess it [21].

We consider the following graph mining problem. Suppose that we are given
a tuple (G, I, σ) of a graph G = (V,E), an item set I = {i1, . . . , iq}, and a
function σ : V → 2I . For each vertex v ∈ V , the subset σ(v) represents the set
of items with which v is associated. For X ⊆ V , we denote by Aσ(X) the set
of items common to σ(v) for all vertices v ∈ X, i.e., Aσ(X) ,

⋂
v∈X σ(v). For

X,Y ⊆ V , X ⊆ Y implies that Aσ(X) ⊇ Aσ(Y ). A vertex subset X is called a
connector if the following conditions hold:

(i) the subgraph G[X] induced from G by X is connected; and

(ii) adding any vertex v ∈ V \X to X breaks the connectivity of the subgraph
or decreases the common item set, i.e., G[X ∪ {v}] is disconnected or
Aσ(X ∪ {v}) ( Aσ(X), for any v ∈ V \X.

We illustrate an instance (G, I, σ) in Figure 1. For this instance, we show in
Table 1 all connectors, along with their item sets. A connector X is nontrivial
if Aσ(X) 6= ∅, and it is trivial otherwise. We can observe that every trivial
connector is a vertex set of a connected component of G.

In the context of social networks, a nontrivial connector X may represent a
maximal subset of users such that any two of them are connected by a sequence
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Table 1: All connectors X and their item sets Aσ(X) of the instance given by
Figure 1

X Aσ(X)
{v1, . . . , v9} ∅
{v1, v2, v6, v9} {i1}
{v2, v3, v7, v8, v9} {i2}
{v3, v5, v6, v7, v9} {i3}

{v4} {i1, i2}
{v2, v9} {i1, i2}
{v6, v9} {i1, i3}
{v3} {i2, i3}
{v7} {i1, i2, i3}
{v9} {i1, i2, i3}

of individuals in the set who are pairwise friends, and that all of them have
purchased the products in Aσ(X). Connectors are meaningful in terms of mar-
keting. For example, suppose that there are a connector X and a user u /∈ X
who has friends in X. The user u may have a similar preference as the users in
X since u has ties to a friendship community that consists of the users in X.
The users in X have purchased a common set Aσ(X) of products. Then it is
reasonable to recommend a product i ∈ Aσ(X) \ σ(u) to u, in the expectation
that u may like i and thus buy it. We may find interesting pairs (X,u) that
cannot be acquired by observing only the neighbors of u.

We consider the problem of enumerating all connectors for a given instance
(G, I, σ). This problem was first introduced for biological networks and an
algorithm named COPINE was proposed [19, 20]. Recently, Okuno [14] and
Okuno et al. [15, 16] studied the parallelization of COPINE. As we will see
in Section 4.1, the problem is a generalization of the frequent item set mining
problem, one of the first data mining problems [1, 2].

COPINE is a straightforward algorithm, and we claim that there is room
for improvement. Based on gSpan [24], COPINE traverses a search tree in a
depth-first manner. For enumeration problems, however, several algorithmic
frameworks have been invented so far; e.g., reverse search [3], BDD/ZDD [12],
and dynamic programming [4]. These frameworks have been applied to various
enumeration problems [7, 13, 23]. COPINE is not the only algorithmic solution
to our problem. We may develop other enumeration algorithms, aiming at a
better graph mining tool for practitioners.

With this in mind, we propose a novel enumeration algorithm named COOMA,
which stands for a components overlaid mining algorithm. The algorithm mines
connectors by “overlaying” an already discovered connector on a certain sub-
graph of G iteratively. By overlaying, we mean taking an intersection between
the connector and connected components of a certain induced subgraph. The
highlight of COOMA is that the running time is total-polynomial, i.e., polyno-
mially bounded with respect to the input and output size. The time complexity
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of COPINE has not been analyzed, and thus COOMA is the first enumeration
algorithm with a theoretically analyzed time bound.

The paper is organized as follows. In Section 2, we introduce some notation
and terminology and provide essential properties of connectors. In Section 3,
we propose COOMA and its extended version ExtCOOMA, along with time
complexity analyses. In Section 4, we discuss a generalization of the connector
enumeration algorithm and how COOMA and COPINE work for the generalized
problem. In Section 5, we make empirical comparison of the three algorithms,
COOMA, ExtCOOMA and COPINE, in terms of computation time and mem-
ory consumption. Finally we give concluding remarks in Section 6.

2 Preliminaries

2.1 Graphs

In the present paper, a graph stands for a simple undirected graph. The vertex
set (resp., edge set) of a graph H is denoted by V (H) (resp., E(H)).

Let G = (V,E) be a graph with a vertex set V and an edge set E. For
a vertex v ∈ V , let NG(v) denote the set {u ∈ V : uv ∈ E} of neighbors of
v in G. The degree of v is defined to be |NG(v)|, and we denote by ∆ the
maximum degree over V , i.e., ∆ , maxv∈V |NG(v)|. Let X be a subset of V ,
and F be a subset of E. Define X[F ] to be the set of vertices x ∈ X such that
x is an end-vertex of an edge in F , F [X] to be the set of edges e = uv ∈ F
with u, v ∈ X, and G[X] (resp., G[X,F ]) to be the subgraph (X,E[X]) (resp.,
(X[F ], F [X])). A vertex subset Z of a graph H is called a component of H if
H[Z] is connected and H[Z∪{v}] is not connected for any vertex v ∈ V (H)\Z.
Let C(X) (resp., C(X,F )) denote the family of all components of the graph
G[X] (resp., G[X,F ]).

For the example in Figure 1, let us take X = {v1, v2, v3, v6, v9}. Then
E[X], the edge set of G[X], is {v1v2, v2v3, v2v6, v2v9, v3v6, v6v9}. For an edge
set F = {v2v6, v2v9, v5v9}, we haveX[F ] = {v2, v6, v9} and F [X] = {v2v6, v2v9}.
The subgraph G[X,F ] has just one component.

2.2 Connectors

Assume that we are given an instance (G, I, σ) that consists of a graph G =
(V,E), an item set I = {i1, . . . , iq} and a function σ : V → 2I , where q = |I|
denotes the total number of items.

We consider the problem of enumerating all connectors for the given instance.
It is easy to enumerate trivial connectors; we only have to compute the connected
components of G by a conventional graph search algorithm (e.g., depth-first
search) and to output those whose common item sets are empty. Hereafter we
concentrate only on nontrivial connectors. We denote by M the family of all
nontrivial connectors for the given instance. The problem is summarized as the
CE (connector enumeration) problem as follows.
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� �
Problem CE

Input: An instance (G, I, σ) that consists of a graph G = (V,E), an item
set I, and a function σ : V → 2I .

Output: The family M of nontrivial connectors for (G, I, σ).� �
For an item i ∈ I, we define V〈i〉 as the set of vertices that have the item i,

and E〈i〉 as the set of edges such that both of the endpoints have the item i;

V〈i〉 , {v ∈ V : i ∈ σ(v)}, E〈i〉 , {uv ∈ E : i ∈ σ(u) ∩ σ(v)}.

For a connector X ∈ M, we call |X| the size of X. For M′ ⊆ M, we
represent by ‖M′‖ the sum of the size |X| over X ∈M′.

We present three lemmas that describe essential properties of connectors.

Lemma 1 Given an instance (G, I, σ), let i ∈ I be an item. Then any connected
component in the subgraph G[V〈i〉] is a connector.

Proof: Let X be a connected component of G[V〈i〉]. For each vertex v ∈ V \X,
if i ∈ σ(v), then G[X ∪ {v}] is not connected from the definition of a connected
component. If i 6∈ σ(v), then we have i ∈ Aσ(X)\σ(v) and thus Aσ(X ∪{v}) (
Aσ(X). �

We call a connected component in G[V〈i〉] a base connector . Let B denote
the union of all base connectors, i.e., B =

⋃
i∈I C(V〈i〉). In Figure 1,

C(V〈i1〉) = {{v1, v2, v6, v9}, {v4}, {v7}},
C(V〈i2〉) = {{v2, v3, v7, v8, v9}, {v4}},
C(V〈i3〉) = {{v3, v5, v6, v7, v9}},

and B is the union of these three families.

Lemma 2 Let X1, X2 ∈ M be two nontrivial connectors for a given instance
(G, I, σ). Then it holds that C(X1 ∩X2) ⊆M.

Proof: Let Y be a set in C(X1 ∩ X2). The subgraph G[Y ] is connected, but
G[Y ∪{v}] is not connected for any vertex v ∈ (X1 ∩X2) \Y . Let v be a vertex
such that v ∈ V \(X1∩X2). It suffices to show that G[Y ∪{v}] is not connected,
or that Aσ(Y ) \ σ(v) 6= ∅. Since Xi ∈M, i = 1, 2, G[Xi ∪ {v}] is not connected
or Aσ(Xi) \ σ(v) 6= ∅. Hence we see that G[Y ∪ {v}] is also not connected or
Aσ(Y ) \ σ(v) ⊇ Aσ(Xi) \ σ(v) 6= ∅ for i = 1 or 2, as required. �

Lemma 3 Given an instance (G, I, σ), let Y ∈M\B be a non-base connector,
i ∈ Aσ(Y ) be an item that belongs to the common item set Aσ(Y ), and C ∈
C(V〈i〉) be a base connector. If Y ⊆ C, then there exists a connector X ∈ M
such that Y ( X and Y ∈ C(X ∩ C).
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Proof: Because Y ⊆ C, it holds that Aσ(Y ) ⊇ Aσ(C). If Aσ(Y ) = Aσ(C),
then Y = C ∈ B would hold, which contradicts Y 6∈ B. Then we have Aσ(Y ) )
Aσ(C) and there is an item j ∈ Aσ(Y ) \ Aσ(C). There is a base connector
C ′ ∈ C(V〈j〉) such that Y ( C ′. Moreover, Y is contained in a component of the
graph G[C ′ ∩C]. This means thatM contains a connector X with X ) Y such
that Y is contained in a component of the graph G[X ∩ C]. We choose X as a
minimal subset among all such connectors. Let Z denote the component of the
graph G[X ∩ C] that contains Y , where Z ∈ M by Lemma 2. If Z 6= Y , then
Y ∈ G[Z ∩ C], contradicting the choice of X. Hence Z = Y and the connector
X satisfies the lemma. �

Definition 1 Let M′ ⊆ M and B′ ⊆ B. We call M′ self-contained with
respect to B′ if (a) B′ ⊆M′, and (b) for every (X,C) ∈M′×B′, it holds that
C(X ∩ C) ⊆M′.

For the instance in Figure 1,M′ = {{v1, v2, v6, v9}, {v3, v5, v6, v7, v9}, {v6, v9},
{v4}, {v7}} is self-contained with respect to C(V〈i1〉) ∪ C(V〈i3〉). On the other
hand, M′ = {{v2, v3, v7, v8, v9}, {v6, v9}} is not self-contained with respect to
any B′ ⊆ B because the intersection {v9} of the two sets in M′ is not in M′.

Lemma 4 Given an instance (G, I, σ), let M′ ⊆M be a subfamily of connec-
tors. If M′ is self-contained with respect to B, then M′ =M.

Proof: From the definition of self-containment,M′ contains the whole set B of
base connectors. BecauseM′ ⊆M, we show that the equality holds. To derive
a contradiction, assume that there is a set Y ∈M\M′, where we choose Y as
a maximal subset among all such connectors. Let i ∈ Aσ(Y ) be an item and
denote by C the component in C(V〈i〉) that contains Y . It holds that C ) Y
since Y 6∈ M′ ⊇ B ⊇ C(V〈i〉). By Lemma 3, there is a connector X ∈ M with
X ) Y such that Y ∈ C(X ∩ C). Because Y is a maximal subset in M\M′,
we have X ∈M′. This, however, means that Y ∈ C(X ∩C) \M′, contradicting
that M′ is self-contained with respect to B. �

3 Two Algorithms for the Connector Enumera-
tion Problem

In this section, we propose two algorithms for the CE problem. The first is
COOMA, which is presented in Section 3.1. The other is ExtCOOMA, an
extension of COOMA, which we present in Section 3.2. The time complexities
of both algorithms are polynomially bounded with respect to the input and
output size.

3.1 Algorithm COOMA

Overview. The following lemma suggests the direction of COOMA.



440 Haraguchi et al. COOMA

Lemma 5 Given an instance (G, I, σ), let M′ ⊆ M, I ′ ( I, and i ∈ I \ I ′.
We denote B′ =

⋃
i′∈I′ C(V〈i′〉). If M′ is self-contained with respect to B′, then

N =M′ ∪M′′ ∪C(V〈i〉) is self-contained with respect to B′ ∪C(V〈i〉), where M′′
is defined as

M′′ =
⋃

X∈M′

C(X ∩ V〈i〉). (1)

Proof: Observe that C(V〈i〉) ⊆ N holds, and that, for every i′ ∈ I ′, C(V〈i′〉) ⊆
M′ ⊆ N holds. We show that C(X ∩ C) ⊆ N holds for every pair (X,C) ∈
N × (B′ ∪ C(V〈i〉)). We observe the following four cases:

(i) X ∈M′ and C ∈ B′;

(ii) X ∈M′ and C ∈ C(V〈i〉);

(iii) X ∈M′′ ∪ C(V〈i〉) and C ∈ C(V〈i〉); and

(iv) X ∈M′′ ∪ C(V〈i〉) and C ∈ B′.

(i) The inclusion C(X ∩C) ⊆M′ ⊆ N holds by the assumption thatM′ is self-
contained with respect to B′. (ii) From the definition ofM′′, that is, Eq. (1), we
have C(X∩C) ⊆ C(X∩V〈i〉) ⊆M′′ ⊆ N . (iii) Recall that C(V〈i〉) is a collection
of components. Because i ∈ Aσ(X), there is only one component CX ∈ C(V〈i〉)
with CX ⊇ X. If C = CX , then we have C(X ∩ C) = {X} ⊆ N . Otherwise,
we have X ∩ C = ∅. (iv) If X ∈ C(V〈i〉), then the discussion is reduced to
the case (ii), by interchanging X and C. Otherwise, there are a base connector
CX ∈ C(V〈i〉) with CX ⊇ X and a connector Y ∈M′ such that X ∈ C(Y ∩CX).
We have C(Y ∩ C) ⊆M′, and also have C(Y ∩ C ∩ CX) ⊆M′′ by (ii). Then it
holds that

N ⊇M′′ ⊇ C(Y ∩C∩CX) = C(Y ∩CX∩C) =
⋃

X′∈C(Y ∩CX)

C(X ′∩C) ⊇ C(X∩C).

�

Using Lemma 5, we can enumerate all nontrivial connectors inM as follows.
First, we compute C(Vi) for all i ∈ I by using a conventional graph search.
We choose an arbitrary item i1 ∈ I, and let M′ ← C(V〈i1〉) and I ′ ← {i1}.
Obviously, this M′ is self-contained with respect to

⋃
i′∈I′ C(V〈i′〉) = C(V〈i1〉).

Then we enlarge the family M′ so that M′ is self-contained with respect to⋃
i′∈I′∪{i} C(V〈i′〉), where the item i is arbitrarily chosen from I \I ′. Specifically,

we compute the family M′′ of (1) by “overlaying” a connector X ∈ M′ on the
subgraph G[V〈i〉] (i.e., taking the intersection X ∩ V〈i〉 and listing connected
components) and append M′′ and C(V〈i〉) to M′. The obtained M′ is self-
contained with respect to

⋃
i′∈I′∪{i} C(V〈i′〉) by Lemma 5. Updating I ′ ← I ′ ∪

{i}, we repeat this process as long as I ′ ( I. Finally, when I ′ = I, M′ is
self-contained with respect to B. By Lemma 4, this M′ is equivalent to M.

COOMA is summarized in Algorithm 1. In the description, any set union is
taken without creating duplication.
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Algorithm 1 COOMA

Input: An instance (G, I, σ)
Output: The set M of nontrivial connectors of (G, I, σ)
1: Choose an item i1 ∈ I;
2: M′ ← C(V〈i1〉);
3: I ′ ← {i1};
4: while I ′ ( I do
5: M′′ ← ∅;
6: Choose an item i ∈ I \ I ′;
7: for each X ∈M′ do
8: M′′ ←M′′ ∪ C(X ∩ V〈i〉)
9: end for;

10: M′ ←M′ ∪M′′ ∪ C(V〈i〉);
11: I ′ ← I ′ ∪ {i}
12: end while;
13: Output M′ as M

Theorem 1 Given an instance (G, I, σ), COOMA (Algorithm 1) outputs the
family M correctly.

Time complexity analysis. To analyze the time complexity, we describe our
implementation of COOMA. We store the graph G = (V,E) by a conventional
adjacency list, and the item set σ(v) of a vertex v ∈ V by a q-dimensional binary
vector (q = |I|).

During the execution of the algorithm, we generate connectors by taking
components in C(S) for some S ⊆ V (lines 2, 8 and 10). This can be done by
means of a conventional graph search on G[S].

We need to retain the generated connectors without creating duplication.
The family M′ stores all the generated connectors so far, whereas the family
M′′ is used to store only connectors that are generated in the current iteration.

To retain the family of generated connectors, we make use of a radix tree
(a.k.a., patricia trie) [9, 17, 18]. Radix trees have originally been proposed
as data structure for storing a set of strings, where a string is a sequence of
characters.

A radix tree is a rooted tree, and each edge is associated with a substring.
We call a vertex in a radix tree a node in order to distinguish it from a vertex in
G. Let u be an inner node. A down edge of u is an edge that joins u and one of
its children. The tree is maintained so that any node u has more than one child
(i.e., no redundant inner node exists), and that each of the substrings associated
with the down edges incident with u starts with a different character. A leaf
then corresponds to a string that is obtained by concatenating the substrings
associated with the edges of the path from the root. Observe that no two leaves
represent the same string. The tree consists of an isolated node when no string
is stored.
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Figure 2: (a) A radix tree R3 that contains {v1, v2, v3}, {v1, v3, v5}, {v1, v4, v7},
{v2, v4, v5}, and {v2, v4, v6}. Leaves are connected by a linked list (dashed ar-
rows) and appear in this list in inverse insertion order, most recent first; (b)
A new connector {v2, v3, v7} is inserted to R3, and the corresponding leaf is
inserted at the head of the linked list

To use a radix tree, we regard a vertex index as a character and a sorted
index sequence as a vertex set. We do not store all the generated connectors
in a single radix tree but in a collection of radix trees. Let bmax denote the
maximum size of a base connector, i.e., bmax = max{|B| : i ∈ I, B ∈ C(V〈i〉)}.
Note that any connector X satisfies |X| ≤ bmax. Denoting the radix trees by
R1, . . . , Rbmax

, we maintain a connector X in R|X|. In Figure 2 (a), we illustrate
a radix tree R3. As will be mentioned, we maintain the familiesM′ andM′′ of
connectors within the same collection of radix trees.

We utilize two operations on the radix trees: Member and Insert. For
X ⊆ V , Member(X,R|X|) identifies whether or not X is a member of the
radix tree R|X|, and Insert(X,R|X|) inserts the subset X in R|X| (i.e., a new
leaf that corresponds to X is added if X is not a member of R|X|).

Let X = {vx1
, . . . , vxb

} be a connector such that x1 < · · · < xb and b =
|X|. The operation Member(X,Rb) is implemented as follows. If Rb stores no
connector (i.e., the tree consists of an isolated node), then X is not a member
of Rb. Suppose that Rb stores at least one connector. Let p ← 1 and u be the
root of Rb. If u has no down edge such that the first character of its associated
string is xp, then we conclude that X is not a member of Rb. Otherwise, let
e denote the unique such down edge. We identify whether the substring of e
matches the substring xp · · ·xp+`−1 of X, where ` is the length of the substring
of e. If yes, then let u′ denote the child of u that is the other endpoint of e. If
u′ is a leaf, then we see that X is a member of Rb. Otherwise, letting p← p+ `
and u← u′, we repeat the above process. On the other hand, if the substring of
e does not match xp · · ·xp+`−1, then we conclude that X is not a member of Rb.
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Denoting by τ(n) the computation time to find the required down edge among
at most n down edges, we see that the time complexity of Member(X,Rb) is
O(|X|τ(n)).

To maintain all the down edges of a node, we store the first characters of the
substrings along with pointers to the respective down edges. To decide the down
edge that should be traced, we have to search only for xp among the stored first
characters. If we realize this branch structure by a red-black tree, then we have
τ(n) = O(log n). If a hash table is used, we have τ(n) = O(n) in the worst case,
but achieve τ(n) = O(1) on average [5].

For Insert(X,Rb), we use Member(X,Rb) as preprocessing. If X is not a
member of Rb, then we add a new leaf and at most one inner node to Rb and
update the substrings of the edges so that X is represented by the path from
the root to the leaf. Figure 2 (b) illustrates how a new connector is inserted to
a radix tree. Otherwise (i.e., if X is already a member of Rb), we do not add
any new nodes and edges to Rb, by which we can avoid creating duplication.

To improve the efficiency of the entire algorithm, we append the following
mechanisms to Insert(X,Rb). Note that Insert(X,Rb) is used in lines 2, 8
and 10.

A linked list of leaves: In line 7, we scan all connectors in the radix trees in
M′. To do this efficiently, we connect all leaves of a radix tree by a linked
list. In Figure 2, a linked list is indicated by dotted arrows. When a new
leaf is constructed by Insert, we insert it at the head of the linked list
since the search order does not matter. Then it takes O(1) extra time to
update the linked list.

Label of a leaf: We retain M′ and M′′ in a single collection of radix trees.
During the scan in line 7, we face the question of how to identify whether
a connector X belongs to M′ \M′′ or M′′. In the latter case, we should
not go with the generation process of line 8 for this X.

Our idea is to record the latest iteration in which each connector X is
generated. Specifically, when we insert X in Rb by making a new leaf
or find that X is a member of Rb, we assign the current item to the
corresponding leaf. By current item, we mean i1 in line 2, and the item
i chosen in the current iteration in lines 8 and 10. We can conclude that
X ∈M′′ if the leaf for X is labeled by the current item. The labeling can
be done in O(1) extra time.

These two mechanisms require constant time. The time complexity of In-
sert(X,Rb) is O(|X|τ(n)).

Theorem 2 Given an instance (G, I, σ), the running time of COOMA
(Algorithm 1) is O((∆ + log n)q ‖M‖).

Proof: The critical part is the while-loop from line 4 to 12. For each iteration,
we denote by M′ the family of connectors as of the beginning of this iteration
and by M′′ the family of connectors that are generated in the iteration. We
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scan all connectors in M′ (line 7). The scan can be done by tracing the linked
list of leaves for each of the radix trees. New leaves could be added during the
scan (i.e., connectors in M′′), and we can identify whether X ∈ M′ \ M′′ or
X ∈ M′′ for a connector X by the leaf label. Then the time complexity of the
scan is O(‖M′‖+ ‖M′′‖).

For each connector X, we compute components in C(X ∩ V〈i〉) as follows.

When the current item i is chosen at line 6, we construct the subgraph Gi ,
(V〈i〉, E). Then we extract the components in C(X ∩ V〈i〉, E) by executing a
restricted graph search on Gi such that only vertices v in X and the edges
incident to v are searched. This can be done in O(∆|X|) time. For each Y ∈
C(X ∩ V〈i〉, E), we conduct Insert(Y,R|Y |) to insert Y to the radix tree R|Y |,
which takes O(|Y |τ(n)) time. By storing the down edges for each node in
a red-black tree, then τ(n) = O(log n) and thus we have

∑
Y O(|Y |τ(n)) =

O(|X| log n).
Then the time complexity of each iteration is

O(‖M′‖+ ‖M′′‖) +
∑
X∈M′

O((∆ + log n)|X|) = O((∆ + log n) ‖M′‖+ ‖M′′‖).

Since the iteration is repeated q = |I| times and ‖M′‖ + ‖M′′‖ ≤ 2 ‖M‖, we
see that the algorithm runs in O((∆ + log n)q ‖M‖) time. �

3.2 Algorithm ExtCOOMA

In this subsection, we consider an extension of COOMA. For B1, . . . ,Br ⊆ B,
the collection C = {B1, . . . ,Br} is called a cover of B if

⋃r
p=1 Bp = B.

Definition 2 Given an instance (G, I, σ), let C be a cover of B. We call C
a base cover of B if, for every Bp ∈ C, any two base connectors X,Y ∈ Bp
(X 6= Y ) satisfy X ∩ Y = ∅.

Let CI = {C(V〈i1〉), . . . , C(V〈iq〉)}. We see that CI is a base cover of B since
any two base connectors X,Y ∈ C(V〈i〉) are disjoint. The following lemma is a
generalization of Lemma 5, suggesting us to use a “good” base cover instead of
CI .

Lemma 6 Given an instance (G, I, σ), let M′ ⊆ M, C = {B1, . . . ,Br} be a
base cover of B, C′ ( C, and Bp ∈ C \ C′. We denote B′ =

⋃
Bp′∈C′ Bp′ ,

Vp =
⋃
C∈Bp

C and Ep =
⋃
C∈Bp

E[C]. If M′ is self-contained with respect to

B′, then N =M′∪M′′∪Bp is self-contained with respect to B′∪Bp, where M′′
is defined as

M′′ =
⋃

X∈M′

{C(X ∩ C) : C ∈ C(Vp, Ep)}. (2)

Note that each component in the subgraph G[Vp, Ep] is a base connector in
Bp that consists of more than one vertex. In (2), the set in the right-hand
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side represents the set of connectors that are obtained by “overlaying” X on
G[Vp, Ep].

Proof: Observe that B′ ∪ Bp ⊆ N holds. We show that C(X ∩ C) ⊆ N holds
for every pair (X,C) ∈ N × (B′ ∪ Bp). We observe the following four cases:

(i) X ∈M′ and C ∈ B′;

(ii) X ∈M′ and C ∈ Bp;

(iii) X ∈M′′ ∪ Bp and C ∈ Bp; and

(iv) X ∈M′′ ∪ Bp and C ∈ B′.

(i) The inclusion C(X ∩ C) ⊆ M′ ⊆ N holds by the assumption that M′ is
self-contained with respect to B′. (ii) From (2), we have C(X ∩C) ⊆M′′ ⊆ N .
(iii) Because C(Vp, Ep) is a collection of connected components in G[Vp, Ep],
there is only one base connector CX ∈ Bp such that CX ⊇ X. If C = CX ,
then we have C(X ∩ C) = {X} ⊆ N . Otherwise, we have X ∩ C = ∅. (iv)
If X ∈ Bp, then the discussion is reduced to the case (ii), by interchanging X
and C. Otherwise (i.e., if X ∈ M′′ \ Bp), there are a base connector CX ∈ Bp
with CX ⊇ X and a connector Y ∈ M′ such that X ∈ C(Y ∩ CX). We have
C(Y ∩C) ⊆M′, and also have C(Y ∩C ∩CX) ⊆M′′ by (ii). Then it holds that

N ⊇M′′ ⊇ C(Y ∩C∩CX) = C(Y ∩CX∩C) =
⋃

X′∈C(Y ∩CX)

C(X ′∩C) ⊇ C(X∩C).

�

Lemma 5 is a special case of Lemma 6 such that CI is given as the input
base cover C.

As we did for Lemma 5, we can enumerate all the nontrivial connectors
by using Lemma 6. First, we determine a base cover C = {B1, . . . ,Br} of
B somehow. We will discuss how to determine C later. We let M′ ← B1.
Obviously, this M′ is self-contained with respect to B1. Then for p = 2, . . . , r,
we enlargeM′ so that it is self-contained with respect to

⋃p
p′=1 Bp′ . That is, we

compute the family M′′ of (2), and append M′′ and Bp to M′. The obtained
M′ is self-contained with respect to

⋃p
p′=1 Bp′ by Lemma 6. Upon completion of

the iterations over p = 2, . . . , r, we have that M′ is self-contained with respect
to

⋃r
p=1 Bp = B; and therefore M′ is equivalent to M, by Lemma 4.

We summarize this algorithm as ExtCOOMA (an extended version of
COOMA) in Algorithm 2. The running time of COOMA isO((∆+log n)q ‖M‖),
where the factor q = |I| comes from the fact that CI = {C(V〈i1〉), . . . , C(V〈iq〉)}
is used as the base cover. Using an arbitrary base cover C with |C| = r instead
of CI , we can bound the running time of the algorithm.

Theorem 3 Given an instance (G, I, σ) and a base cover C with |C| = r,
ExtCOOMA (Algorithm 2) outputs the family M correctly in O((∆ +
log n)r ‖M‖) time.
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Algorithm 2 ExtCOOMA

Input: An instance (G, I, σ) with a set B of base connectors and a base cover
C = {B1, . . . ,Br} of B

Output: The set M of nontrivial connectors
1: M′ ← B1;
2: for each p ∈ {2, . . . , r} do
3: M′′ ← ∅;
4: Vp ←

⋃
C∈Bp

C;

5: Ep ←
⋃
C∈Bp

E[C];

6: for each X ∈M′ do
7: M′′ ←M′′ ∪ {C(X ∩ C) : C ∈ C(Vp, Ep)}
8: end for;
9: M′ ←M′ ∪M′′ ∪ Bp

10: end for;
11: Output M′ as M

How to determine a base cover C. Because the time complexity of
ExtCOOMA is O((∆ + log n)r ‖M‖), where r = |C|, it is natural to consider
constructing as small a base cover C as possible. Unfortunately, it is NP-hard
to obtain a smallest such C.

Theorem 4 Given a set B of base connectors, it is NP-hard to construct a
smallest base cover of B.

Proof: The proof is given by a reduction from the vertex coloring problem, a
well-known NP-hard problem. For a graph G = (V,E), a vertex subset S ⊆ V
is an independent set if no two vertices in S are adjacent. For an integer k,
G is k-colorable if the vertex set V can be partitioned into k independent sets.
Given a graph G and an integer k, it is NP-complete to decide whether G is
k-colorable [6]. The vertex coloring problem asks for the smallest k such that
G is k-colorable.

The reduction is given as follows; For each v ∈ V , construct a set Bv = {e ∈
E : e is incident to v}. Let us define B =

⋃
v∈V {Bv}. Observe that S ⊆ V is

an independent set iff Bu ∩Bv = ∅ for any u, v ∈ S (u 6= v). Then one sees that
there is a base cover C with |C| = k iff G is k-colorable. �

To obtain a small C, we could apply any of the heuristic algorithms that
have been proposed for the vertex coloring problem [11].

Here, we propose constructing C based on another idea, motivated by our
preliminary experiments. Let C = {B1, . . . ,Br} be an arbitrary base cover. See
Algorithm 2. For integers p, p′ such that 1 ≤ p < p′ ≤ r, base connectors in Bp
are taken as X in line 6 more frequently than those in Bp′ . Because the graph
search in line 6 takes O(∆|X|) time, we desire that base connectors in Bp are
small.

Based on this observation, to construct B1, we include as many base con-
nectors as possible so that the base connectors are mutually disjoint. Because
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this is the set packing problem, a well-known NP-hard problem [6], we employ
a minimum-cardinality greedy method. The subsequent Bp, p = 2, 3, . . . , are
constructed by applying the greedy method to the remaining base connectors,
and we are done when all base connectors are included in {B1, . . . ,Bp}. In
Section 5.2, we will show the effectiveness of this construction method.

4 Discussion

In this section, we discuss three topics concerning the CE problem and our
algorithms: a generalization of the CE problem (Section 4.1), problem reduction
(Section 4.2), and comparison of COOMA with COPINE, an existing algorithm,
in terms of how they behave in a search tree (Section 4.3).

4.1 Generalization of the CE Problem

The number of connectors is exponentially large in general, but most of them
could be ignored or are useless in some applications. In the context of social
networks, the cardinality |X| of a connector X represents how many users belong
to the connector, and |Aσ(X)| represents how many items users in X have
in common. A practitioner may like to focus on connectors that have large
enough values for these two measures. Let θV and θI be positive integers.
Using these as thresholds on the connector size and the size of the common
item set, respectively, we define the subset M(θV , θI) of connectors to be

M(θV , θI) = {X ∈M : |X| ≥ θV , |Aσ(X)| ≥ θI}.

We summarize the GenCE (generalized CE) problem as follows.� �
Problem GenCE

Input: An instance (G, I, σ) that consists of a graph G = (V,E), an item
set I, and a function σ : V → 2I , and thresholds θV , θI ∈ Z+.

Output: The family M(θV , θI) of nontrivial connectors for (G, I, σ).� �
Obviously, the CE problem is a special case of the GenCE problem such that

θV = θI = 1.
The GenCE problem is a generalization of the classical frequent item set

mining (FIMI) problem [1, 2]. In the FIMI problem, we are given (θ, I, T ),
where θ is a positive integer called the minimum support, I is an item set, and
T = {T1, . . . , Tn} is a collection of transactions. Each transaction Ti ∈ T is
represented by a subset of I. Then the problem asks to enumerate all subsets
J ⊆ I such that J is contained in at least θ transactions.

We may regard a FIMI instance (θ, I, T ) as a GenCE instance (G, I, σ, θV , θI)
as follows; For the graph G, we take a clique that consists of n vertices. We
associate each vertex vi with a transaction Ti ∈ T , and let σ(vi)← Ti, θV ← θ
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and θI ← 1. We see that an item set J ⊆ I is a solution in the FIMI instance
iff there is a connector X such that |X| ≥ θV and Aσ(X) = J .

4.2 Problem Reduction

The GenCE problem is solved by enumerating all the connectors in M, and
then by dropping from M any X such that X /∈ M(θV , θI). To perform the
enumeration efficiently, we may reduce the given instance by preprocessing.
Here we introduce some such techniques.

Reduction 1 If a base connector X ∈ C(V〈i〉) of an item i satisfies |X| < θV ,
then we can drop the item i from any vertex v ∈ X (i.e., σ(v)← σ(v) \ {i}).

This is possible because, for any subset X ′ ⊆ X, |X ′| < |X| < θV holds.

Reduction 2 Any vertex v ∈ V with |σ(v)| < θI can be removed from G.

This is possible because M(θV , θI) remains unchanged after v is removed from
G. Analogously, we can remove an edge uv with |Aσ({u, v})| < θI .

Reduction 3 Any edge uv ∈ E with |Aσ({u, v})| < θI can be removed from G.

For any edge uv with σ(u) = σ(v), it holds that |X ∩{u, v}| = 0 or 2 for any
connector X. This leads to the following reduction.

Reduction 4 We can contract any edge uv ∈ E with σ(u) = σ(v) to obtain a
smaller graph.

Note that Reduction 4 can be applied to a leaf edge uv ∈ E with σ(u) = σ(v).

4.3 Behavior in a Search Tree

An existing algorithm, COPINE [19, 20], traverses a search tree in a depth-first
manner. In Figure 3, we show the search tree for the instance of Figure 1. In
the search tree, each node except the root is associated with a vertex in G, and
accordingly, it is also associated with a subset of vertices such that the subset
consists of the vertices on the path from the root to the node. The black nodes
represent base connectors in B, whereas the gray nodes represent connectors in
M\B. COPINE identifies whether the vertex subset X of the visited node is a
connector or not, and outputs X if it is. It has a mechanism for pruning the tree,
by which redundant search is avoided. For example, if G[X] is disconnected,
then COPINE skips the search of the descendants of the current node.

COOMA enumerates connectors in a completely different way. The nodes
indicated by a rectangle, that is {v1, v2, v6, v9}, {v4}, {v7} ∈ C[V〈i1〉] ⊆ B, repre-
sent the connectors in M′ as of line 2 in Algorithm 1. In the while-loop from
line 4 to 12, for i = i2, the connectors indicated by a rounded rectangle, that is
{v2, v9} ∈ M \ B and {v2, v3, v7, v8, v9} ∈ C[V〈i2〉] ⊆ B, are added to M′. For
i = i3 in the next iteration, the connectors indicated by a pentagon, that is
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Figure 3: The search tree of COPINE for the example of Figure 1

{v3}, {v6, v9}, {v9} ∈ M \ B and{v3, v5, v6, v7, v9} ∈ C[V〈i3〉] ⊆ B, are added to
M′.

For the GenCE problem, pruning strategies are possible for both algorithms.
When θV > 1, COOMA does not need to maintain connectors X such that
|X| < θV . Specifically, we do not need to retain radix trees R1, . . . , RθV −1.
This is because Y ∈ C(X ∩ C) satisfies |Y | ≤ |X| < θV for C ∈ B. We may
regard that COOMA can prune nodes at low depths of the search tree. On the
other hand, when θI > 1, if COPINE visits a node such that the corresponding
subset X satisfies Aσ(X) < θI , then it can skip the search of descendants. This
is because, for connectors X,Y ∈ M, X ⊆ Y implies Aσ(X) ⊇ Aσ(Y ) and
thus θI > |Aσ(X)| ≥ |Aσ(Y )|. COPINE can prune nodes at high depths of the
search tree.

5 Computational Experiments

In this section, we report some experimental results concerning COOMA. First
in Section 5.1, because |M|, the total number of nontrivial connectors, has a
great influence on the computation time of an enumeration algorithm, we make
an empirical investigation on |M| of a random instance. In Section 5.2, we
compare the three algorithms, COOMA, ExtCOOMA and COPINE, in terms
of computation time, to demonstrate the efficiency of the former two algorithms.
We also study when ExtCOOMA is more effective than COOMA. Then in
Section 5.3, we discuss how much memory ExtCOOMA consumes.

The experiments are done on a cygwin environment that is installed on a
computer with an Intel Xeon CPU E5-1660 v3 (3.00 GHz) and 64GB RAM.
We implemented the algorithms COOMA and ExtCOOMA in C++. For
COPINE, we employ the source code (written in C) that Dr. Okuno kindly
provided to us [14, 15, 16]. We compile the source codes of the algorithms by
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the gcc compiler (ver. 7.3.0) with -O2 option.

We treat random instances in the experiments. We generate a random in-
stance by using four parameters, n, q, ρE and ρI , where n and q are positive
integers and ρE , ρI ∈ [0, 1]. For the graph, we generate a random graph of the
Erdös-Rényi model such that |V | = n and an edge is drawn between any two
vertices with probability ρE . We take the item set I with |I| = q and associate
a vertex with an item i ∈ I with probability ρI . Given an instance (G, I, σ)

that is generated in this way, we call |E|
(n
2)

the edge density , and
∑

v∈V |σ(v)|
|V ||I| the

item density . The parameters ρE and ρI determine the expected values of the
edge density and the item density, and we call them the edge density parameter
and the item density parameter , respectively.

We deal with the CE problem (i.e., θV = θI = 1) and apply Reductions 2
and 3 to reduce a given instance.

5.1 Total Number of Nontrivial Connectors

We count |M| of a random instance. Fixing n = |V | = 100 and q = |I| =
20, we evaluate how |M| changes with respect to ρI , where ρE is taken from
{0.05, 0.10, 0.25}. We show the result in Figure 4. In the figure, the horizontal
axis indicates ρI , and the vertical axis indicates |M| in a logarithmic scale.
For each (n, q, ρE , ρI), we generate five random instances with different random
seeds.

As shown in the figure, |M| is generally increasing with respect to ρI , up to
ρI = 0.95. We do not plot points for ρI = 0 since in that case no item is given
to a vertex and thus |M| = 0 holds. The number |M| dramatically decreases
when ρI > 0.95. In particular, when ρI = 1, |M| equals to the number of
connected components of a graph because every vertex is equally given all items
and thus Aσ(X) = I holds for all vertex subsets X ⊆ V . Hence, if the graph is
connected, then it holds that |M| = 1. We also see that, given an item density
parameter ρI , the size |M| ofM is likely to increase with the value of the edge
density parameter ρE .

It is expected that |M| becomes very large when the instance is “dense,”
that is, the edge density and/or the item density are large to some extent. It
must be a time-consuming task to enumerate connectors from an instance that
is dense as well as large (i.e., having many vertices and/or items).

However, a lot of existing datasets are known to be “sparse” [10]. For exam-
ple, the genetic database provided by Dr. Jiexun Wang, a biostatistician from
Khoo Teck Puat Hospital in Singapore, is sparse in the sense of the item density.
The database consists of 22 data sets, one for each pair of the autosome chro-
mosomes of a human cell. Each data set can be transformed into an instance of
the CE problem such that the item density is just around 0.05. The instances
are arguably small, with each instance having 50 to 300 vertices. In our pre-
liminary experiments, we confirmed that the three algorithms (i.e., COOMA,
ExtCOOMA and COPINE) enumerate all nontrivial connectors within a cou-
ple of seconds.
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Figure 4: Change of the number |M| of nontrivial connectors with respect
to the item density parameter ρI ; n = |V | = 100, q = |I| = 20, and ρE ∈
{0.05, 0.10, 0.25}

Another example is the DBLP data set from [22], which consists of 108,030
vertices, 276,653 edges, and 23,285 items. This instance is huge, but is tractable
as it is sparse; the edge density is 4.7× 10−5 and the item density is 5.9× 10−4,
which are much smaller than the values that we have used in the experiment. In
fact, our ExtCOOMA enumerates 43,334,401 connectors in about 40 minutes.

Based on the fact that many datasets are sparse, we use small values for ρI
in the subsequent experiments.

5.2 Computation Time

We evaluate the computation times of the three algorithms (i.e., COOMA,
ExtCOOMA and COPINE) for random instances. For (n, q, ρE , ρI), we take
n ∈ {100, . . . , 1200}, q ∈ {100, 200, 300}, ρE ∈ {0.10, 0.25, 0.50}, and ρI ∈
{0.05, 0.10, 0.15}. We generate five instances with different random seeds for
each (n, q, ρE , ρI).

We show the result in Figure 5. In the figure, the vertical axis indicates the
computation time, and the horizontal axis indicates ∆|I| ‖M‖; the running time
of COOMA is O((∆ + τ(n))|I| ‖M‖) (Theorem 2), where τ(n) denotes the time
for choosing a required down edge out of at most n down edges in the operations
Member and Insert. The factor O(τ(n)) depends on which data structure we
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Figure 5: Computation time of the three algorithms for random instances

employ to implement an inner node of a radix tree (e.g., τ(n) = O(log n) for a
red-black tree, τ(n) = O(n) for a hash table). We ignore the factor O(τ(n)) in
this experimental analysis1. The three symbols ◦ (ExtCOOMA), × (COOMA)
and � (COPINE) on the same vertical line show the computation time for the
same instance.

COOMA and ExtCOOMA are much faster than COPINE when the value
of ∆|I| ‖M‖ is large to some extent (e.g., ∆|I| ‖M‖ ≥ 0.5×1012). The computa-
tion time of COOMA and ExtCOOMA increases almost linearly with respect
to ∆|I| ‖M‖, whereas the computation time of COPINE is more sensitive to the
parameters; we see two major curves for COPINE. The left one is for ρE = 0.25,
and the right one is for ρE = 0.50.

We consider that COOMA and ExtCOOMA should run faster than
COPINE even if the latter is parallelized [14, 15, 16]. According to Table IV
in [16], the parallel version of COPINE (with 28 workers) is less than six times
faster than the sequential version. When ∆|I| ‖M‖ ≥ 1.0× 1012, COOMA and
ExtCOOMA are more than six times faster than COPINE.

In Figure 5, we see that ExtCOOMA is faster than COOMA although
the difference is much smaller than the difference between ExtCOOMA and
COPINE (and the difference between COOMA and COPINE). We analyze when

1In fact, we employ a hash table instead of a balanced search tree in our implementation
because it makes the algorithm faster in our preliminary experiments. Using a hash table, we
achieve τ(n) = O(1) on average.
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ExtCOOMA is more effective than COOMA. In Figure 6, we show how the
size r = |C| of a base cover C = {B1, . . . ,Br} constructed by the heuristic
method of Section 3.2 changes with respect to the item density parameter ρI .
In this experiment, we fix n = |V | = 200 and q = |I| = 100, and the edge density
parameter ρE is taken from 0.05, 0.10 and 0.25. As shown, we obtain a base cover
that is significantly smaller than I when ρI ≤ 0.20. When ρI > 0.20, the size |C|
of an obtained base cover C is around 100 (= q). This phenomenon is explained
as follows; When ρI > 0.20, because the item density is rather high, it is likely
that C[V〈i〉] consists of exactly one base connector and thus there are q base
connectors, and that C ∩ C ′ 6= ∅ holds for any two base connectors C ∈ C[V〈i〉]
and C ′ ∈ C[V〈i′〉] (i 6= i′). Hence the method of Section 3.2 constructs C =
{B1, . . . ,Bq} just by sorting the base connectors C1, . . . , Cq in a nondecreasing
order of the cardinality so that |C1| ≤ · · · ≤ |Cq|, and by letting Bp = {Cp},
p = 1, . . . , q.

We show in Figure 7 the ratio of the computation time of ExtCOOMA over
the computation time of COOMA. When ρI ≤ 0.20, i.e., when r is significantly
smaller than q, the ratio is below 1.0 in general, which means that ExtCOOMA
runs faster than COOMA. Interestingly, when ρI > 0.20, although it holds that
r is approximately equal to q, the ratio is from 0.7 to 0.8. This is supported by
the observation in Section 3.2; in a family Bp with a small p, we should include
as many “small” base connectors as possible.

Finally, we compare the performance of ExtCOOMA and COOMA on the
DBLP data set [22], which is sparse, as mentioned in the previous subsection.
COOMA takes more than 132 hours to enumerate all 43,334,401 connectors,
whereas ExtCOOMA does the same job in about 40 minutes. COOMA is
regarded as a special version of ExtCOOMA such that CI is used as the base
cover C. The data set has 23,285 items, which means |CI | = q = 23285, and
COOMA makes this number of iterations. On the other hand, ExtCOOMA
reduces the base cover size to 551 by preprocessing (i.e., |C| = 551), which
explains the drastic improvement of computation time.

5.3 Memory Usage

Let us observe how much memory the algorithm ExtCOOMA con-
sumes. For (n, q, ρE , ρI), we take n ∈ {100, . . . , 1200}, q ∈ {100, 200, 300},
ρE ∈ {0.10, 0.25, 0.50}, and ρI ∈ {0.05, 0.10, 0.15}. We generate five instances
with different random seeds for each (n, q, ρE , ρI).

Figure 8 shows the amount of memory used by ExtCOOMA (All), along
with the amount of memory that is used to store the instance (Instance). The
horizontal axis indicates ‖M‖, the sum of |X| over X ∈ M, and the vertical
axis indicates the amount of memory. The amount of memory is evaluated by
the VmSize value of the file system /proc/self/status (i.e., the amount of
virtual memory used by the current process) in the cygwin environment.

As shown in the figure, the amount of memory needed to store the in-
stance (Instance) is much smaller than the whole amount of memory used by
ExtCOOMA (All). The “All” amount increases almost linearly with respect
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Figure 6: Size r = |C| of a base cover C that is constructed by the method men-
tioned in Section 3.2 (n = |V | = 200, q = |I| = 100 and ρE ∈ {0.05, 0.10, 0.25})
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Figure 7: Ratio of the computation time of ExtCOOMA over the computation
time of COOMA (n = |V | = 200, q = |I| = 100 and ρE ∈ {0.05, 0.10, 0.25});
When the computation time of COOMA is smaller than 10−3 seconds, we regard
the ratio as one (i.e., no difference is observed)
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Figure 8: (All) the whole amount of memory used by ExtCOOMA; (Instance)
the amount of memory that is used to store the instance

to ‖M‖. We see two “All” trend lines; the upper one is for instances generated
by ρE = 0.50 and the lower one is for instances generated by ρE = 0.25. The
reason why there are such lines must be that the size bmax of a largest base con-
nector should increase with the edge density. As mentioned in Section 3.1, we
store bmax radix trees in our implementation. Hence, we need more radix trees
for instances generated by ρE = 0.50 than for instances generated by ρE = 0.25.
This is a likely explanation for the two trend lines in the figure.

6 Concluding Remarks

We have proposed a novel algorithm COOMA for the connector enumeration
problem. The running time is polynomially bounded with respect to the input
and output size. We have shown the empirical efficiency in comparison with
COPINE.

For future work, we plan to extend the problem to other graph models (e.g.,
hypergraphs, digraphs and vertex- and/or edge-weighted cases) and consider
various requirements (e.g., k-edge- and/or k-vertex-connectivity, min/max de-
gree and flow values or distance in weighted versions).
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