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Abstract

Finding cohesive subgraphs in a network has been investigatSeveral al-
ternative formulations of cohesive subgraph have been proposed, a notable
one of them is s-club, which is a subgraph whose diameter is at most s.
Here we consider a natral variant of the well-known Minimum Clique Cover
problem, where we aim to cover a given graph with the minimum num-
ber of s-clubs, instead of cliques. We study the computational and ap-
proximation complexity of this problem, when s is equal to 2 or 3. We
show that deciding if there exists a cover of a graph with three 2-clubs
is NP-complete, and that deciding if there exists a cover of a graph with
two 3-clubs is NP-complete. Then, we consider the approximation com-
plexity of covering a graph with the minimum number of 2-clubs and
3-clubs. We show that, given a graph G = (V,E) to be covered, cover-
ing G with the minimum number of 2-clubs is not approximable within
factor O(|V |1/2−ε), for any ε > 0, and covering G with the minimum
number of 3-clubs is not approximable within factor O(|V |1−ε), for any
ε > 0. On the positive side, we give an approximation algorithm of fac-
tor 2|V |1/2 log3/2 |V | for covering a graph with the minimum number of
2-clubs.
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1 Introduction

The quest for modules inside a network is a well-known and deeply studied
problem in network science, with applications in different fields, for example
the analysis of biological or social network. A highly investigated problem is
that of finding cohesive subgroups inside a network (for example see [26]), which
in graph theory translates in highly connected subgraphs. A common approach
is to look for cliques, that is graphs whose vertices are all pairwise connected.
Several combinatorial problems based on clique have been considered, notable
examples being the Maximum Clique problem ([12, GT19]), the Minimum Clique
Cover problem ([12, GT17]), and the Minimum Clique Partition problem ([12,
GT15]). This last is a classical problem in theoretical computer science, that,
given a graph, asks for a partition of the vertices into the minimum number of
cliques. The Minimum Clique Partition problem has been deeply studied since
the seminal paper of Karp [17], studying its complexity in several graph classes,
like cubic graphs [5], unit-disk graphs [6, 24, 10] and bounded clique-width
graphs [11].

When analyzing networks, asking for a complete subgraph is sometimes too
restrictive, as interesting highly connected graphs do not always have connec-
tions between all pairs of vertices, for example due to noise in the data consid-
ered.

To overcome this limitation of the clique approach, alternative definitions of
highly connected graphs have been proposed, leading to the concept of relaxed
clique [18]. A relaxed clique is a graph G = (V,E) whose vertices satisfy a
property which is a relaxation of the clique property. Indeed, a clique is a
subgraph whose vertices are all at distance one from each other, that is the
diameter of the graph is one. Moreover, the vertices of a clique have the same
degree (the size of the vertices in the clique minus one). Different definitions of
relaxed clique are obtained by modifying one of the properties of clique. Some
variants relax the distance between the vertices of the subgraph sought, thus
leading to distance-based relaxed cliques, other variants relax the degree of the
subgraph sought, leading to degree-based relaxed cliques, and so on (see [18] for a
survey on different definitions of relaxed clique and their algorithmic properties).

In this paper, we focus on a distance-based relaxation. In a clique all the
vertices are required to be at distance at most one from each other. Here this
constraint is relaxed, so that the vertices have to be at distance at most s, for an
integer s > 1. A subgraph whose vertices are all distance at most s is called an
s-club (notice that, when s = 1, an s-club is exactly a clique). The identification
of s-clubs inside a network has been defined for the analysis of networks [21, 1]
and has been recently applied for the analysis of social networks [20, 22, 27], and
biological networks [23, 3]. Interesting recent studies have shown the relevance
of finding s-clubs in a network [20, 22], in particular focusing on finding 2-clubs
in real networks like DBLP or a European corporate network.

Contributions to the study of s-clubs mainly focus on the Maximum s-Club
problem, that is the problem of finding an s-club of maximum size. Maximum
s-Club is known to be NP-hard, for each s > 1 [4]. Even deciding whether



JGAA, 23(2) 271–292 (2019) 273

there exists an s-club larger than a given size in a graph of diameter s + 1
is NP-complete, for each s > 1 [3]. The Maximum s-Club problem has been
studied also in the approximability and parameterized complexity framework.
A polynomial-time approximation algorithm with factor O(|V |1/2) for every
s > 2 on an input graph G = (V,E) has been designed [2]. This is optimal,
since the problem is not approximable within factor O(|V |1/2−ε), on an input
graph G = (V,E), for each ε > 0 and s > 2 [2].

Maximum s-Club has been studied also in parameterized complexity frame-
work. Maximum s-Club, unlike the problem of finding a clique of maximum size,
is known to be fixed-parameter tractable, when parameterized by the size of an
s-club [25, 19, 7]. The Maximum s-Club problem has been investigated also for
structural parameters and specific graph classes [15, 14].

In this paper, we consider a different combinatorial problem, where we aim at
covering the vertices of a network with a set of subgraphs. Similar to Minimum
Clique Partition, we consider the problem of covering a graph with the minimum
number of s-clubs such that each vertex belongs to an s-club. We denote this
problem by Min s-Club Cover, and we focus in particular on the cases s = 2 and
s = 3. We show some analogies and differences between Min s-Club Cover and
Minimum Clique Partition. We start in Section 3 by considering the computa-
tional complexity of the problem of covering a graph with two or three s-clubs.
This is motivated by the fact that Clique Partition is known to be in P when
we ask whether there exists a partition of the graph consisting of two cliques,
while it is NP-hard to decide whether there exists a partition of the graph con-
sisting of three cliques [13], since Clique Partition is equivalent to GraphColoring
on the complementary graph. As for Clique Partition, we show that it is NP-
complete to decide whether there exist three 2-clubs that cover a graph. On the
other hand, we show that, unlike Clique Partition, it is NP-complete to decide
whether there exist two 3-clubs that cover a graph. These two results imply
also that Min 2-Club Cover and Min 3-Club Cover do not belong to the class XP
for the parameter ”number of clubs” in a cover. Notice that when we ask for
the existence of a single s-club that covers a graph, we have to simply check in
polynomial-time if the given graph is an s-club.

Then, we consider the approximation complexity of Min 2-Club Cover and
Min 3-Club Cover. We recall that, given an input graph G = (V,E), Minimum
Clique Partition is not approximable within factor O(|V |1−ε), for any ε > 0,
unless P = NP [28]. Here we show that Min 2-Club Cover has a slightly dif-
ferent behavior, while Min 3-Club Cover is similar to Clique Partition. Indeed,
in Section 4 we prove that Min 2-Club Cover is not approximable within factor
O(|V |1/2−ε), for any ε > 0, unless P = NP , while Min 3-Club Cover is not ap-
proximable within factor O(|V |1−ε), for any ε > 0, unless P = NP . In Section 5,

we present a greedy approximation algorithm that has factor 2|V |1/2 log3/2 |V |
for Min 2-Club Cover, which almost match the inapproximability result for the
problem.

We start the paper by giving in Section 2 some definitions and by formally
defining the problem we are interested in.
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2 Preliminaries

Given a graph G = (V,E) and a subset V ′ ⊆ V , we denote by G[V ′] the
subgraph of G induced by V ′. Given two vertices u, v ∈ V , the distance between
u and v in G, denoted by dG(u, v), is the length of a shortest path from u to v
in G.

The diameter of a graph G = (V,E) is the maximum distance between two
vertices of V . Given a graph G = (V,E) and a vertex v ∈ V , we denote by
NG(v) the set of neighbors of v, that is NG(v) = {u : {v, u} ∈ E}. We denote
by NG[v] the close neighborhood of V , that is NG[v] = NG(v) ∪ {v}. Define
N l

G(v) = {u : u has distance at most l from v}, with 1 6 l 6 2. Given a set
of vertices X ⊆ V and l, with 1 6 l 6 2, define N l

G(X) =
⋃

u∈X N l
G(u). We

may omit the subscript G when it is clear from the context. Now, we give the
definition of s-club, which is fundamental for the paper.

Definition 1 Given a graph G = (V,E), and a subset V ′ ⊆ V , G[V ′] is an
s-club if it has diameter at most s.

Notice that an s-club must be a connected graph. We present now the formal
definition of the Minimum s-Club Cover problem we are interested in.

Problem 1 Minimum s-Club Cover (Min s-Club Cover)
Input: a graph G = (V,E) and an integer s > 2.
Output: a minimum cardinality collection S = {V1, . . . , Vh} such that, for each
i with 1 6 i 6 h, Vi ⊆ V , G[Vi] is an s-club, and, for each vertex v ∈ V , there
exists a set Vj, with 1 6 j 6 h, such that v ∈ Vj.

We denote by s-Club Cover(h), with 1 6 h 6 |V |, the decision version of
Min s-Club Cover that asks whether there exists a cover of G consisting of at
most h s-clubs.

Notice that in Minimum Clique Partition we can assume that the cliques that
cover a graph G = (V,E) partition V , hence the cliques are vertex disjoint.
Indeed, it can be shown that there exist h cliques that cover a graph if and
only if there exist h cliques that partition the vertices of a graph. Obviously, h
cliques that partition the vertices of a graph cover also the graph. On the other
hard, if there exists h cliques that cover the vertices of a graph, we can compute
h cliques that partition the graph: if two cliques shares a vertex, we can remove
it from one of the cliques.

We cannot make the assumption that covering and partitioning a graph is es-
sentially the same problem for s-clubs. Indeed, in a solution of Min s-Club Cover,
a vertex may be covered by more than one s-club, in order to have a cover con-
sisting of the minimum number of s-clubs. Consider the example of Fig. 1. The
two 2-clubs induced by {v1, v2, v3, v4, v5} and {v1, v6, v7, v8, v9} cover G, and
both these 2-clubs contain vertex v1. However, if we ask for a partition of G, we
need at least three 2-clubs (for example the 2-clubs induced by {v1, v2, v3, v4, v5},
{v6, v7} and {v8, v9}). This difference between Minimum Clique Partition and
Min s-Club Cover is due to the fact that, while being a clique is a hereditary
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v1
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v4 v5

v6 v7
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Figure 1: A graph and a cover consisting of two 2-clubs (induced by the vertices
in the ovals). Notice that the 2-clubs of this cover must both contain vertex
v1. If v1 is contained only in one 2-club, for example in the 2-club induced by
{v1, v2, v3, v4, v5}, then two 2-clubs are needed to cover {v6, v7, v8, v9}, since the
subgraph induced by {v6, v7, v8, v9} is not a 2-club (v6 and v9 have distance 3
in this subgraph).

property, this is not the case for being an s-club. If a graph G is an s-club, then
a subgraph of G may not be an s-club (for example a star is a 2-club, but the
subgraph obtained by removing its center is not anymore a 2-club).

A problem related to Min s-Club Cover, is that of partitioning a graph G =
(V,E) into the minimum number of s-clubs, denoted by Min s-Club Partition.
Notice that, unlike the case of cliques, while a solution of Min s-Club Partition is
also a solution of Min s-Club Cover, the opposite is not true. For example, the
cover of Fig. 1 consisting of two 2-clubs is not a solution of Min s-Club Partition.
Moreover, an optimal solution of Min s-Club Partition on the example of Fig. 1
consists of three 2-clubs. An optimal solution of Min s-Club Cover on a graph
G contains at most the same number of s-clubs of an optimal solution of
Min s-Club Partition on G.

3 Computational Complexity

In this section we investigate the computational complexity of 2-Club Cover and
3-Club Cover. We show that 2-Club Cover(3), that is deciding whether there
exists a cover of a graph G with three 2-clubs, and 3-Club Cover(2), that is
deciding whether there exists a cover of a graph G with two 3-clubs, are NP-
complete.

3.1 2-Club Cover(3) is NP-complete

In this section we show that 2-Club Cover(3) is NP-complete by giving a re-
duction from the Clique Partition(3) problem, that is the problem of computing
whether there exists a partition of a graph Gp = (V p, Ep) in three cliques.
Consider an instance Gp = (V p, Ep) of Clique Partition(3), we construct an in-
stance G = (V,E) of 2-Club Cover(3) (see Fig. 2). The vertex set V is defined
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as follows:

V = {wi : vi ∈ V p} ∪ {wi,j : {vi, vj} ∈ Ep ∧ i < j}}

The set E of edges is defined as follows:

E = {{wi, wi,j}, {wi, wh,i} : vi ∈ V p, wi, wi,j , wh,i ∈ V }∪
{{wi,j , wi,l}, {wi,j , wh,i}, {wh,i, wz,i} : wi,j , wi,l, wh,i, wz,i ∈ V }

Before giving the main result of this section, we prove a property of G.

Lemma 1 Let Gp = (V p, Ep) be an instance of Clique Partition(3) and let
G = (V,E) be the corresponding instance of 2-Club Cover(3). Then, given two
vertices vi, vj ∈ V p and the corresponding vertices wi, wj ∈ V :

• if {vi, vj} ∈ Ep, then dG(wi, wj) = 2

• if {vi, vj} /∈ Ep, then dG(wi, wj) > 3

Proof: Notice that NG(wi) = {wi,z : {vi, vz} ∈ Ep ∧ i < z} ∪ {wh,i : {vi, vh} ∈
Ep ∧ h < i}. It follows that wj ∈ N2

G(wi) if and only if there exists a vertex
wi,j (or wj,i), which is adjacent to both wi and wj . But then, by construction,
wj ∈ N2

G(wi) if and only if {vi, vj} ∈ Ep. �

We are now able to prove the main properties of the reduction.

Lemma 2 Let Gp = (V p, Ep) be a graph input of Clique Partition(3) and let
G = (V,E) be the corresponding instance of 2-Club Cover(3). Then, given a
solution of Clique Partition(3) on Gp = (V p, Ep), we can compute in polynomial
time a solution of 2-Club Cover(3) on G = (V,E).

Proof: Consider a solution of Clique Partition(3) on Gp = (V p, Ep), and let
V p
1 , V p

2 , V p
3 ⊆ V p be the sets of vertices of Gp that partition V p. We define a

solution of 2-Club Cover(3) on G = (V,E) as follows. For each d, with 1 6 d 6 3,
define

Vd = {wj ∈ V : vj ∈ V p
d } ∪ {wi,j : vi ∈ V p

d }

We show that each G[Vd], with 1 6 d 6 3, is a 2-club. Consider two vertices
wi, wj ∈ Vd, with 1 6 i < j 6 |V |. Since they correspond to two vertices
vi, vj ∈ V p that belong to a clique of Gp, it follows that {vi, vj} ∈ Ep and
wi,j ∈ Vd. Thus dG[Vd](wi, wj) = 2. Now, consider the vertices wi ∈ Vd, with
1 6 i 6 |V |, and wh,z ∈ Vd, with 1 6 h < z 6 |V |. If i = h or i = z, assume
w.l.o.g. i = h, then by construction dG[Vd](wi, wi,z) = 1. Assume that i 6= h and
i 6= z (assume w.l.o.g. that i < h < z), since wh,z ∈ Vd, it follows that wh ∈ Vd.
Since wi, wh ∈ Vd, it follows that wi,h ∈ Vd. By construction, there exist edges
{wi,h, wh,z}, {wi, wi,h} in Ep, thus implying that dG[Vd](wi, wh,z) = 2. Finally,
consider two vertices wi,j , wh,z ∈ Vd, with 1 6 i < j 6 |V | and 1 6 h < z 6 |V |.
Then, by construction, wi ∈ Vd and wh ∈ Vd. But then, wi,h belongs to Vd,
and, by construction, {wi,j , wi,h} ∈ E and {wh,z, wi,h} ∈ E. It follows that
dG[Vd](wi,j , wh,z) = 2.
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Gp

v1 v2

v3

v4 v5
G

w1 w2

w3

w4 w5

w1,4

w4,5

w2,5

w2,3w1,3

w1,2

Figure 2: An example of a graph Gp input of Clique Partition(3) and the corre-
sponding graph G input of 2-Club Cover(3).

We conclude the proof observing that, by construction, since V p
1 , V

p
2 , V

p
3

partition V p, it holds that V = V1 ∪ V2 ∪ V3, thus G[V1], G[V2], G[V3] covers G.
�

Based on Lemma 1, we can prove the following result.

Lemma 3 Let Gp = (V p, Ep) be a graph input of Clique Partition(3) and let
G = (V,E) be the corresponding instance of 2-Club Cover(3). Then, given a
solution of 2-Club Cover(3) on G = (V,E), we can compute in polynomial time
a solution of Clique Partition(3) on Gp = (V p, Ep).

Proof: Consider a solution of 2-Club Cover(3) on G = (V,E) consisting of
three 2-clubs G[V1], G[V2], G[V3]. Consider a 2-club G[Vd], with 1 6 d 6 3. We
define three cliques Gp[V p

1 ], Gp[V p
2 ], Gp[V p

3 ] in Gp as follows. For each d, with
1 6 d 6 3, V p

d is defined as:

V p
d = {vi : wi ∈ Vd}

Next, we show that G[V p
d ], with 1 6 d 6 3, is indeed a clique. By Lemma 1 if

wi, wj ∈ Vd then it holds {vi, vj} ∈ E, thus by construction {vi, vj} ∈ Ep and
G[V p

d ] is a clique inGp. Moreover, since V1∪V2∪V3 = V , then V p
1 ∪V

p
2 ∪V

p
3 = V p.

Notice that V p
1 , V p

2 , V p
3 may not be disjoint, but, starting from (V p

1 , V p
2 , V p

3 ), it
is easy to compute in polynomial time a partition of Gp in three cliques (since
being a clique is a hereditary property). �

We are now able to prove the main result of this section.

Theorem 1 2-Club Cover(3) is NP-complete.

Proof: By Lemma 2 and Lemma 3 and from the NP-hardness of
Clique Partition(3) [17], it follows that 2-Club Cover(3) is NP-hard. The
membership to NP follows easily from the fact that, given three 2-clubs of
G, it can be checked in polynomial time whether they are indeed 2-clubs and
whether they cover all vertices of G. �
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3.2 3-Club Cover(2) is NP-complete

In this section we show that 3-Club Cover(2) is NP-complete by giving a reduc-
tion from a variant of Sat called 5-Opposite-Sat. Recall that a literal is positive
if it is a non-negated variable, while it is negative if it is a negated variable.

Problem 2 5-Opposite-Satisfiability (5-Opposite-Sat)
Input: a collection of clauses C = {C1, . . . , Cp} over the set of variables X =
{x1, . . . , xq}, where each Ci ∈ C, with 1 6 i 6 p, contains exactly five literals
and does not contain both a variable and its negation.
Output: a truth assignment f to the variables in X such that each clause Ci,
with 1 6 i 6 p, contains a positive and a negative literal satisfied by f .

A clause Ci is opposite-satisfied by a truth assignment f to the variables X
if there exist a positive literal and a negative literal in Ci that are both satisfied
by f . Notice that we assume that there exist at least one positive literal and at
least one negative literal in each clause Ci, with 1 6 i 6 p, otherwise Ci cannot
be opposite-satisfied. Moreover, we assume that each variable in an instance of
5-Opposite-Sat appears both as a positive literal and a negative literal in the
instance. Notice that if this is not the case, for example a variable appears only
as a positive literal, we can assign a true value to the variable, as defining an
assignment to false does not contribute to opposite-satisfy any clause. First, we
show that 5-Opposite-Sat is NP-complete, which may be of independent interest.

Theorem 2 5-Opposite-Sat is NP-complete.

Proof: We reduce from 3-Sat, where given a set X3 of variables and a set C3
of clauses, which are a disjunction of 3 literals (a variable or the negation of a
variable), we want to find an assignment to the variables such that all clauses are
satisfied. Moreover, we assume that each clause in C3 does not contain a positive
variable x and its negation x, since such a clause is obviously satisfied by any
assignment. The same property holds also for the instance of 5-Opposite-Sat we
construct.

Consider an instance (X3, C3) of 3-Sat, we construct an instance (X, C) of
5-Opposite-Sat as follows. Define X = X3 ∪XN , where X3 ∩XN = ∅ and XN

is defined as follows:

XN = {xC,i,1, xC,i,2 : Ci ∈ C3}

Consider Ci ∈ C3 = (li,1 ∨ li,2 ∨ li,3), where li,p, with 1 6 p 6 3 is a literal,
that is a variable (a positive literal) or a negated variable (a negative literal),
we define two clauses Ci,1 and Ci,2 as follows:

• Ci,1 = li,1 ∨ li,2 ∨ li,3 ∨ xC,i,1 ∨ xC,i,2

• Ci,2 = li,1 ∨ li,2 ∨ li,3 ∨ xC,i,1 ∨ xC,i,2

The set C of clauses is defined as follows:

C = {Ci,1, Ci,2 : Ci ∈ C3}
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We claim that (X3, C3) is satisfiable if and only if (X, C) is opposite-
satisfiable.

Assume that (X3, C3) is satisfiable and let f be an assignment to the variables
on X3 that satisfies C3. Consider a clause Ci in C3, with 1 6 i 6 |C3|. Since it
is satisfied by f , it follows that there exists a literal li,p of Ci, with 1 6 p 6 3,
that is satisfied by f . Define an assignment f ′ on X that is identical to f on X3

and, if li,p is positive, then assigns value false to both xC,i,1 and xC,i,2, if li,p is
negative, then assigns value true to both xC,i,1 and xC,i,2. It follows that both
Ci,1 and Ci,2 are opposite-satisfied by f ′.

Assume that (X, C) is opposite-satisfied by an assignment f ′. Consider two
clauses Ci,1 and Ci,2, with 1 6 i 6 |C|, that are opposite-satisfied by f ′, we
claim that there exists at least one literal of Ci,1 and Ci,2 not in XN which is
satisfied. Assume this is not the case, then, if Ci,1 is opposite-satisfied, it follows
that xC,i,1 is true and xC,i,2 is false, thus implying that Ci,2 is not opposite-
satisfied. Then, an assignment f that is identical to f ′ restricted to X3 satisfies
each clause in C.

Now, since 3-Sat is NP-complete [17], it follows that 5-Opposite-Sat is NP-
hard. The membership to NP follows from the observation that, given an as-
signment to the variables on X, we can check in polynomial-time whether each
clause in C is opposite-satisfied or not. �

Let us now give the construction of the reduction from 5-Opposite-Sat to
3-Club Cover(2). Consider an instance of 5-Opposite-Sat consisting of a set C of
clauses C1, . . . , Cp over set X = {x1, . . . , xq} of variables. We assume that it is
not possible to opposite-satisfy all the clauses by setting at most two variables
to true or to false (this can be easily checked in polynomial-time).

Before giving the details, we present an overview of the reduction. Given an
instance (X, C) of 5-Opposite-Sat, for each positive literal xi, with 1 6 i 6 q, we
define vertices xTi,1, xTi,2 and for each negative literal xi, with 1 6 i 6 q, we define

a vertex xFi . Moreover, for each clause Cj ∈ C, with 1 6 j 6 p, we define a vertex
vC,j . We define other vertices to ensure that some vertices have distance not
greater than three and to force the membership to one of the two 3-clubs of the
solution (see Lemma 4). The construction implies that for each i with 1 6 i 6 q,
xTi,1 and xFi belong to different 3-clubs (see Lemma 5); this corresponds to a
truth assignment to the variables in X. Then, we are able to show that each
vertex vC,j belongs to the same 3-club of a vertex xTi,1, with 1 6 i 6 q, and of

a vertex xFh , with 1 6 h 6 q, adjacent to vC,j (see Lemma 7); these vertices
correspond to a positive literal xi and a negative literal xh, respectively, that
are satisfied by a truth assignment, hence Cj is opposite-satisfied.

Now, we give the details of the reduction. Let (X, C) be an instance of
5-Opposite-Sat, we construct an instance G = (V,E) of 3-Club Cover(2) as fol-
lows (see Fig. 3). The vertex set V is defined as follows:

V = {r, r′, rT , r′T , r∗T , rF , r′F }∪{xTi,1, xTi,2, xFi : xi ∈ X}∪{vC,j : Cj ∈ C}∪{y1, y2, y}
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The edge set E is defined as follows:

E = {{r, r′}, {{r′, rT }, {r′, r∗T }{r′, rF }} ∪ {{rT , xTi,1} : xi ∈ X}
∪{{rF , xFi } : xi ∈ X} ∪ {{r′T , xTi,1} : xi ∈ X} ∪ {{r′F , xFi } : xi ∈ X}∪

{{xTi,1, xTi,2} : xi ∈ X} ∪ {{r∗T , xTi,2}, {y1, xTi,2} : xi ∈ X}∪
{{xTi,2, xFj } : xi, xj ∈ X, i 6= j} ∪ {{xTi,1, vC,j} : xi ∈ Cj} ∪ {{xFi , vC,j} : xi ∈ Cj}∪

{{vC,j , y} : Cj ∈ C} ∪ {{y, y2}, {y1, y2}, {y1, r′T }, {y1, r′F }}

We start by proving some properties of the graph G.

Lemma 4 Consider an instance (C, X) of 5-Opposite-Sat and let G = (V,E)
be the corresponding instance of 3-Club Cover(2). Then, (1) dG(r′, y) > 3, (2)
dG(r, y) > 3, (3) dG(r, vC,j) > 3, for each j with 1 6 j 6 p, and (4) dG(r, r′F ) >
3, dG(r, r′T ) > 3.

Proof: We start by proving (1). Notice that any path from r′ to y must pass
through rT , r∗T or rF . Each of rT , r∗T or rF is adjacent to vertices xTi,1, xTi,2 and

xFi , with 1 6 i 6 q (in addition to r′), and none of these vertices is adjacent to
y, thus concluding that dG(r′, y) > 3. Moreover, observe that for each vertex
vC,j , with 1 6 j 6 p, there exists a vertex xTi,1, with 1 6 i 6 q, or xFh , with
1 6 h 6 q, that is adjacent to vC,j , with 1 6 j 6 p, thus dG(r′, vCj

) = 3, for
each j with 1 6 j 6 p. As a consequence of (1), it follows that (2) holds, that
is dG(r, y) > 3. Since dG(r′, vCj ) = 3, for each j with 1 6 j 6 p, it holds (3)
dG(r, vC,j) > 3.

Finally, we prove (4). Notice that N2
G(r) = {r′, r∗T , rT , rF } and that none of

the vertices in N2
G(r) is adjacent to r′F and r′T , thus dG(r, r′F ) > 3. �

Consider two sets V1 ⊆ V and V2 ⊆ V , such that G[V1] and G[V2] are two
3-clubs of G that cover G. As a consequence of Lemma 4, it follows that r and
r′ are in exactly one of G[V1], G[V2], w.l.o.g. G[V1], while r′T , r′F , y and vC,j ,
for each j with 1 6 j 6 p, belong to G[V2] and not to G[V1].

Next, we show a crucial property of the graph G built by the reduction.

Lemma 5 Given an instance (C, X) of 5-Opposite-Sat, let G = (V,E) be the
corresponding instance of 3-Club Cover(2). Then, for each i with 1 6 i 6 q,
dG(xTi,1, x

F
i ) > 3.

Proof: Consider a path π of minimum length that connects xTi,1 and xFi , with

1 6 i 6 q. First, notice that, by construction, the path π after xTi,1 must pass

through one of these vertices: rT , r′T , xTi,2 or vC,j , with 1 6 j 6 p.
We consider the first case, that is the path π after xTi,1 passes through rT .

Now, the next vertex in π is either r′ or xTh,1, with 1 6 h 6 q. Since both r′ and

xTh,1 are not adjacent to xFi , it follows that in this case the path π has length
greater than three.

We consider the second case, that is the path π after xTi,1 passes through r′T .

Now, after r′T , π passes through either y1 or xTh,1, with 1 6 h 6 q. Since both
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Figure 3: Schematic construction for the reduction from 5-Opposite-Sat to
3-Club Cover(2).

y1 and xTh,1 are not adjacent to xFi , it follows that in this case the path π has
length greater than three.

We consider the third case, that is the path after xTi,1 passes through xTi,2.

Now, the next vertex of π is either r∗T or y1 or xFh , with 1 6 h 6 q and h 6= i.
Since r∗T , y1 and xFh are not adjacent to xFi , it follows that in this case the path
π has length greater than three.

We consider the last case, that is the path after xTi,1 passes through vC,j ,
with 1 6 j 6 p. We have assumed that xi and xi do not belong to the same
clause, thus by construction xFi is not incident in vC,j . It follows that after vC,j ,
the path π must pass through either y or xTh,1, with 1 6 h 6 q, or xFz , 1 6 z 6 q
and z 6= i. Once again, since y, xTh,1 and xFz are not adjacent to xFi , it follows
that also in this case the path π has length greater than three, thus concluding
the proof. �

Now, we are able to prove the main results of this section.

Lemma 6 Given an instance (C, X) of 5-Opposite-Sat, let G = (V,E) be the
corresponding instance of 3-Club Cover(2). Then, given a truth assignment that
opposite-satisfies C, we can compute in polynomial-time two 3-clubs that cover
G.

Proof: Consider a truth assignment f on the set X of variables that opposite-
satisfies C. In the following we construct two 3-clubs G[V1] and G[V2] that cover
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G. The two sets V1, V2 are defined as follows:

V1 = {r, r′, rT , r∗T , rF } ∪ {xTi,1, xTi,2 : f(xi) = false} ∪ {xFi , : f(xi) = true}

V2 = {r′T , r′F , y, y1, y2} ∪ {xTi,1, xTi,2 : f(xi) = true} ∪ {xFi : f(xi) = false}∪

{vC,j : 1 6 j 6 p}

Next, we show that G[V1] and G[V2] are indeed two 3-clubs that cover G.
First, notice that V1 ∪ V2 = V , hence G[V1] and G[V2] cover G. Next, we show
that both G[V1] and G[V2] are indeed 3-clubs.

Let us first consider G[V1]. By construction, dG[V1](r, x
T
i,1) = 3 and

dG[V1](r, x
T
i,2) = 3, for each i with 1 6 i 6 i 6 q, and dG[V1](r, x

F
i ) = 3, for each

i with 1 6 i 6 i 6 q. Moreover, dG[V1](r
′, xTi,1) = 2 and dG[V1](r

′, xTi,2) = 2, for

each i with 1 6 i 6 q, and dG[V1](r
′, xFi ) = 2, for each i with 1 6 i 6 i 6 q. As

a consequence, it holds that rT , r′T and rF have distance at most three in G[V1]
from each vertex xTi,1, from each vertex xTi,2, and from each vertex xFi . Since r,
rT , r∗T and rF are in N(r′), it follows that r, r′, rT , r∗T and rF are at distance
at most 2 in G[V1]. Hence, we focus on vertices xTi,1, with 1 6 i 6 q, xTh,2,

with 1 6 h 6 q and xFj , with 1 6 j 6 q. Since there exists a path that passes

trough xTi,1, rT , xTh,1 and xTh,2, vertices xTi,1, xTh,1 are at distance at most two

in G[V1], while xTi,1, xTh,2 are at distance at most three in G[V1] (if i = h they

are at distance one). Vertices xTh,2 and xFj are at distance one in G[V1], since

by construction h 6= j and {xTh,2, xFj } ∈ E. Finally, xTi,1 and xFj are at distance

two in G[V1], since there exists a path that passes trough xTi,1, xTi,2 and xFj in
G[V1], as i 6= j. It follows that G[V1] is a 3-club.

We now consider G[V2]. We recall that, for each i with 1 6 i 6 q, if xTi,1,

xTi,2 ∈ V2, then xFi ∈ V1. Furthermore, we recall that we assume that each xi
appears as a positive and a negative literal in the instance of 5-Opposite-Sat,
thus each vertex xTi,1, with 1 6 i 6 q, and each vertex xFh , with 1 6 h 6 q, are
connected to some VC,j , with 1 6 j 6 p.

First, notice that vertex y is at distance at most three in G[V2] from each
vertex of V2, since it has distance one in G[V2] from each vertex vC,j , with
1 6 j 6 p, thus distance two from xTi,1, with 1 6 i 6 q, and xFh , with 1 6 h 6 q,
and three from xTi,2, with 1 6 i 6 q, r′T and r′F . Since y is adjacent to y2, it has
distance one from y2 and two from y1.

Now, consider a vertex vC,j , with 1 6 j 6 p. Since f opposite-satisfies C, it
follows that there exist two vertices in V2, xTi,1, with 1 6 i 6 q, and xFz , with
1 6 z 6 q, which are connected to vC,j . It follows that vC,j has distance 2 in
G[V2] from r′T and from r′F , and at most 3 from each xTh,1 ∈ V2, with 1 6 h 6 q,
and from each xFz ∈ V2, with 1 6 z 6 q. Furthermore, notice that, since vC,j is
adjacent to xFz and xFz is adjacent to each xTh,2 ∈ V2, with 1 6 h 6 q and h 6= z,

then vC,j has distance at most two in G[V2] from each xTh,2 ∈ V2. Finally, since
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vC,j is adjacent to y, it has distance two and three respectively, from y2 and y1,
in G[V2].

Consider a vertex xTi,1 ∈ V2, with 1 6 i 6 q. We have already shown that
it has distance at most three in G[V2] from any vC,j , with 1 6 j 6 p, and two
from y. Since xTi,1 is adjacent to r′T , it has distance at most two from each other

vertex xTh,1, with 1 6 h 6 q, and three from each other vertex xTh,2 of G[V2].

Moreover, it has distance two from y1 and three from y2 and r′F . Since xTi,2 is

adjacent to every vertex xFz ∈ V2, with 1 6 z 6 q, as z 6= i, it follows that xTh,1
has distance at most two from every vertex xFz ∈ V2.

Consider a vertex xTi,2 ∈ V2, with 1 6 i 6 q. We have already shown that it

has distance at most two from each vC,j in G[V2]. Since it is connected to xTi,1,

it has distance three from y and two from r′T in G[V2]. By construction xTi,2 is

adjacent to every vertex xFz ∈ V2, with 1 6 z 6 q, hence xTi,2 has distance at

most two from r′F in G[V2]. Moreover, xTi,2 has distance two from each vertex

xTh,2 in G[V2], with 1 6 i 6 q, since by construction they are both adjacent to

y1. Since xTi,2 is adjacent to y1, thus it has distance at most two from y2 in
G[V2].

Consider a vertex xFh , with 1 6 h 6 q. It has distance one from r′F in G[V2],
and thus distance two from y1 and three from y2 in G[V2]. Moreover, xFh is
adjacent to each xTi,2 ∈ V2, with 1 6 i 6 q, thus it has distance two from each

xTi,1 and distance three from r′T in G[V2]. Since by construction there exists at

least one vC,j , with 1 6 j 6 p, adjacent to xFh , thus xFh has distance two from
y and three from each vC,z in G[V2].

Finally, we consider vertices r′T , r′F , y1 and y2. Notice that it suffices to
show that these vertices have pairwise distance at most three in G[V2], since we
have previously shown that any other vertex of V2 has distance at most three
from these vertices in G[V2]. Since r′T , r

′
F , y2 ∈ N(y1), they are all at distance

at most two. It follows that G[V2] is a 3-club, thus concluding the proof. �

Lemma 7 Given an instance (C, X) of 5-Opposite-Sat, let G = (V,E) be the
corresponding instance of 3-Club Cover(2). Then, given two 3-clubs that cover
G, we can compute in polynomial time a truth assignment that opposite-satisfies
C.

Proof: Consider two 3-clubs G[V1], G[V2], with V1, V2 ⊆ V , that cover G. First,
notice that by Lemma 4 we assume that r, r′ ∈ V1 \ V2, while y, r′T , r

′
F ∈ V2 \ V1

and vC,j ∈ V2 \ V1, for each j with 1 6 j 6 p. Moreover, by Lemma 5 it follows
that for each i with 1 6 i 6 q, xTi,1 and xFi do not belong to the same 3-club,
that is exactly one belongs to V1 and exactly one belongs to V2.

By construction, each path of length at most three from a vertex vC,j , with
1 6 j 6 p, to r′F must pass through some xFh , with 1 6 h 6 q. Similarly, each
path of length at most three from a vertex vC,j , with 1 6 j 6 p, to r′T must pass
through some xTi,1. Assume that vC,j , with 1 6 j 6 p, is not adjacent to a vertex

xTi,1 ∈ V2, with 1 6 i 6 q (xFh ∈ V2, with 1 6 h 6 p respectively). It follows

that vC,j is only adjacent to y and to vertices xFw , with 1 6 w 6 q (xTu,1, with
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1 6 u 6 q, respectively) in G[V2]. In the first case, notice that y is adjacent
only to vC,z, with 1 6 z 6 p, and y2, none of which is adjacent to r′T (r′F ,
respectively), thus implying that this path from vC,j to r′T (to r′F , respectively)
has length at least 4. In the second case, xFw (xTu,1, respectively) is adjacent to

r′F , rF , vC,j and xTi,2 (r′T , rT , vC,j , x
T
u,2, respectively), none of which is adjacent

to r′T (r′F , respectively), implying that also in this case the path from vC,j to
r′T (to r′F , respectively) has length at least 4. Since r′T , r

′
F , vC,j ∈ V2, it follows

that, for each vC,j , the set V2 contains a vertex xTi,1, with 1 6 i 6 q, and a

vertex xFh , with 1 6 h 6 q, connected to vC,j .
By Lemma 5 exactly one of xTi,1, xFi belongs to V2, thus we can construct

a truth assignment f as follows: f(xi) := true, if xTi,1 ∈ V2, f(xi) := false, if

xFi ∈ V2. The assignment f opposite-satisfies each clause of C, since each vC,j

is connected to a vertex xTi,1, for some i with 1 6 i 6 q, and a vertex xFh , for
some h with 1 6 h 6 q.

�

We can now state the main result of this section.

Theorem 3 3-Club Cover(2) is NP-complete.

Proof: By Lemma 6 and Lemma 7, and from the NP-hardness of 5-Opposite-Sat
(see Theorem 2), it follows that 3-Club Cover(2) is NP-hard. The membership
in NP follows easily from the fact that, given two 3-clubs, it can be checked in
polynomial time whether are 3-clubs and cover all vertices of G. �

4 Hardness of Approximation

In this section we consider the approximation complexity of Min 2-Club Cover
and Min 3-Club Cover and we prove that Min 2-Club Cover is not approximable
within factor O(|V |1/2−ε), for each ε > 0, and that Min 3-Club Cover is not
approximable within factor O(|V |1−ε), for each ε > 0, unless P = NP.

4.1 Hardness of Approximation of Min 2-Club Cover

The proof for Min 2-Club Cover is obtained with a reduction very simi-
lar to that of Section 3.1. We present a preserving-factor reduction from
Minimum Clique Partition to Min 2-Club Cover. Let Gp = (V p, Ep) be a graph
input of Minimum Clique Partition, we build in polynomial time a corresponding
instance G = (V,E) of Min 2-Club Cover as in Section 3.1. In what follows we
prove the following results that are useful for the reduction.

Lemma 8 Let Gp = (V p, Ep) be a graph input of Minimum Clique Partition
and let G = (V,E) be the corresponding instance of Min 2-Club Cover. Then,
given a solution of Minimum Clique Partition on Gp = (V p, Ep) consisting of k
cliques, we can compute in polynomial time a solution of Min 2-Club Cover on
G = (V,E) consisting of k 2-clubs.
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Proof: Consider a solution of Minimum Clique Partition onGp = (V p, Ep) where
{V p

1 , V
p
2 , . . . , V

p
k } is the set of k cliques that partition V P . We define a solution

of Min 2-Club Cover on G = (V,E) consisting of k 2-clubs as follows. For each
d, 1 6 d 6 k, let

Vd = {wj ∈ V : vj ∈ V p
d } ∪ {wi,j : vi ∈ V p

d ∧ i < j}

As for the proof of Lemma 2, it follows that for each d, G[Vd] is a 2-club.
Furthermore, G[V1], . . . , G[Vk] cover each vertex of V , as each vi ∈ V p is covered
by one of the cliques V p

1 , V
p
2 . . . V

p
k . �

Lemma 9 Let Gp = (V p, Ep) be a graph input of Minimum Clique Partition
and let G = (V,E) be the corresponding instance of Min 2-Club Cover. Then,
given a solution of Min 2-Club Cover on G = (V,E) consisting of k 2-clubs,
we can compute in polynomial time a solution of Minimum Clique Partition on
Gp = (V p, Ep) with k cliques.

Proof: Consider the 2-clubs G[V1], . . . , G[Vk] that cover G. As for the proof of
Lemma 3, the result follows from the fact that by Lemma 1, given wi, wj ∈ Vd,
for each d with 1 6 d 6 k, it holds that {vi, vj} ∈ E. As a consequence, we can
define a solution of Minimum Clique Partition on Gp = (V p, Ep) consisting of k
cliques as follows, for each d, 1 6 d 6 k:

V p
d = {vi : wi ∈ Vd}

�

Theorem 4 Unless P = NP, Min 2-Club Cover is not approximable within fac-
tor O(|V |1/2−ε), for each ε > 0.

Proof:
The inapproximability of Min 2-Club Cover follows from Lemma 8 and

Lemma 9, and from the inapproximability of Minimum Clique Partition,
which is known to be inapproximable within factor O(|V p|1−ε′) [28]
(where Gp = (V p, Ep) is an instance of Minimum Clique Partition). Hence
Min 2-Club Cover is not approximable within factor O(|V p|1−ε′), for each ε′ > 0,
unless P = NP. By the definition ofG = (V,E), it holds |V | = |V p|+|Ep| 6 |V p|2
hence, for each ε > 0, Min 2-Club Cover is not approximable within factor
O(|V |1/2−ε), unless P = NP. �

4.2 Hardness of Approximation of Min 3-Club Cover

We show that Min 3-Club Cover is not approximable within factor O(|V |1−ε),
for each ε > 0, unless P = NP, by giving a preserving-factor reduction from
Minimum Clique Partition.

Consider an instance Gp = (V p, Ep) of Minimum Clique Partition, we con-
struct an instance G = (V,E) of Min 3-Club Cover by adding a pendant ver-
tex connected to each vertex of V p. Formally, V = {ui, wi : vi ∈ V p},
E = {{ui, wi} : 1 6 i 6 |V p|} ∪ {{ui, uj} : {vi, vj} ∈ Ep}}.

We prove now the main properties of the reduction.
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Lemma 10 Let Gp = (V p, Ep) be an instance of Minimum Clique Partition and
let G = (V,E) be the corresponding instance of Min 3-Club Cover. Then, given a
solution of Minimum Clique Partition on Gp = (V p, Ep) consisting of k cliques,
we can compute in polynomial time a solution of Min 3-Club Cover on G =
(V,E) consisting of k 3-clubs.

Proof: Consider a solution of Minimum Clique Partition on Gp = (V p, Ep),
consisting of the cliques {Gp[Vc,1], Gp[Vc,2], . . . , Gp[Vc,k]}. Then, for each i, with
1 6 h 6 k, define the following subset Vh ⊆ V :

Vh = {uj , wj ∈ V : vj ∈ V p
h }

Since V p
1 , V

p
2 . . . V

p
k partition V p, it follows that V1, V2 . . . Vk partition (hence

cover) G. Now, we show that each G[Vh], with 1 6 h 6 k, is a 3-club. First,
notice that since G[V p

h ], is a clique, then the set {uj : uj ∈ Vh} induces a clique
in G. Then, it follows that, for each ui, wj , wz ∈ Vh, dG[Vh](ui, wj) 6 2 and
dG[Vh](wj , wz) 6 3, thus concluding the proof. �

Lemma 11 Let Gp = (V p, Ep) be a graph input of Minimum Clique Partition
and let G = (V,E) be the corresponding instance of Min 3-Club Cover. Then,
given a solution of Min 3-Club Cover on G = (V,E) consisting of k 3-clubs,
we can compute in polynomial time a solution of Minimum Clique Partition on
Gp = (V p, Ep) consisting of k cliques.

Proof: Consider the k 3-clubs G[V1], . . . , G[Vk] that cover G. First, we show
that for each Vh, 1 6 h,6 k, and for each wi, wj ∈ Vh, with 1 6 i, j 6 |V p|, it
holds that ui, uj ∈ Vh. Indeed, notice that N(wi) = {ui} and N(wj) = {uj},
and by the definition of a 3-club we must have dG[Vh](wi, wj) 6 3, it follows
that ui, uj ∈ Vh. Hence, we can define a set of cliques of Gp. For each Vh, with
1 6 h 6 k, define a set V p

h :

V p
h = {vi : wi ∈ Vh}

Notice that each V p
h , 1 6 h 6 k, induces a clique in Gp, as by construction

if vi, vj ∈ V p
h , then wi, wj ∈ Vh, and this implies {vi, vj} ∈ Ep. Notice that

the cliques V p
1 , . . . , V

p
k may overlap, but starting from V p

1 , . . . , V
p
k , we can easily

compute in polynomial time a clique partition of Gp consisting of at most k
cliques. �

Lemma 10 and Lemma 11 imply the following result.

Theorem 5 Min 3-Club Cover is not approximable within factor O(|V |1−ε), for
each ε > 0, unless P = NP.

5 An Approximation Algorithm forMin 2-Club Cover

In this section, we present an approximation algorithm for Min 2-Club Cover
that achieves an approximation factor of 2|V |1/2 log3/2 |V |. Notice that, due to
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Theorem 4, the approximation factor is almost tight. We start by describing
the approximation algorithm, then we present the analysis of the approximation
factor.

Algorithm 1: Club-Cover-Approx

Data: a graph G
Result: a cover S of G

1 V ′ := V ; /* V ′ is the set of uncovered vertices of G, initialized to V */
2 S := ∅;
3 while V ′ 6= ∅ do
4 Let v be a vertex of V such that |N [v] ∩ V ′| is maximum;
5 Add N [v] to S;
6 V ′ := V ′ \N [v];

Club-Cover-Approx is similar to the textbook greedy approximation algo-
rithm for Minimum Dominating Set and Minimum Set Cover. While there exists
an uncovered vertex of G, the Club-Cover-Approx algorithm greedily defines a
2-club induced by the set N [v] of vertices, with v ∈ V , such that N [v] covers
the maximum number of uncovered vertices (notice that some of the vertices of
N [v] may already be covered). While for Minimum Dominating Set the choice
of each iteration is optimal, here the choice is suboptimal. Notice that indeed
computing a maximum 2-club is NP-hard.

Clearly the algorithm returns a feasible solution for Min 2-Club Cover, as
each set N [v] picked by the algorithm is a 2-club and, by construction, each
vertex of V is covered. Next, we show the approximation factor yielded by the
Club-Cover-Approx algorithm for Min 2-Club Cover.

First, consider the set VD of vertices v ∈ V picked by the Club-Cover-Approx
algorithm, so that N [v] is added to S. Notice that |VD| = |S| and that VD is a
dominating set of G, since, at each step, the vertex v picked by the algorithm
dominates each vertex in N [v], and each vertex in V is covered by the algorithm,
so it belongs to some N [v], with v ∈ VD.

Let D be a minimum dominating set of the input graph G. By the property
of the greedy approximation algorithm for Minimum Dominating Set, the set VD
has the following property [16]:

|VD| 6 |D| log |V | (1)

The size of a minimum dominating set in graphs of diameter bounded by 2
(hence 2-clubs) has been considered in [8], where the following result is proven.

Lemma 12 ([8]) Let H = (VH , EH) be a 2-club, then H has a dominating set
of size at most 1 +

√
|VH |+ ln(|VH |).

The approximation factor 2|V |1/2 log3/2 |V | for Club-Cover-Approx is ob-
tained by combining Lemma 12 and Equation 1.

Theorem 6 Let OPT be an optimal solution of Min 2-Club Cover, then Club-
Cover-Approx returns a solution having at most 2|V |1/2 log3/2 |V ||OPT | 2-clubs.
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Proof: Let D be a minimum dominating set of G and let OPT be an
optimal solution of Min 2-Club Cover. We start by proving that |D| 6
2|OPT ||V |1/2 log1/2 |V |. For each 2-club G[C], with C ⊆ V , that belongs
to OPT , by Lemma 12 there exists a dominating set DC of size at most
1 +

√
|C|+ ln(|C|) 6 2

√
|C|+ ln(|C|). Since |C| 6 |V |, it follows that

each 2-club G[C] that belongs to OPT has a dominating set of size at most
2
√
|V |+ ln(|V |). Consider, now, D′ =

⋃
C∈OPT DC . It follows that D′ is a

dominating set of G, since the 2-clubs in OPT covers G. Since D′ contains
|OPT | sets DC and |DC | 6 2

√
|V |+ ln(|V |), for each G[C] ∈ OPT , it follows

that |D′| 6 2|OPT |
√
|V |+ ln(|V |). Since D is a minimum dominating set, it

follows that

|D| 6 |D′| 6 2|OPT |(
√
|V |+ ln(|V |)).

By Equation 1, it holds |VD| 6 2|D| log |V | thus |VD| 6
2|V |1/2 ln1/2 |V | log |V ||OPT | 6 2|V |1/2 log3/2 |V ||OPT |. �

Notice that, starting from a solution S of Algorithm 1, we can com-
pute in polynomial time an approximated solution for the Min 2-Club Partition
problem on input G having factor 2|V |1/2 log3/2 |V ||OPT ′| , where OPT ′ is
an optimal solution of Min 2-Club Partition on G. Indeed, first observe that
|OPT ′| > |OPT |, as observed in Section 2. Recall that S consists of 2-clubs
N [v], with v ∈ VD ⊆ V . Then, starting from S, compute a solution S ′ of
Min 2-Club Partition by greedily assigning the shared vertices to exactly one 2-
club of S ′ such that if there exists a 2-club N [u] ∈ S, then there exists a 2-club
Cu ∈ S ′ with Cu ⊆ N [u]. Notice that, each vertex u ∈ VD is part only of
the 2-club Cu ⊆ N [u] and it is not assigned to any other 2-club of S ′. S ′ is a
solution of Min 2-Club Partition on input G and contains as many 2-clubs as S.
Thus

|S ′| = |S| 6 2|V |1/2 log3/2 |V ||OPT | 6 2|V |1/2 log3/2 |V ||OPT ′|.

6 Conclusion

There are some interesting directions for the problem of covering a graph with
s-clubs. From the computational complexity point of view, the main open prob-
lem is whether 2-Club Cover(2) is NP-complete or is in P. Moreover, it would be
interesting to study the computational/parameterized complexity of the prob-
lem in specific graph classes, as done for Minimum Clique Partition [5, 6, 24, 10].
For example Minimum Clique Partition is polynomial time solvable for graphs
of bounded clique-width [11]. Finally, from the approximation complexity point
of view, there is a small gap between the inapproximabily result and the ap-
proximation factor for Min 2-Club Cover, an open problem is reducing this gap.
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