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Abstract

A geometric graph in the plane is angle-monotone of width γ if every
pair of vertices is connected by an angle-monotone path of width γ, a path
such that the angles of any two edges in the path differ by at most γ.
Angle-monotone graphs have good spanning properties.

We prove that every point set in the plane admits an angle-monotone
graph of width 90◦, hence with spanning ratio

√
2, and a subquadratic

number of edges. This answers an open question posed by Dehkordi, Frati
and Gudmundsson.

We show how to construct, for any point set of size n and any an-
gle α, 0 < α < 45◦, an angle-monotone graph of width (90◦ + α) with
O(n

α
) edges. Furthermore, we give a local routing algorithm to find angle-

monotone paths of width (90◦ + α) in these graphs. The routing ra-
tio, which is the ratio of path length to Euclidean distance, is at most
1/ cos(45◦ + α

2
), i.e., ranging from

√
2 ≈ 1.414 to 2.613. For the spe-

cial case α = 30◦, we obtain the full-Θ6-graph and our routing algorithm
achieves the known routing ratio 2 while finding angle-monotone paths of
width 120◦.
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1 Introduction

The problem of constructing a geometric graph on a given set of points in
the plane so that the graph is sparse yet has good spanning and/or routing
properties has been very well-studied. The basic goal is to guarantee paths
that are relatively short, and to be able to find such paths using local routing.
Two fundamental concepts in this regard are spanners and greedy graphs. A
geometric graph is a t-spanner if there is a path of stretch factor t between
any two vertices, i.e., a path whose length is at most t times the Euclidean
distance between the endpoints [20]. A geometric graph is greedy if there is
a path between every two vertices such that each intermediate vertex is closer
to the destination than the previous vertex on the path [13]. Greedy graphs
permit greedy routing where a path from source to destination is found by the
local rule of moving from the current vertex to any neighbor that is closer to
the destination. However, greedy graphs are not necessarily t-spanners for any
constant t.

The most desirable goal would be to construct sparse geometric graphs to-
gether with a local routing algorithm to find paths with bounded stretch factor
that always get closer to the destination. This is the topic of our paper. There
are two aspects to the goal: to construct sparse geometric graphs in which such
paths exist, and to find the paths via a local routing algorithm.

Recently, Dehkordi et al. [15] introduced a class of graphs with good path
properties: A graph is angle-monotone if there is a path between every two
vertices that, after some rotation, is x- and y-monotone—equivalently, there is
some 90◦ wedge such that the vector of every edge of the path lies in this wedge.
This class was explored (and named) by Bonichon et al. [5]. Any angle-monotone
path σ from s to t has the self-approaching property (see [1]) that a point moving
along σ always gets closer to t. A rich body of research [1, 2, 19, 21, 22] examines
self-approaching graphs in various contexts, e.g., finding a self-approaching path
in a geometric graph, constructing a self-approaching graph on a given point
set, or drawing a graph as a self-approaching graph.

The concept of angle-monotonicity can be generalized to wedges of an-
gles other than 90◦—a path is angle-monotone of width γ (“generalized angle-
monotone”) if there is some wedge of angle γ such that the vector of every
edge of the path lies in this wedge. Although graphs that are angle monotone
of width greater than 90◦ are not necessarily self-approaching, they have good
spanning properties. A graph that is angle-monotone of width γ < 180◦ is a
(1/ cos γ2 )-spanner [5], thus a

√
2 spanner for γ = 90◦ (the factor

√
2 is obvious

based on the path being x- and y-monotone after some rotation).
Our specific goal in this paper is to construct sparse generalized angle-

monotone graphs and design local routing algorithms to find generalized angle-
monotone paths in them. There have been a few results on constructing angle-
monotone graphs, but no previous results on local routing to find angle-monotone
paths—except for some impossibility results.

For more general results on competitive routing, see [12]. Geometric graphs
that are useful in this context include Delaunay triangulations [14] and Theta
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graphs [10, 6].

Constructing Angle-Monotone Graphs The best result on constructing
planar angle-monotone graphs is due to Dehkordi et al. [15] who proved that
any set of n points has a planar angle-monotone graph of width 90◦ using O(n)
Steiner points. They proved this by showing that a Gabriel triangulation is
angle-monotone of width 90◦ (see [18] for a simpler proof), and then using the
result [3] that any point set can be augmented with O(n) Steiner points to obtain
a point set whose Delaunay triangulation is Gabriel. Without Steiner points, it
is known that one cannot guarantee planar angle-monotone graphs for all point
sets [5]. For the special case of n points in convex position, Dehkordi et al. [15]
proved that there exists a (non-planar) angle-monotone graph with O(n log n)
edges. In this paper we show that any point set has an angle-monotone graph
with a subquadratic number of edges.

Turning to angle-monotone graphs of larger width, Bonichon et al. [5] showed
that the half-Θ6-graph on a set of n points, which is planar, is an angle-monotone
graph of width 120◦.

Local Routing on Angle-Monotone Graphs A k-local routing algorithm
finds a path one vertex at a time using only local information about the current
vertex and its k-neighborhood plus the coordinates of the destination. The
routing ratio of a local routing algorithm is the maximum stretch factor of
any path found by the algorithm. The results mentioned in the previous two
paragraphs imply that Gabriel graphs are

√
2-spanners, and half-Θ6-graphs are

2-spanners (as was previously known [6, 14]). Are there local routing algorithms
to find paths with good stretch factors, or paths that are angle-monotone in
these classes of graphs? The answers are “yes” and “no”, respectively. Bonichon
et al. [5] gave a 1-local routing algorithm for Gabriel graphs that has routing
ratio (1 +

√
2). On the other hand, they proved that no local routing algorithm

can find angle-monotone paths in Gabriel graphs.
Bose et al. [10] gave a 1-local routing algorithm for half-Θ6-graphs that has

routing ratio 2.887. They proved that this is the best ratio possible for any
local routing algorithm, which implies that no local routing algorithm will find
angle-monotone paths of width 120◦ in half-Θ6-graphs. We construct a family
of graphs together with a local routing algorithm that finds generalized angle-
monotone paths.

Contributions Our main results are as follows:
1. Given n points in the plane we construct an angle-monotone graph of

width 90◦ with O(n
2 log logn
logn ) edges—a subquadratic number of edges. Since

angle-monotone graphs are increasing-chord graphs, this answers Open Problem
4 from [15].

2. Given n points in the plane and any α, 0 < α < 45◦, we construct
an angle-monotone graph of width 90◦ + α with O(nα ) edges. We give a 2-
local routing algorithm for these graphs that finds angle-monotone paths of
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width 90◦ + α, thus of stretch factor 1/ cos( 90◦+α
2 ). In particular, for α = 30◦

our construction yields the full-Θ6-graph, and our local routing algorithm finds
angle-monotone paths of width 120◦ and stretch factor 2. For this case, our
algorithm is 1-local and very similar to the one of Bose et al. [10] that finds paths
of stretch factor 2 in half-Θ6-graphs, but our proof of correctness is simpler.

2 Angle-Monotone Graphs of Width 90◦

In this section we show that any set of n points admits an angle-monotone graph
of width 90◦ with o(n2) edges.

To achieve this, we will use the Erdős-Szekeres theorem [16] to partition
the point set into subsets each with a logarithmic number of points in convex
position. We will then construct an angle-monotone graph on each pair of
subsets. Our construction is inspired by and builds upon a result in [15] that
every ‘one-sided convex point set’ admits an increasing-chord graph with a linear
number of edges. In fact, their proof yields an angle-monotone graph of width
90◦ as we explain in the following section.

2.1 Angle-Monotone Graphs on Convex Point Sets

Dehkordi et al. [15] showed that every convex point set of n points admits an
angle-monotone graph with O(n log n) edges. Actually, they only state that
there is an increasing-chord graph. Here we explain why their proof gives the
stronger result we need.

A point set P is called one-sided with respect to some directed straight line
~d, which is not orthogonal to any line through two points of P , if the order of
the projections of the points on ~d corresponds to the order the points on the
convex-hull of P . Figure 1(a) illustrates a one-sided point set. Given a one-sided
point set P with respect to the positive x-axis, Dehkordi et al. [15] showed how
to construct a spanning increasing-chord graph G on P with O(n) edges such
that any pair of vertices in G are connected by an xy-monotone path. Since
xy-monotone paths are angle monotone [1], G is an angle-monotone graph.

Dehkordi et al. [15] used the technique for one-sided point sets recursively to
construct increasing-chord graphs on arbitrary convex point sets. They showed
that any convex point set P can be partitioned into four one-sided point sets
P1, P2, P3, P4, e.g., see Figure 1(b), such that the following properties hold: (a)
The points in each Pi, where 1 ≤ i ≤ 4, appear consecutively on the convex hull
of P . (b) The partition is balanced, i.e., max{|P1|+ |P3|, |P2|+ |P4|} ≤ n/2 + 1.
(c) The point sets (P1 ∪ P2), (P2 ∪ P3), (P3 ∪ P4), and (P4 ∪ P1) are one-sided.

Consequently, one can first construct linear-size angle-monotone graphs for
one-sided point sets (P1∪P2), (P2∪P3), (P3∪P4), (P4∪P1), and then recursively
construct angle-monotone graphs for the convex point sets (P1 ∪ P3) and (P4 ∪
P1). The union of all these graphs contains angle monotone paths for every pair
of vertices. Since max{|P1| + |P3|, |P2| + |P4|} ≤ n/2 + 1, the size of the final
angle-monotone graph is f(n) ≤ 2 · f(n2 + 1) +O(n) ∈ O(n log n).
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Figure 1: (a) A one-sided convex point set. (b) Illustration for the construction
of angle-monotone graphs.

2.2 Angle-Monotone Graphs on Arbitrary Point Sets

We first introduce some preliminary definitions and notation. We will distin-
guish two types of x-monotone paths: an (x, y)-monotone path increases in both
x- and y-coordinates, and an (x,−y)-monotone path increases in x-coordinate
and decreases in y-coordinate. For each type of path we further distinguish con-
vex and concave subtypes. Traversed in increasing x order, a convex path turns
to the right, and a concave path turns to the left. Thus an (x, y)-convex path is
an (x, y)-monotone path that turns to the right when traversed in increasing x
order, and etc. for the other three types. See Figures 2(a)–(d).

(a) (c)

(b) (d)

o

w2

w1 vi

wj

v2

v1

(e)

Figure 2: (a) An (x,−y)-convex path. (b) An (x, y)-convex path. (c) An
(x,−y)-concave path. (d) An (x, y)-concave path. (e) Illustration for Lemma 1.

Lemma 1 Let P = (v1, . . . , vi) be an (x,−y)-monotone path, and let P ′ =
(w1, . . . , wj) be an (x, y)-monotone path. Then there exists an angle-monotone
graph of width 90◦ and size O(i+ j) that spans P and P ′.
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Proof: Assume without loss of generality that P and P ′ intersect, say at point
o. (If necessary, we can add points (−∞,∞) and (∞,−∞) at the start and end
of P respectively, and similarly for P ′.) We will solve four subproblems for the
points to the left of o, to the right of o, above o and below o, as illustrated in
Figure 2(e). Observe that any two points in P ∪ P ′ either lie in the same path,
or in one of these half-planes, so it suffices to find an angle-monotone graph of
size O(i+ j) for each subproblem, and take the union.

Let v1, . . . , vi′ and w1, . . . , wj′ be the vertices to the left of the vertical line
through o. We now construct an angle-monotone graph spanning these vertices
as follows. Add an edge (v1, w1) and then move a vertical sweep-line ` from
(−∞, 0) to o. Each time we encounter a new vertex q, we add the edges (q, v′)
and (q, w′), where v′ (resp., w′) is the rightmost vertex of P (resp., P ′) lying in
the left half-plane of `. We call v′ and w′ the predecessor of q in P and in P ′,
respectively. The resulting graph H has size O(i + j). We now show that H
is an angle-monotone graph. For any pair of vertices a, b, if a, b belong to the
same path, i.e., P or P ′, then they are already connected by an angle-monotone
path. Otherwise, assume without loss of generality that a ∈ P , b ∈ P ′, and b
has a larger x-coordinate than a. Let b′ be the predecessor of b in P . Follow the
path P from a to b′ and then take the edge (b′, b). This is an (x,−y)-monotone
path, and thus angle-monotone (equivalently, of width 90◦). �

Lemma 2 Let P = (v1, . . . , vi) be an (x,−y)-convex path, and let R be the
region (above P ) bounded by P and the leftward and downward rays starting at
v1 and vi, respectively. Then for any set W of j points in R, there exists a graph
G of size O(i + j) such that any pair of vertices v ∈ P,w ∈ W is connected by
an angle-monotone path of width 90◦.

Proof: Let v0 be any point on the leftward ray starting at v1. For each q from 1
to i, let `q be the ray starting at vq that lies perpendicular to vq−1vq and enters
region R. Since P is convex, the rays `q subdivide the region R into regions
R0, R1, . . . , Ri, e.g., see Figure 3(a). For each point vq, connect vq to all the
points in region (Rq ∩W ). Let G′ be the resulting graph including the edges of
P . We now claim that for any vertex vt, 1 ≤ t ≤ q, and for any w ∈ (Rq ∩W )
the path vt, . . . , vq, w is an angle-monotone path. If the y-coordinate of w is
smaller than that of vq, then this path is (x,−y)-monotone and hence angle-
monotone, e.g., see Figure 3(b). Otherwise, one can observe that all edges in
the path have vectors that lie in the 90◦ clockwise wedge between `q and the
line extending (vq−1, vq), e.g., see Figure 3(c). Thus the path vt, . . . , vq, w is an
angle-monotone path.

We construct a graph G′′ symmetrically by defining, for each q from i to
1, the perpendicular rays `′1, . . . , `

′
i and regions R′0, . . . , R

′
i, as illustrated in

Figure 3(d). We construct the final graph G by taking the union of all the edges
of G′ and G′′. It is straightforward to observe that G has at most (i+2j) edges.

To complete the proof, we must show that there is an angle-monotone path
from any vertex vt, 1 ≤ t ≤ i, to any w ∈W . Observe that Rt and R′t−1 intersect
because P is convex. Therefore, the regions (Ri∪· · ·∪Rt) and (R′t−1∪· · ·∪R′0)
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Figure 3: (a)–(d) Illustration for Lemma 2.

together entirely cover the region R. If w ∈ (Ri ∪ · · · ∪ Rt), then there is an
angle-monotone path from vt to w in G′, and otherwise w ∈ (R′t−1 ∪ · · · ∪ R′0)
and there is an angle-monotone path from vt to w in G′′. �

Lemma 3 Let P = (v1, . . . , vi) and P ′ = (w1, . . . , wj) be a pair of (x,−y)-
convex (or, concave) paths. Then there exists an angle-monotone graph (span-
ning P and P ′) with width 90◦ and size O(i+ j).

Proof: We prove the lemma assuming that P and P ′ are a pair of convex paths.
The case when they are concave is symmetric. We consider two cases depending
on whether P and P ′ intersect or not.

Case 1: First consider the case when P and P ′ do not intersect, and assume
without loss of generality that P ′ lies in the region above P bounded by P and
the leftward and downward rays starting at v1 and vi, respectively. Since the
vertices on P ′ are already connected by an angle-monotone path, we can apply
Lemma 2 to obtain the required angle-monotone graph.

Case 2: Consider now the case when P and P ′ intersect. Let o1, . . . , ot be
the points of intersections ordered from left to right, e.g., see Figure 4(a). Let
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Figure 4: (a)–(c) Illustration for Lemmas 3–4.

A1 (resp., At+1) be the set of vertices of (P ∪ P ′) with x-coordinates smaller
(resp., larger) than that of o1 (resp., ot). For every k, where 2 ≤ k ≤ t, let Ak
be the set of vertices of (P ∪ P ′) that lie to the left of ok and to the right of
ok−1.

We process the sets A1, . . . , At+1 independently using Case 1, and let GA1 ,
. . . , GAt+1 be the resulting graphs. Finally, we add edges that allow us to
transfer from Ak to Ak+1 above/below each intersection point ok. Each Ak
consists of an upper chain and a lower chain. The lower chains may be empty,
but for 1 < k < t + 1 the upper chain of Ak has at least one vertex. For
1 ≤ k ≤ t, if these vertices exist, let pfk and p`k be the first and last vertices

of the upper chain of Ak, and let qfk and q`k be the first and last vertices of

the lower chain of Ak. Let T be the set of edges (p`k, p
f
k+1) and (q`k, q

f
k+1), for

1 ≤ k ≤ t, if these vertices exist. See the dashed edges in Figure 4(a). The final
graph G is the union of P, P ′, GA1

, . . . , GAt+1
and L.

Since P and P ′ are angle-monotone, we only need to show that every pair of
vertices v, w, where v ∈ P and w ∈ P ′ is connected by an angle-monotone path
in G. If v and w both belong to the same set Ak, then such a path exists by
Case 1. Otherwise, without loss of generality, assume that v belongs to Ak and
w belongs to a later set. If v is in the upper chain of Ak then we follow P from
v to p`k and use the edge (p`k, p

f
k+1) to transfer to P ′ and follow it to vertex w.

The resulting path is angle-monotone. If v is in the lower chain of Ak and w is
not in Ak+1, then we can follow P through the upper chain of Ak+1 and use the
edge (p`k+1, p

f
k+2) to transfer to P ′ and follow it to vertex w. Finally, if v is in

the lower chain and w is in the lower chain of Ak+1 then we follow P from v to
q`k and use the edge (q`k, q

f
k+1) (which must exist) to transfer to P ′ and follow it

to vertex w. Again, the resulting path is angle-monotone.
The number of edges in G is at most

∑t
k=1O(|Ak|) ∈ O(i+ j). �

Lemma 4 Let P = (v1, . . . , vi) be an (x,−y)-convex path, and let P ′ = (w1, . . . , wj)
be an (x,−y)-concave path (or, vice versa). Then there exists an angle-monotone
graph (spanning P and P ′) of width 90◦ and size O(k log k), where k = max{i, j}.
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Proof: We extend P by adding leftward and downward rays starting at v1 and
vi, respectively, e.g., see Figure 4(b). We extend P ′ symmetrically. We now
consider two cases depending on whether P, P ′ intersect or not.

Case A: If P ′ and P do not intersect, then P ′ lies above P . In this scenario
we can find an angle-monotone graph of size O(k) by applying Lemma 2.

Case B: If P and P ′ intersect, then they intersect in at most two points
o1, o2, with o1 to the left of o2, e.g., see Figure 4(c). Let A1 be the vertices to
the left of o1, A2 be the vertices between o1 and o2, and A3 be the vertices to
the right of o2. The sets A1 and A3 can be handled by Case A. Set A2 forms a
convex polygon bounded by P and P ′, where the result of Dehkordi et al. [15]
gives an angle-monotone graph of size O(k log k) (see Section 2.1). Finally, for

each t = 1, 2 we add the edges (p`t, p
f
t+1) and (q`t , q

f
t+1) where p`t and q`t are the

last vertices of the upper and lower (resp.) chains of At, and pft+1 and qft+1 are
the first vertices of the upper and lower (resp.) chains of At+1. The argument
that there are angle-monotone paths between every pair of vertices is similar to
that in the proof of Lemma 3. �

Theorem 1 Let S be a point set with n points. Then there exists an angle-

monotone graph (spanning S) of width 90◦ and size O(n
2 log logn
logn ) edges.

Proof: By the Erdős-Szekeres theorem [16], every point set with n points con-
tains a subset of O(log n) points in convex position. Urabe [23] observed that
by repeatedly extracting such a convex set, one can partition a point set into
O( n

logn ) convex polygons each of size O(log n). We partition each of these convex

polygons into an (x, y)-convex path, an (x,−y)-convex path, an (x, y)-concave
path, and an (−x,−y)-concave path.

For each pair of these paths, we apply Lemmas 1–4, as appropriate. Finally,

we compute the required graph G by taking the union of all the O( n2

log2 n
) graphs.

Since any pair of points in S either lie on the same path, or in one of these

O( n2

log2 n
) graphs, they are connected by an angle-monotone path of width 90◦.

Since the length of each path is at most O(log n), the size of G is O( n2

log2 n
) ·

O(log n log log n) = O(n
2 log logn
logn ). �

Let S be a point set with t nested convex hulls. Then one can partition these
convex hulls intoO(t) monotone paths of the form (±x,±y), each of lengthO(n).
For each pair of these O(t) paths, we can apply Lemmas 1–4, as appropriate, to
construct an angle monotone graph of size O(t2n log n) in the same way as we
explained in the proof of Theorem 1. Hence we have the following corollary.

Corollary 1 Let S be a point set with t nested convex hulls. Then there exists
an angle-monotone graph (spanning S) of width 90◦ with O(t2n log n) edges.

2.3 Further Observations

Although the above construction of a subquadratic-size angle-monotone net-
work with width 90◦ is somewhat involved, one can easily construct an angle-
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monotone graph with width (90◦ + α) and O(n
3/2

α ) edges, for any 0 < α ≤ 90◦,
as we show in this section. In the following Section 3 we give a different con-
struction to obtain a graph with O(nα ) edges.

Let S be a set of n points in R2. To construct an angle-monotone graph,
we first mark a set R of

√
n points from S, and for each pair of points (a, b),

where a ∈ R and b ∈ S, we construct an angle-monotone path of width 90◦ +α
between a and b. We then apply this process recursively on S \ R. We now
describe the construction in details. Assume initially all the points of S are
unmarked.

Mark a set R of
√
n points from the unmarked points of S. Let the set of

unmarked points be R′. Construct a clique K|R| spanning the points of R. For
each point q ∈ R′, create t = 360◦/(2α) uniform wedges of angle 2α around q.
Figure 5(a) illustrates an example, where the points of R are shown in black.
For each wedge W , let W (R) be the points of R that lie inside W . Add an edge
between q and the bisector nearest neighbor of q in W (R). Let the resulting
graph be H. Note that H has O(nt) ∈ O(n/α) edges, excluding the edges of
the clique determined by R.

q

b

w
a

2α

90◦ − α
`

b

(a) (b)

W ′

(c)

Figure 5: Construction of angle-monotone graphs.

We claim that for each pair of points (a, b), where a ∈ R and b ∈ S, H
contains an angle-monotone path of width 90◦ + α between a and b. If a ∈ R
and b ∈ R, then the claim is straightforward to verify. If a ∈ R and b ∈ R′,
then let W ′ be the wedge of b that contains a, e.g. see Figure 5(b). Since the
points in R form a clique in H, the points of W ′(R) form a clique inside W ′. Let
w ∈W ′(R) be bisector nearest neighbor of b in W ′. If w coincides with a, then
(a, b) must be an edge in H. We may thus assume that w 6= a. In this scenario,
the smallest angle determined by the path a,w, b is at least (90◦−α). Therefore,
a,w, b is an angle-monotone path of width at most 180◦− (90◦−α) = (90◦+α).
Figure 5(c) illustrates such a scenario, where the line ` passes through w and
perpendicular to the bisector of W ′. The region where a could be located is
shown in gray.

We now apply the above process repeatedly until we mark all the points of
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Figure 6: (a) ∆ABC. (b) Wq,a,Wq,b,Wq,c. (c) The a-nearest neighbor of q,
where (q, p) is a θa-edge. (d) A 3-sweep graph.

S. Since at each step we process
√
n new points, the number of steps is O(

√
n).

Since at each step we create at most O(n/α) edges, the number of total edges

is bounded by O(n
3/2

α ). The resulting angle-monotone graph has diameter 2.

3 Angle-Monotone Graphs of Width (90◦ + α)

In this section we show how to construct, for any point set of size n and any
angle α, 0 < α < 45◦, an angle-monotone graph of width (90◦ + α) with O(nα )
edges. We call these layered 3-sweep graphs. First, in Section 3.1, we introduce
a 3-sweep graph of a point set in which three lines are used to connect each
point to three of its neighbors. The special case where the three lines form 60◦

wedges yields the half-Θ6-graph. In Section 3.2, we analyze angle-monotonicity
properties of 3-sweep graphs. Then, in Section 3.3, we define a k-layer 3-sweep
graph as the union of k different 3-sweep graphs. We prove that a layered 3-
sweep graph with an appropriate number of layers is an angle-monotone graph
of width (90◦ + α) with O(nα ) edges.

3.1 3-Sweep Graphs

Let ∆ABC be an acute triangle in R2 such that A,B,C appear in clockwise
order on the boundary of ∆ABC, e.g., see Figure 6(a). Let θa, θb, θc be the
angles at A,B,C, respectively. For any point q let Wq,a (the “a-wedge” of q)
be the wedge with apex q such that the two sides of Wq,a are parallel to AB
and AC, i.e., ∆ABC can be translated such that A coincides with q and two
sides of ∆ABC lie along the sides of Wq,a. Similarly, we define the wedges Wq,b

and Wq,c, e.g., see Figure 6(b). The a-nearest neighbor of q in Wq,a is defined
to be the first point p that we hit (after q) while sweeping Wq,a by a line Lbc
parallel to BC (starting with the line through q). Figure 6(c) illustrates such a
sweeping process. In the case of ties, we can pick any of the candidate points
arbitrarily as far as the results in this subsection are concerned. However, it
is important that the local routing algorithm in Section 4 be able to find the
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a-nearest neighbor, so we break ties by choosing the most clockwise point. We
call the edge (q, p) a θa-edge. We define b- and c-nearest neighbors and θb- and
θc-edges analogously.

Given a set of points S, and three angles θa, θb, θc of an acute triangle ∆ABC,
we define a 3-sweep graph G on S with angles {θa, θb, θc} to be a geometric graph
obtained by connecting every point q ∈ S to its a-, b- and c-nearest neighbors,
e.g., see Figure 6(d). If θa = θb = θc = 60◦, BC is horizontal, and A is below
BC, then G is equivalent to the well known half-Θ6-graph.

Bonichon et al. [6] proved that half-Θ6-graphs are equivalent to Triangular
Distance (TD) Delaunay triangulations, introduced by Chew [14]. A 3-sweep
graph is also the same as the half-Θ6-graph under a linear transformation. As
illustrated in Figure 7, the linear transformation that maps an equilateral tri-
angle T into T ′(= ∆ABC) transforms point set S into S′ so that the half-Θ6

graph on S maps to the 3-sweep graph on S′.

(a) (b)

T
T ′

A

B C

Figure 7: (a) A TD Delaunay triangulation (equivalently, a half-Θ6-graph) of
a point set S, where the neighbors of a vertex are defined based on the sweep
distance with respect to the equilateral triangle T . (b) A 3-sweep graph on a
point set S′ determined by a triangle T ′, where both S′ and T ′ are transformed
using the same linear transformation.

Both half-Θ6 and 3-sweep graphs are special cases of convex Delaunay graphs,
which were studied by Bose et al. [7]. They proved that every convex Delaunay
graph is a t-spanner, but the value of t obtained from that proof depends on the
underlying convex shape, and is very large in our context (e.g., t is bounded by
58 when the convex shape is an equilateral triangle). Every convex Delaunay
graph is planar [7], and hence the following lemma is immediate. For interest,
here we give a self-contained proof.

Lemma 5 Every 3-sweep graph is planar.

Proof: Note that it suffices to prove the following claim.

Let S be a set of points in R2, and let q and t be two points in S. Let
q′ be a nearest neighbor of q in Wq,a,Wq,b, or Wq,c. Similarly, let t′ be a
nearest neighbor of t in Wt,a,Wt,b, or Wt,c. Then the line segments qq′

and tt′ do not intersect except possibly at their common endpoint, i.e.,
when q′ = t′.
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Figure 8: Illustration for the proof of Lemma 5.

The case when q′ ∈Wq,j and t′ ∈Wt,j , for some j ∈ {a, b, c} is straightforward.
We may thus assume without loss of generality that q′ ∈ Wq,a and t′ ∈ Wt,b,
e.g., see Figure 8(a). For convenience, assume that Wq,a contains the vertically
upward ray starting at q. We now show that the line segments qq′ and tt′ do
not intersect except possibly at their common endpoint, i.e., when q′ = t′.

Suppose for a contradiction that there exist q, q′, t, t′ such that the segments
qq′ and tt′ properly intersect. Let r be the point of intersection. Since both
Wq,a and Wt,b contain r and since the left side of Wq,a is parallel to the right
side of Wt,b, either q ∈Wt,b or t ∈Wq,a.

Without loss of generality assume that t ∈ Wq,a. Let L be the straight line
that passes through q′ and makes a clockwise angle of θb with the left side of
Wq,a, e.g., see Figure 8(b). Since q′ is a nearest neighbor of q, the point t must
be on or above L, as otherwise q′ would not be the a-nearest neighbor of q. We
now consider two cases depending on whether t′ is inside or outside of Wq,a.

If t′ ∈Wq,a, then t′ must be on or above L . Consequently, tt′ may intersect
qq′ only if t, q′ and t′ lie on L in this order. Since t′ is a nearest neighbor of t,
the point q′ cannot have smaller distance to t than that of t′. Hence q′ must
coincide with t′, a contradiction.

If t′ 6∈ Wq,a, then t′ must lie to the right of the right side of Wq,a, e.g., see
Figure 8(c). Since t lies on or above L and since qq′ intersects tt′ inside Wq,a,
q′ must lie inside Wt,b. Consequently, q′ must have smaller distance to t than
that of t′, a contradiction. �

3.2 Angle-Monotonicity of 3-Sweep Graphs

We now analyze angle-monotonicity properties of 3-sweep graphs. We will show
that for points q and t in a 3-sweep graph G with t in Wq,a there is an angle-
monotone path from q to t whose width depends on θa and on the position of t
relative to the a-path of q. The a-path of q, denoted Pq,a, is defined to be the
maximal path (q =)v0, v1, . . . , vk in G such that, for each i from 1 to k, vi is
the a-nearest neighbor of vi−1. We also define the extended a-path P q,a to be
the a-path Pq,a together with Wvk,a, which is empty of points since the a-path
is maximal. We define [extended] b- and c-paths similarly.



358 Lubiw & Mondal Construction and Routing for Angle-Monotone Graphs

Observe that if t is a vertex of Pq,a then there is an angle-monotone path
of width θa from q to t. The following lemma handles the case where t ∈Wq,a,
and t does not lie on the a-path from q. The proof of the lemma is very similar
to the proof in [5] that the half-Θ6-graph is angle-monotone of width 120◦.

Lemma 6 Let q and t be two vertices in G such that t lies in Wq,a. If t lies
to the left (resp., right) of P q,a then there is an angle-monotone path of width
(θa + θb) (resp., (θa + θc)) from q to t. Furthermore, the path consists of one
subpath of the a-path of q followed by one subpath of the b-path (resp., c-path)
of t.

Proof: Assume that the side BC of ∆ABC is parallel to the x-axis and A
lies below BC. Such a condition can be met after a suitable rotation of the
Cartesian axes. Without loss of generality assume that t lies to the left of P q,a.
We will show that Pq,a and Pt,b intersect at some vertex x. Our path will then
follow Pq,a from q to x, and then follow Pt,b backwards from x to t. Observe
that this path is angle-monotone of width (θa + θb).

Our proof is by contradiction. Assume that Pq,a and Pt,b do not intersect at
a vertex. Let t′ be the last vertex of Pt,b that lies in Wq,a and strictly to the left
of P q,a. Let q′ be the last vertex of Pq,a that lies below or at the same height
(i.e., y-coordinate) as t′.

We will derive a contradiction by considering the possible positions for t′

and q′. First suppose that t′ is in Wq′,a. See Figure 9(a). Then q′ must have an
a-nearest neighbor q′′, since t′ is a candidate to be its a-nearest neighbor. Note
that q′′ is on Pq,a. By definition of the a-nearest neighbor, q′′ must be at the
same height as t′, or lower. This contradicts the choice of q′ as the last vertex
of Pq,a that lies below or at the same height as t′.

(a) (b)

t

q

z

q

t

Pq,a

t

q

t

Pq,a
q

Pt,b t
Pt,b �

Figure 9: (a) The case of the proof of Lemma 6 when t′ ∈Wq′,a. (b) The case
of the proof of Lemma 6 when t′ 6∈Wq′,a.

Next suppose that t′ is not in Wq′,a. See Figure 9(b). Consequently, q′ must
be in Wt′,b. Then t′ must have a b-nearest neighbor t′′, since q′ is a candidate
to be its b-nearest neighbor. By definition of the b-nearest neighbor, t′′ must
be to the left of, or on, the line ` parallel to AC going through q′. Thus t′′

is in Wz,a where z is the point where line ` intersects the line forming the left
side of Wt′,b. If t′′ is in Wq′,a then (as argued above) q′ must have an a-nearest
neighbor below t′, which contradicts the choice of q′.
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Thus t′′ must lie in the quadrilateral Wz,a −Wq′,a (shaded in Figure 9(b)).
Observe that t′′ lies in Wq,a since both t′ and q′ do. Finally, we consider whether
t′′ lies strictly to the left of P q,a. If t′′ lies above q′ then it lies strictly to the left
of P q′,a because that portion of the path lies in Wq′,a. So suppose t′′ lies below
or at the same y-coordinate as q′. Note that t′′ cannot lie on the path q, . . . , q′

since we assumed that paths Pq,a and Pt,b do not intersect at a vertex. If t′′ lies
strictly to the right of Pq,a, then path Pq,a must contain a point p strictly inside
Wz,a. But then q′ is not in Wp,a, a contradiction since the a-wedge of a point
on an a-path must contain all later points of the path. Thus t′′ lies strictly to
the left of P q,a. This contradicts the choice of t′ as the last vertex of Pt,b that
is in Wq,a and strictly to the left of P q,a. �

3.3 Layered 3-Sweep Graphs

In this subsection we define an angle-monotone graph of width (90◦+α) for any
angle α, 0 < α < 45◦, such that k = 180

α is an integer, and for any set S of n
points. Our graph is defined as a k-layer 3-sweep graph.

Let ∆ABC be an acute triangle with A,B,C in clockwise order around the
triangle, and with angles θa = 2α, θb = θc = 90◦ − α. Orient ∆ABC so that
the vertically upward ray starting at A bisects θa. Let G1 be the 3-sweep graph
of S with respect to the 3 lines through the sides of ∆ABC.

We define Gi, 2 ≤ i ≤ k by successive rotations of ∆ABC. Let ∆iABC be
the triangle obtained by rotating ∆ABC clockwise around A with an angle of
i−1
k 360◦, and let Gi be the 3-sweep graph of S with respect to ∆iABC. The

union of G1, . . . , Gk is defined to be the k-layer 3-sweep graph Hk of S with
respect to α.

Theorem 2 For α, k, S, n as defined above, let Hk be the k-layer 3-sweep graph
on S. Then Hk is an angle-monotone graph of width (90◦ +α) and the number
of edges in Hk is O(nα ).

Proof: Let q and v be two points in S. Then v belongs to Wq,a in some Gi,
where 1 ≤ i ≤ k. By Lemma 6, there exists an angle-monotone path of width
2α + (90◦ − α) = (90◦ + α) between q and v in Gi, and hence also in Hk. By
Lemma 5, each Gi is planar. Hence Hk has O(nk) ∈ O(nα ) edges. �

In the remainder of this section we compare k-layer 3-sweep graphs and
the more well-known full-Θk-graphs, first comparing the number of edges and
then the angle-monotonicity. If 2α = 60◦, then k = 6. Because of symmetries,
Gi = Gi+2 so we really only have two 3-sweep graphs, and the resulting graph
H6 is the full-Θ6-graph.

For k > 6, Hk may have up to 3 times as many edges as the full-Θk-graph.
Figure 10(a) illustrates the difference for k = 10. However, if k is congruent to 2
mod 4 then the sparser graph determined by the union of G2, G4, . . . , Gk has the
same properties as Hk as we now show, using the property that the reverse of
an angle-monotone path is also angle-monotone. As already noted in the proof
of Theorem 2, for every pair of points q, v ∈ S, v belongs to Wq,a in some Gi,
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where 1 ≤ i ≤ k, and then by Lemma 6, there exists an angle-monotone path of
width 2α+ (90◦ − α) = (90◦ + α) between q and v in Gi. If i is even, this path
is included in the union of G2, G4, . . . , Gk. If i is odd, then, because k is even,
q belongs to Wv,a in Gi+(k/2), where the indices wrap around. Because k/2 is
odd, the index i + (k/2) is even, and by Lemma 6 there is an angle-monotone
path of the required width between q and v in this subgraph.

Every Hk is an angle-monotone graph of width (90◦ + α), but it is not
known whether full-Θk-graphs are angle-monotone with bounded width. For
every k = 4m + 4, where m is a positive integer, one can construct a full-Θk-
graph of width approximately (90◦+2α). For example, if k = 8, then 2α = 45◦,
and H8 is an angle-monotone graph of width 112.5◦. A full-Θ8-graph may have
comparatively large width, e.g., Figure 10(b) illustrates a full-Θ8-graph, where
any angle-monotone path between u and v has width approximately 135◦.

(a)

q q

q q

(b)

α

90 + 2α

α
u

v

a
b

c

de

f

q

q

Figure 10: (a) Illustration for the neighbors of q in H10 (top), and the full-
Θ10 graph (bottom). (b) An angle-monotone path between u and v of width
approximately (90◦ + 2α) = 135◦ (inspired by an illustration in [8]).

4 Local Routing in Layered 3-Sweep Graphs

In this section we give a local routing algorithm for k-layer 3-sweep graphs.
Specifically, our routing algorithm is 2-local, meaning that at each step we as-
sume knowledge of: the coordinates of the current vertex u, the coordinates of
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the target vertex, and the 2-neighborhood of u, which consists of the neighbors
of u and their neighbors. In the special case when k = 6, i.e., for full-Θ6-graphs,
our routing algorithm is 1-local (see Section 4.1).

Theorem 3 There is a 2-local routing algorithm that finds angle-monotone
paths of width 90◦ + α in any k-layer 3-sweep graph Hk, where α = 180◦/k.
The algorithm has routing ratio 1/cos(45◦ + α

2 ).

Before giving the algorithm, we explain why we need 2-locality. Given a
start vertex q and a target vertex t, we can find, based on the angle of line qt,
which of the k 3-sweep graphs, say Gi, has t ∈ Wq,a. Our routing algorithm
will only use edges of Gi, so we need a way to tell if an edge of Hk belongs
to Gi. Consider an edge from current vertex u to some vertex v. From their
coordinates, we can decide whether v is in a positive wedge of u in Gi, i.e., one
of Wu,a,Wu,b, or Wu,c in Gi. If so, then, by checking the other neighbors of
u, we can detect if v is the unique a-, b-, or c-neighbor of u in that wedge in
Gi. Otherwise, u is in a positive wedge of v in Gi, and, using 2-locality, we can
check the neighbors of v to detect if u is the unique a-, b-, or c-neighbor of v in
Gi.

For the special case of α = 30◦, Hk is the full-Θ6-graph and our algorithm
finds angle-monotone paths of width 120◦ and achieves routing ratio 2. In
this case our algorithm, operating on a single 3-sweep graph, can be viewed
as a slight variant of the algorithm of Bose et al. [10] for routing positively in
a half-Θ6-graph. Their algorithm achieves spanning ratio 2 but—as stated—
includes a tie-breaking rule that prevents it from finding angle monotone paths
of width 120◦. For the sake of completeness we give an example where the tie-
breaking rule in that algorithm causes it to find paths of width arbitrarily close
to 180◦. See Figure 11(a)–(c). Our contribution is to simplify the statement
of the algorithm, generalize to other angles, and give a much simpler proof of
correctness using angle-monotonicity.

We briefly mention other approaches to routing. The standard Θ-routing
algorithm forwards the message from the current vertex v either to the desti-
nation (if the destination is adjacent to v), or to the closest vertex in the cone
of v that contains the destination. As illustrated in Figure 11(d), the standard
Θ-routing algorithm for full-Θk-graphs may also yield paths of large width. We
refer the reader to [8, Figure 20–22] for more such examples on full-Θ4m+4 and
full-Θ10 graphs. A recent paper by Bose et al. [11] gives yet another local routing
algorithm for full-Θ6-graphs. This algorithm does find angle monotone paths of
width 120◦, but requires knowledge of the source.

Algorithm A (Local Routing) Let Hk be a k-layer 3-sweep graph with
angles θa = 2α, θb = θc = 90◦ − α, and let q and t be two vertices in Hk.

As discussed above, we can find out which 3-sweep graph, Gi, has t in Wq,a.
We will route in Gi, using 2-locality to distinguish its edges as discussed above.
For ease of description, orient the plane with Wq,a pointing upward, bisected
by the vertical axis, so that edge BC of the reference triangle is horizontal. See
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Figure 11: (a) A half-Θ6-graphG (with arrows indicating the edges into positive
cones). (b) The routing algorithm Algo-half-Θ6 of [10] on G takes the path
s, u1, u2, u3, t. The edge from u1 to u2 is chosen following Case B of Algo-half-
Θ6 (the algorithm favors staying close to the largest empty side)2. The edge
from u2 to u3 is chosen following Case C of Algo-half-Θ6. (c) Our algorithm
takes the path s, u1, u3, t. (d) An example illustrating the standard Θ-routing
algorithm on a full-Θ6-graph.

Figure 12. The general situation is that we have routed (forwarded the message)
to some vertex u. Initially u = q. The algorithm stops when u = t.

• While t is an internal point of Wu,a, forward the message to u′ (i.e., update
u to u′) where u′ is the a-neighbor of u in Wu,a. See Figure 12(a). Observe
that u′ is below or on the horizontal line through t.

• After the while loop, u either belongs to Wt,b or Wt,c (possibly lying on
the boundary of the wedge). See Figures 12(b)–(c).

• If u belongs to Wt,b, call routine AL, otherwise call routine AR.

Algorithm AL (Left Routing). Invariant: u ∈Wt,b. Until u reaches t do the
following:
• Case 1. Forward the message to the first clockwise neighbor v of u in
Gi such that v ∈ Wt,b and u ∈ Wv,b, if such a vertex v exists. See
Figure 12(d).

• Case 2. If no such vertex v exists, then forward the message to vertex u′,
where u′ is the a-neighbor of u in Wu,a. See Figure 12(e).

Algorithm AR (Right Routing). Invariant: u ∈ Wt,c. Symmetric to above.

We now prove that A finds an angle-monotone path of width (90◦+α) from
the source q to the destination t. Since we execute at most one of AL or AR
and they are symmetric, it suffices to consider the case where AL is executed.
The significant part of the proof is to show that the algorithm finds a path from
q to t. The fact that the path is angle monotone of width (90◦ + α) follows
immediately. In particular, the initial while loop of algorithm A uses only θa-

2We note that cases B and D are reversed in the conference version [9] versus the journal
version [10].
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Figure 12: Illustration for algorithm A.

edges, and algorithm AL uses only θb- and θa-edges. Thus the path is angle
monotone of width (90◦ + α). Note that the algorithm does not find a path
with θa-edges appearing before θb-edges, as was guaranteed in Lemma 6.

In order to show that algorithm A finds a path from q to t we will show: (1)
the invariant u ∈ Wt,b holds for algorithm AL; (2) some measure improves at
each routing step of the algorithm.

First consider the invariant u ∈Wt,b. Wt,b is bounded by two lines, ` and `′,
where ` is the horizontal line through t. To show that u ∈ Wt,b, we must show
that u is below, or on, `, and to the right of, or on, `′. When we first call AL,
u is to the right of, or on, `′, and each step of AL preserves this property—see
Figures 12(d) and (e). It remains to prove that u is below or on line `. We
will prove the stronger invariant that Pt,b goes through or above u, i.e. that Pt,b
intersects the ray going vertically upward from u.

We begin by showing that this is true when we first call AL. If we call AL
because q is on `′, then Pt,b must pass through or above q. The only other way
to call AL is because we just completed a step of the while loop of A where t was
internal to Wu,a but not internal to Wu′,a, e.g., see Figure 12(a). By Lemma 5,
Pt,b cannot cross the edge (u, u′). Hence it must pass above or through u′.

Now consider a step of AL after the first one. We route from u to vertex
w which is either vertex v in Case 1 (Figure 12(d)) or vertex u′ in Case 2
(Figure 12(e)). Suppose (for a contradiction) that the path Pt,b does not go
through or above w. By induction we know that Pt,b goes through or above
u. By Lemma 5, Pt,b cannot cross the edge (u,w). (This is where we use the
assumption that (u,w) is an edge of Gi.) Thus Pt,b must go through u and the
other points of edge (u,w) must lie above the path. Let x be the vertex before u
on Pt,b. Then x ∈Wt,b and u ∈Wx,b. We now claim that the algorithm should
have chosen x rather than w. First note that x is a candidate for vertex v in
Case 1 of AL. Thus the algorithm would not have moved to Case 2. Next note
that x comes before v in clockwise order around u, so the algorithm would have
chosen x rather than v.

It remains to show that something improves at every step of the algorithm.
Let da be the distance from u to the horizontal line through t. Let db be the
distance from t to the line determined by the right boundary of Wu,a. In every
iteration of the while loop of A, da decreases and db does not increase. In Case
2 of AL, da decreases and db does not increase. Finally, in Case 1 of AL, db
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decreases and da does not increase. Thus da+db strictly decreases at every step
of the algorithm, and the algorithm must terminate.

4.1 1-Local Routing on Full-Θ6-Graphs

We observed in Section 3.3 that because of symmetries when k = 6 we really only
have two 3-sweep graphs, which are in fact two half-Θ6-graphs which together
form a full-Θ6-graph. For this case, we will show that our routing algorithm
is 1-local by showing how to make the message forwarding decisions based on
the 1-neighborhood of the current vertex u. Note that the tie-breaking rule
that we used to construct the graph for local routing, i.e., by choosing the most
clockwise point, remains the same.

Suppose without loss of generality that we are routing in G1 and are routing
from u to t, with Wu,a oriented upwards as in the description of Algorithm
A. Recall that while t is an internal point of Wu,a, Algorithm A forwards the
message to u′, where u′ is the a-neighbor of u in Wu,a. Since u contains the
information about its 1-neighborhood, it is straightforward to make the message
forwarding decision.

At this point, we call routine AL or AR depending on whether u belongs
to Wt,b or Wt,c, respectively. By symmetry, it suffices to consider only the left
routing AL.

Case 1 of AL forwards the message to the first clockwise neighbor v of u in
G1 such that v ∈Wt,b and u ∈Wv,b, if such a vertex v exists. See Figure 12(d).
We now show how to decide the existence of such a vertex v based on the
1-neighborhood of u.

For any neighbor q of u in G, we can easily test if q ∈ Wt,b and u ∈ Wq,b.
The issue is whether edge (u, q) lies in G1 or G2. Since q lies in a negative cone
for G1, edge (u, q) is in G1 if and only if u is a b-neighbor of q.

Let Ra (resp., Rb) be the closed region determined by the intersection of
Wq,b and Wu,a (resp., Wq,b and Wu,c). Let R be the closed region inside Wq,b

bounded by the regions Ra and Rb, as shown in gray in Figure 13(a).

u

Ra

Rb

R

q

u

q

(a) (b)

Figure 13: Illustration for the routing in a full-Θ6-graph.

Since the edge (q, u) corresponds to a nearest neighbor in some cone around
either q or u, the region R cannot contain any vertex except for u and q. See
Figure 13(b). (This is where we crucially use the fact that G is a full-Θ6-graph.)
Thus u is the b-neighbor of q if and only if both Ra and Rb are empty of any
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vertex except for u and q. We can test this (even in the general case) by checking
the a- and b-neighbors of u in Wu,a and Wu,b, respectively.

Case 2 of AL forwards the message to vertex u′, where u′ is the nearest neigh-
bor of u in Wu,a. This case is straightforward since u contains the information
about its 1-neighborhood.

The following theorem summarizes the result of this section.

Theorem 4 There is a 1-local routing algorithm that finds angle-monotone
paths of width 120◦ in any full-Θ6-graph.

5 Angle-Monotone Graphs with Steiner Points

The angle-monotone graphs constructed in Sections 2–3 can have a width of
90◦ or larger. Spanning graphs of smaller width can be constructed if we allow
Steiner points. For example, any spanning planar triangulation with no angle
larger than β is an angle-monotone graph of width β [18]. Since the angles
of a triangle sum to 180◦, the best possible value for β is 60◦. We refer the
interested reader to [4, 3] for related works on generating meshes with good
angle properties. In this section we construct angle-monotone graphs of width
γ, for any point set S and any given γ ∈ (0, 90◦] where (360◦/γ) is an integer.
However, the size of the graph depends on some distance parameters of the
point set.

Here we use a pair of non-obtuse triangles ∆ABC and ∆A′B′C ′ to construct
the angle-monotone graphs, where ∠BAC coincides with ∠B′A′C ′. Let θa =
θa′ = θb′ = θc = γ/2, as illustrated in Figure 14(a). Consider the graph Gpair

obtained by taking the union of the 3-sweep graphs on S with respect to angles
{θa, θb, θc} and {θa′ , θb′ , θc′}. The following lemma is immediate from Lemma 6.

Lemma 7 Let q and t be two vertices in Gpair such that t lies inside Wq,a. If
t lies to the right of P q,a (resp., left of P q,a′), then there is an angle-monotone
path of width (θa + θc) = γ (resp., (θa′ + θb′) = γ) between q and t.

Figure 14(b) shows the potential location of t in gray. By Lemma 7, if
Pq,θa coincides with Pq,a′ , then for every point t ∈ Wq,a, we can find an angle-
monotone path of width γ in Gpair . In the following we show how to insert some
additional points (i.e., Steiner points) in S such that we can always find such
an angle-monotone path. We refer the reader to Figure 14(c). Let A0 = A, and
assume for the simplicity of description that the segment BC passes through
the a-nearest neighbor q′ of q in Wq,a. We construct a sequence of successive
triangles ∆Ai−1BiAi (similar to ∆A′B′C ′), where for 1 ≤ i ≤ k, the segment
Ai−1Ai lies on the right side of Wq,a and Bi lies on the segment BC, and then
place Steiner point si at Ai.

We choose k to be the smallest integer such that q′ does not belong to
Wsk,a (e.g., k = 3 in Figure 14(c)), or the a-nearest neighbor of sk in Wsk,a′

coincides with q′ (e.g., k = 1 in Figure 14(d)). We add the edges (si−1, si), the
edge between q′ and its corresponding Steiner point sk, and the edges (z, si),
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where z ∈ S and the Steiner point si is a b-nearest neighbor of z in Wz,b′ .
Let the resulting graph be H, which we will refer to as a Steiner graph. Since
∆Ai−1Bi−1Ai and ∆Ai−1Bi−1C are isosceles triangles, we have

Ai−1Bi−1 = 2Ai−1Ai cos(γ/2), and

Ai−1C = 2Ai−1Bi−1 cos(γ/2).

Therefore, AiC = Ai−1C −Ai−1Ai = Ai−1C − Ai−1C
4 cos2(γ/2) ≤

3Ai−1C
4 . Later, we

will use this inequality to compute an upper bound for k.
For every pair of points u, v ∈ S let λu,v be the smallest distance between

a pair of non-overlapping parallel lines passing through u and v with angle of
inclination 90◦ + γj

2 , for some positive integer j, e.g., see Figure 14(e). Define
λ to be smallest such distance over all {u, v} ∈ S. Since the length of AiC is at

most 3Ai−1C
4 , for the kth triangle, we have AkC ≤ 3kAC

4k
. In the worst case, the

length of AkC is λ. Hence k is bounded by O(log(AC/λ)).

(a)

C ′

C

B

B′

q = A = A′

(b)

q = A = A′

Pq,a
Pq,a′

(c)

q(= A0)

A1

A2

AkB1

(d)

q(= A0)

A1(= Ak)

B1

B0 A2

C

C

B0

`BC

Wq,a q′

q′

γ
2

v

(e)

γ
2

γ
2

λu,v

u

Figure 14: (a) ∆ABC and ∆A′B′C ′. (b)–(d) Construction of H. (e) λu,v.

Lemma 8 Let q and t be two points in S such that t lies inside Wq,a. Then
there exists an angle-monotone path of width (θa + θc) = (θa′ + θb′) = γ between
q and t in H.

Proof: If t lies to the right of P q,a, then by Lemma 7, there exists an angle-
monotone path of width γ between q and t in H.
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Consider now the case when t lies to the left of P q,a. Using an analysis similar
to the proof of Lemma 6 we can observe that Pq,a and Pt,b′ must intersect. If
they intersect at a vertex v, then the path t, . . . , v, . . . , q is an angle-monotone
path of width γ. Otherwise, let r be the last vertex on Pt,b′ to the left of Pq,a,
and let z be the last vertex on Pq,a that Wz,a contains r. By construction, r is
adjacent to a Steiner point s on the right side of Wz,a. The path t, . . . , r, s, . . . , q
determines the required angle-monotone path of width γ. �

Let µ be the largest Euclidean distance determined by a pair of points in
S, and let d = (360◦/γ) be an integer. Let H be the graph obtained by taking
the union of Steiner graphs H1, . . . ,Hd, where Hi, 1 ≤ i ≤ d, is computed
by rotating ∆ABC and ∆A′B′C ′ clockwise around A(= A′) with an angle

of 360◦(i−1)
d ). Then an analysis similar to the proof of Theorem 2 yields the

following result.

Theorem 5 H is an angle-monotone graph of width γ, and the number of edges
in H is O(nγ log µ

λ ).

6 Open Questions

1. (from [5]) What is γmin, the smallest γ such that every point set has a
planar angle-monotone graph of width γ? It is known that 90◦ < γmin ≤
120◦.

2. We showed that every set of n points admits an angle-monotone graph of
width 90◦ with o(n2) edges, but can a better bound be proved? Perhaps
O(n log n) edges? Even O(n) is not ruled out.

3. Using Steiner points, we can construct angle-monotone graphs of width
γ, for any given γ > 0, however, the size of the graph depends on some
distance parameters of the point set. What is the smallest γ such that
every point set has an angle-monotone Steiner graph with width γ and
o(n2) edges?
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