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Abstract

We investigate crossing minimization for 1-page and 2-page book
drawings. We show that computing the 1-page crossing number is fixed-
parameter tractable with respect to the number of crossings, that testing
2-page planarity is fixed-parameter tractable with respect to treewidth, and
that computing the 2-page crossing number is fixed-parameter tractable
with respect to the sum of the number of crossings and the treewidth of
the input graph. We prove these results via Courcelle’s theorem on the
fixed-parameter tractability of properties expressible in monadic second
order logic for graphs of bounded treewidth.
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Figure 1: A 2-page book embedding of a planar graph (left) and a 2-page book
drawing of the non-planar graph K3,4 with two crossings, the minimum possible
(right), both drawn as arc diagrams.

1 Introduction

A k-page book embedding of a graph G is a drawing that places the vertices of G
on a line (the spine of the book) and draws each edge, without crossings, inside
one of k half-planes bounded by the line (the pages of the book) [35, 42]. In one
common drawing style, an arc diagram, the edges in each page are drawn as
circular arcs perpendicular to the spine [49], but the exact shape of the edges is
unimportant for the existence of book embeddings. These embeddings can be
generalized to k-page book drawings : as before, we place each vertex on the spine
and each edge within a single page, but with crossings allowed. The crossing
number of such a drawing is defined to be the sum of the numbers of pairs of
edges that cross within each page, and the k-page crossing number crk(G) is
the minimum crossing number of any k-page book drawing [46]. Figure 1 shows
examples of a 2-page book embedding and a minimum-crossing 2-page book
drawing. In an optimal drawing, two edges in the same page cross if and only if
their endpoints form interleaved intervals on the spine. Therefore, the problem
of finding an optimal drawing may be described in purely combinatorial terms
as the search for a permutation of the vertices and an assignment of edges to
pages that minimizes the number of pairs of edges forming interleaved intervals
on the same page.

As with most crossing minimization problems, k-page crossing minimization
is NP-hard. Even the simple special case of testing whether the 2-page crossing
number is zero is NP-complete [15], as is testing whether the 1-page crossing
number is below a given threshold [40]. However, it may still be possible to
solve these problems in polynomial time for restricted families of graphs and
restricted values of k. For instance, Bannister, Eppstein and Simons [7] showed
the computation of cr1(G) and cr2(G) to be fixed-parameter tractable in the
almost-tree parameter. Here, a graph G has almost-tree parameter k if every
biconnected component of G can be reduced to a tree by removing at most k
edges. In this paper we significantly strengthen these results by finding fixed-
parameter tractable algorithms for less-constraining parameters, allowing k-page
crossing minimization to be performed in polynomial time for a much wider class
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of graphs.

1.1 New results

We design fixed-parameter algorithms for the following two problems:

• Computing the minimum number of crossings cr1(G) in a 1-page drawing
of a graph G.

• Computing the minimum number of crossings cr2(G) in a 2-page drawing
of G.

Ideally, fixed-parameter algorithms for crossing minimization should be parame-
terized by their natural parameter, which for this problem is the optimal number
of crossings. We achieve this ideal bound, for the first time, for cr1(G). However,
for cr2(G), even testing whether a given graph is 2-page planar (that is, whether
cr2(G) = 0) is NP-complete [15]. Therefore, unless P = NP, there can be no
fixed-parameter-tractable algorithm parameterized by the crossing number. In-
stead, we show that cr2(G) is fixed-parameter tractable in the sum of the natural
parameter and the treewidth of G. One consequence of our result on cr2(G) is
that it is possible to test whether a given graph has a 2-page book embedding,
in time that is fixed-parameter tractable with respect to treewidth.

1.2 Solution technique

We construct these algorithms via Courcelle’s theorem [17,18], which connects
the expressibility of graph properties in monadic second order logic with the
fixed-parameter tractability of these properties with respect to treewidth. Recall
that second order logic extends first order logic by allowing the quantification
of k-ary relations in addition to quantification over individual elements. In
monadic second order logic we are restricted to quantification over unary relations
(equivalently subsets). When applied to the logic of graphs, this means that we
are interested in logical formulas whose variables represent vertices, edges, sets
of vertices, and sets of edges of the given graph, with predicates for incidence
and membership. The property of having a 2-page book embedding is easy to
express in (full) second-order logic, via the known characterization that a graph
has such an embedding if and only if it is a subgraph of a Hamiltonian planar
graph [8]. However, this expression is not allowed in monadic second-order logic
because the extra edges needed to make the input graph Hamiltonian cannot be
described by a subset of the existing vertices and edges of the graph. Instead,
we prove a new structural description of 2-page planarity that is more easily
expressed in monadic second order logic.

Like many earlier parameterized algorithms for related problems, our algo-
rithms have a high dependence on their parameter, rendering them impractical.
For this reason we have not attempted an exact analysis of their complexity nor
have we searched for optimizations to our logical formulas that would improve
this complexity.
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1.3 Related work

As well as our already-mentioned previous work on crossing minimization for
almost-trees [7], related results in fixed-parameter optimization of crossing num-
ber include a proof by Grohe, using Courcelle’s theorem, that the topological
crossing number of a graph is fixed-parameter tractable in its natural parame-
ter [31]. This result was later improved by Kawarabayashi and Reed [36] to be
linear in the graph size for any fixed parameter value. Based on these results the
crossing number itself was also shown to be fixed-parameter tractable. Pelsmajer
et al. showed a similar result for the odd crossing number [43]. Dujmović
et al. showed that finding a layered drawing with k crossings and h layers is
fixed-parameter tractable in the sum of these two parameters. Their result
depends on a bound on the pathwidth of such a drawing, as a function of the two
parameters. Here, pathwidth is a parameter closely related to treewidth [23]. We
have also used Courcelle’s theorem in graph drawing to find the split thickness
of a graph, the minimum number of vertices into which each vertex should be
split in order to produce a planar drawing [27]

Binucci et al. have investigated the local crossing number of book drawings [9].
This is a variant of the crossing number in which one counts crossings per edge
rather than the total number of crossings of the entire graph. The 1-page graphs
of bounded local crossing number can be recognized in quasi-polynomial time [13].
However, without restriction to book drawings, computing local crossing number
is NP-hard even for graphs of bounded treewidth [5].

Our research investigates the worst-case parameterized time complexity
of exact algorithms for k-page crossing minimization in general graphs, but
other approaches to the problem include investigations of the k-page crossing
number of special graphs [1, 19, 20, 28, 32]. Many authors have also developed
and experimentally compared heuristic approaches to the same problems of
minimizing crossings in book drawings of general graphs. For recent work in this
area, see [33,37,45] and their references.

Subsequently to the appearance of the conference version of this paper [6],
Kobayashi et al. [38] found an algorithm for one-page crossing minimization that
uses an explicit dynamic program rather than Courcelle’s theorem, obtaining
running time O(2O(k log k)n). Despite this improvement, we provide in this work
the details for our slower solution to the same problem, as it provides many of
the ideas necessary to understand our two-page crossing minimization algorithm.

2 Preliminaries

2.1 Bridges vs flaps and isthmuses

By a cycle in a graph we mean a simple cycle: a connected 2-regular subgraph.
There is an unfortunate terminological confusion in graph theory: two different
concepts, a maximal subgraph that is internally connected by paths that avoid
a given cycle, and an edge whose removal disconnects the graph, are both
commonly called bridges. We need both concepts in our algorithms. To avoid
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cycle

flap

isthmus

Figure 2: Clarification of our graph-theoretic terminology.

confusion, we call the subgraph-type bridges flaps and the edge-type bridges
isthmuses (Figure 2). The term “flap” has been used with a similar but more
general meaning in the theory of graph separators [2]. Although less common
than “bridge”, the term “isthmus” for a separating edge goes back to Tutte [48]
and can still be found in some modern graph theory texts [12,16].

To be more precise, given a graph G and a cycle C, we define an equivalence
relation on the edges of G \ C in which two edges are equivalent if they belong
to a path that has no interior vertices in C, and we define a flap of C to be the
subgraph formed by an equivalence class of this relation. (Different cycles may
give rise to different flaps.) Given a graph G, we define an isthmus of G to be
an edge of G that does not belong to any simple cycles in G.

2.2 Treewidth and graph minors

The treewidth of G can be defined to be one less than the number of vertices
in the largest clique in a chordal supergraph of G that (among possible chordal
supergraphs) is chosen to minimize this clique size [11]. Alternatively it can be
described in terms of tree decompositions. A tree decomposition for a graph G
is a tree T whose vertices (called bags) are labeled with subsets of vertices of
G, such that the bags containing any vertex v of G form a connected subtree of
T , and such that the two endpoints of each edge of G both belong to at least
one shared bag. The width of a tree decomposition is one less than the largest
cardinality of any of its bags, and the width of a graph G is the minimum width
of any of its tree decompositions. The problem of computing the treewidth of a
general graph is NP-hard [3], but it is fixed-parameter tractable in its natural
parameter [10].

A graph H is said to be a minor of a graph G if H can be constructed from
G via a sequence edge contractions, edge deletions, and vertex deletions. It can
be determined whether a graph H is a minor of a graph G, in fixed-parameter
tractable time (a polynomial in the size of G multiplied by a computable function
of the size of H) [44].
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2.3 Logic of graphs

We will be expressing graph properties in extended monadic second-order logic
(MSO2). This is a fragment of second-order logic that includes:

• variables for vertices, sets of vertices, edges, and sets of edges;

• binary relations for equality (=), inclusion of an element in a set (∈) and
edge-vertex incidence (I);

• the standard propositional logic operations: ¬,∧,∨,→;

• the universal quantifier (∀) and the existential quantifier (∃), both which
may be applied to variables of any of the four variable types.

To distinguish the variables of different types, we will use u, v, w, . . . for vertices,
e, f, g, . . . for edges, and capital letters for sets of vertices or edges (with context
making clear which type of set). Given a graph G and an MSO2 formula φ we
write G |= φ (“G models φ”) to express the statement that φ is true for the
vertices, edges, and sets of vertices and edges in G, with the semantics of this
relation defined in the obvious way. MSO2 differs from full second order logic in
that it allows quantification over sets, but not over higher order relations, such as
sets of pairs of vertices that are not subsets of the given edges. In Section 3, we
provide a brief introduction to MSO2 logic in which we describe how to express
some of the properties we need for our results.

The reason we care about expressing graph properties in MSO2 is the following
powerful algorithmic meta-theorem due to Courcelle.

Lemma 1 (Courcelle’s theorem [17,18]) Given an integer k ≥ 0 and an
MSO2-formula φ of length `, an algorithm can be constructed that takes as input
a graph G of treewidth at most k and decides in O

(
f(k, `) · (n+m)

)
time whether

G |= φ, where the function f appearing in the time bound is a computable
function of the treewidth k and formula length `.

2.4 Combinatorial enumeration of crossing diagrams

In order to show that the properties we study can be represented by logical
formulas of finite length, we need to bound the number of combinatorially distinct
ways that a subset of edges in a k-page graph drawing can cross each other.

We define a 1-page crossing diagram to be a placement of some points on the
circumference of a circle, together with some straight line segments connecting
the points such that each point is incident to a segment, no segment is uncrossed
and no three segments cross at the same point (Figure 3). Two crossing diagrams
are combinatorially equivalent if they have the same numbers of points and line
segments and there exists a cyclic-order-preserving bijection of their points that
takes line segments to line segments. The crossing number of a 1-page crossing
diagram is the number of pairs of its line segments that cross each other.

We define a 2-page crossing diagram to be a 1-page crossing diagram together
with a labeling of its line segments by two colors, such that every segment is
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Figure 3: Three inequivalent 1-page crossing diagrams with five points. Every
five-point 1-page crossing diagram is equivalent to one of these three diagrams.
Their crossing numbers are 2, 3, and 5 respectively.

crossed by another segment of the same color. For a 2-page crossing diagram
we define the crossing number to be the total number of crossing pairs of line
segments that have the same color as each other.

Lemma 2 There are 2O(k2) 1-page crossing diagrams with k crossings, and
there are 2O(k2) 2-page crossing diagrams with k crossings.

Proof: Place 4k points around a circle. Then every 1-page crossing diagram
with k or fewer crossings can have at most 2k edges and at most 4k vertices,
so it can be represented by choosing a subset of the points and a set of line
segments connecting a subset of pairs of the points. There are 4k points and
4k(4k − 1)/2 pairs of points, so 2O(k2) possible subsets to choose.

Similarly, every 2-page crossing diagram with k or fewer crossings can be
represented by a subset of the same 4k points, and by two disjoint subsets of
pairs of points. The number of choices of these subsets can again be bounded
by 2O(k2). �

Two combinatorially equivalent crossing diagrams, as defined above, may
have a topology that differs from each other, or from combinatorially equivalent
diagrams with curved edges (Figure 4). This is because, for an edge with
multiple crossings, the order of the crossings along this edge may differ from one
diagram to another, but this ordering is not considered as part of our definition
of combinatorial equivalence. For our purposes such differences are unimportant,
as we are concerned only with the total number of crossings. So we consider two
crossing diagrams to be equivalent if they have the same crossing pairs of edges,
regardless of whether the crossings occur in the same order.

For a related bound on 1-page crossing diagrams, see Kynčl [39, Prop. 7].
Kynč fixes the set of chords and the ordering of their endpoints (i.e., in our
terminology, he fixes a choice of a single 1-page crossing diagram) and proves
that, for this choice, there are at most 2k different ways that this diagram can
be realized by choosing the ordering of crossings along each segment. Instead,
we consider only which pairs of segments cross (ignoring the order in which they
cross along each segment) and bound the number of ways to choose the chords
and the endpoint ordering in order to realize a diagram with k crossings.
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Figure 4: Two combinatorially equivalent 1-page crossing diagrams with different
topologies. The set of pairs of segments that cross is the same in each diagram,
but the ordering of the crossings along each segment is different.

3 Expressing graph properties in MSO2

For readers unfamiliar with MSO2 logic, we provide in this section some standard
examples of graph properties that may be expressed in this logic, leading up to
the properties that we use in our results. Additional examples may be found in
one of the standard introductions to graph logic [18, 22, 29]. The building blocks
in this section can be used to construct the formulas that we use throughout our
paper.

Because the equal sign (=) is an element that is used within MSO2 formulas,
expressing the equality relation between two vertices, edges, or sets, we instead
use the equivalence sign (≡) to express the syntactic equality of two formulas,
or the assignment of a name to a formula.

3.1 k-Coloring

The formula colork that we construct below expresses the k-colorability of
a graph. As a step towards the construction of colork, we first construct a
formula vertex-partition expressing the property that a collection of vertex
sets forms a partition of the vertices: the sets are disjoint from each other and
their union contains all vertices in the graph.

vertex-partition(U1, . . . , Uk) ≡ (∀v)

[( k∨
i=1

v ∈ Uk

)
∧
(∧
i 6=j

¬(v ∈ Ui ∧ v ∈ Uj)
)]

Although we write the vertex subset Ui using an indexed notation, the allowed
operations in MSO do not include this kind of indexing. Instead, when this
notation appears in our logical formulas, each Ui should be interpreted as a
separate variable name. A formula edge-partition expressing the property
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that a collection of edge sets forms a partition of the edges in the graph may be
constructed in the same way by changing vertex variables to edge variables and
vertex set variables to edge set variables.

With the ability to partition vertices we can now construct colork. The
construction uses the fact that a k-coloring forms a partition of the vertices with
the additional property that, for every color class C, all edges have an endpoint
of a different color than C.

colork ≡ (∃U1, . . . , Uk)
[
vertex-partition(U1, . . . , Uk)

∧
k∧

i=1

(∀e)(∃v)[I(e, v) ∧ v 6∈ Ui]
]

3.2 Minor containment and planarity

Next, we construct a formula minorH expressing the property that a graph has
H as a minor. This resembles a coloring problem, where the colors are vertices
of H: If we label each of the k vertices in H with a distinct number in the range
from 1 to k, then H is a minor of G if and only if there exists a corresponding
collection of k connected and disjoint subsets of the vertices of G, say U1, . . . ,
Uk, such that for each edge (i, j) in H there is an edge from a vertex in Ui to a
vertex in Uj .

As part of this construction, we will use a formula connected expressing
the property that a graph is connected. We will construct this formula by first
constructing a formula disconnected expressing the property that a graph is
disconnected. This is true if and only if the graph supports a nontrivial cut of
the vertices with an empty cut-set.

disconnected ≡ (∃U)
[
(∃u, v)

[
u ∈ U ∧ v 6∈ U

]
∧ ¬(∃e)(∃u, v)

[
I(e, u) ∧ I(e, v) ∧ u ∈ U ∧ v 6∈ U

]]

We can now define connected ≡ ¬disconnected. A similar construction
leads to formulas connected-vertices(V ) and connected-edges(E) express-
ing the properties that vertex set V describes a connected induced subgraph or
that edge set E and the endpoints of edges in E describe a connected subgraph.
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With the ability to express connectedness we can now construct minorH .

minorH ≡ ∃(U1, . . . , Uk)

[
k∧

i=1

(∃u)[u ∈ Ui]

∧
k∧

i=1

connected-vertices(Ui)

∧
∧
i6=j

(∀v)[v 6∈ Ui ∨ v 6∈ Uj ]

∧
∧

(i,j)∈EH

connected-vertices(Ui ∪ Uj)

]

We can express the existence of this formula as the following result.

Lemma 3 (Corollary 1.15 in [18]) Given any fixed graph H there exists an
MSO2-formula minorH such that, for all graphs G, G |= φ if and only if G
contains H as a minor.

For instance, by Wagner’s theorem, the planar graphs are precisely the graphs
that have neither K5 nor K3,3 as minors. Therefore we can express the planarity
of a graph in MSO2, in terms of these forbidden minors, as

planar ≡ ¬minorK5
∧¬minorK3,3

.

3.3 Hamiltonicity

Our last example will be a formula expressing the existence of a Hamiltonian
cycle in a graph. A set of edges F in a graph is a union of vertex-disjoint cycles
if every endpoint of an edge in F is incident to exactly two edges in F .1 Thus,

cycle-set(F ) ≡ (∀e)(∀v)
[(
e ∈ F ∧ I(e, v)

)
→ (∃=2f)

[
f ∈ F ∧ I(f, v)]

]]
expresses the property that F is a disjoint union of cycles. (Here ∃=2 is a logical
shorthand for the existence of exactly two objects satisfying the given property,
i.e. that there exist f1 and f2 both satisfying the property, that f1 and f2
are unequal, and that there do not exist three unequal edges all satisfying the
property.) Then a set of edges is a single cycle if it is a union of cycles and forms
a connected subgraph. So we define

cycle(F ) ≡ cycle-set(F ) ∧ connected-edges(F ),

A set of edges F spans a graph if every vertex is incident to at least one of the
edges in F .

span(F ) ≡ (∀v)(∃e)[e ∈ F ∧ I(e, v)]

1An earlier version of this paper used an alternative formulation in which each edge in F is
incident to exactly two other edges in F . However, this is also true of a claw K1,3 as well as of
a cycle.
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Finally, a graph is Hamiltonian if it has a spanning cycle.

hamiltonian ≡ (∃F )[cycle(F ) ∧ span(F )]

4 One-page crossing minimization

In this section we provide the details of our method for one-page crossing
minimization. Subsequently to the appearance of the conference version of our
work [6], this method has been improved by Kobayashi et al. [38], who provided
a faster direct dynamic programming algorithm. Nevertheless, we believe that
this material is still relevant as context for our more complex two-page crossing
minimization algorithm.

4.1 Outerplanarity

Recall that a graph is outerplanar if there exists a placement of its vertices on
the circumference of a circle such that when its edges are drawn as straight
line segments they do not cross. Topologically, the circle and the half-plane
are equivalent, so a graph is outerplanar if and only if it has a crossing-free
1-page drawing. For incorporating a test of outerplanarity into methods using
Courcelle’s theorem, it is convenient to use a standard characterization of the
outerplanar graphs by forbidden minors:

Lemma 4 (Chartrand and Harary [14]) A graph G is outerplanar (1-page
planar) if and only if it contains neither K4 nor K2,3 as a minor.

Let outerplanar be the formula ¬minorK4
∧¬minorK2,3

combining two
minor-containment formulas from Lemma 3. Then Lemma 4 implies that, for
all graphs G, G |= outerplanar if and only if G is outerplanar. Because
outerplanar graphs have bounded treewidth (at most two), Courcelle’s theorem
guarantees the existence of a linear time algorithm for testing outerplanarity.
There are of course much simpler linear time algorithms for testing outerpla-
narity [41,50].

4.2 Crossings vs treewidth

Next, we relate the natural parameter for 1-page crossing minimization (the
number of crossings) to the parameter for Courcelle’s theorem (the treewidth).
This relation will allow us to construct a fixed-parameter-tractable algorithm for
the natural parameter.

A k-clique sum of two disjoint graphs each containing a k-clique is formed
by bijectively identifying each vertex of one k-clique with a vertex of the other
k-clique, and then removing one or more of the k-clique edges from the resulting
combined graph.

Lemma 5 (Lemma 1 in [21]) If G1 and G2 each have treewidth at most w,
then any clique-sum of G1 and G2 also has treewidth at most w.
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Figure 5: An example of the clique-sum decomposition in Lemma 6. The red
regions represent the components with crossings and the blue regions represent
outerplanar components. The entire graph may be reconstructed by performing
clique-sums on the region boundaries.

Lemma 6 Every graph G has treewidth O(
√

cr1(G)).

Proof: Let G be a graph with cr1(G) = k, and D a 1-page drawing of G with k
crossings. Then let H be the subgraph of G induced by the endpoints of crossed
edges in D. (H is shown as the set of red edges in Figure 5.)

If the edges of H are removed from G, the remaining graph G \H (shown
as blue in the figure) has no crossings, so it is outerplanar, and each of its
biconnected components is again outerplanar. Because they are outerplanar,
their treewidth is at most two.

As can be seen in the figure, G can be decomposed as a clique-sum of the
biconnected components of H and of G \ H, with 1-clique-sums where two
components meet at a single articulation vertex of G and 2-clique-sums where a
biconnected component of H and a biconnected component of G \H share the
same two vertices. Since each clique-sum operation preserves treewidth, and the
treewidth of the biconnected components of G \H is at most two, the treewidth
of G is bounded by the treewidth of the biconnected components of H.

From each biconnected component C of H we create a planar graph C ′ by
planarizing C with respect to the drawing D. That is, we replace each crossing
point of two edges by a new vertex, and we replace each crossed edge by a path
through these subdivision vertices. Since C ′ is a planar graph with O(k) vertices
it has treewidth O(

√
k). A tree-decomposition of C ′ can be transformed into a

tree decomposition of C by replacing each subdivision vertex in each bag of the
tree decomposition by the four endpoints of its associated two crossing edges, so
C also has treewidth O(

√
k), as its treewidth is at most four times that of C ′. �
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U0

U1

U2

U3

U4

Figure 6: A 1-page drawing of a graph with two crossings and five outerplanar
subgraphs, showing the subsets Ui of 1.

4.3 Logical characterization

Let G be a graph with bounded 1-page crossing number, and consider a drawing
of G achieving this crossing number. Then the set of crossing edges of the
drawing partitions the halfplane into an arrangement of curves, and we can
partition G itself into the subgraphs that lie within each face of this arrangement.
Each of these subgraphs is itself outerplanar, because it lies within a subset of
the halfplane (with its vertices on the boundary of the subset) and has no more
crossing edges; see Figure 6. This intuitive idea forms the basis for the following
characterization of the 1-page crossing number, which we will use to construct an
MSO2-formula for the property of having a drawing with low crossing number.

Observation 1 A graph G = (V,E) has cr1(G) ≤ k if and only if there exist
edges F = {e0, . . . , er} with r = O(k), vertices W = {v0, . . . , v`} with ` = O(k),
and a partition U0, . . . , U` of V \W into (possibly empty) subsets, satisfying the
following properties:

1. W is the set of vertices incident to edges in F .

2. F contains all edges in the induced subgraph on W .

3. There are no edges between Ui and Uj for i 6= j.

4. There is an outerplanar embedding of the induced subgraph on Ui∪{vi, vi+1}
with vi and vi+1 consecutive in the spine ordering for all 0 ≤ i < `.

5. The edges in F produce at most k crossings when their endpoints (the
vertices in W ) are placed in order according to their indices.
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We now construct a formula onepagek, based on 1, such that G |= onepagek
if and only if cr1(G) ≤ k. The formula onepagek will have the overall form of
a disjunction, over all crossing configurations, of a conjunction of sub-formulas
representing Properties 1–4 in 1. Property 5 will be represented implicitly, by
the enumeration of crossing configurations. The first three properties are easy
to express directly: the formulas

θ1(W,F ) ≡ (∀v)[v ∈W ↔ (∃e)[e ∈ F ∧ I(e, v)]]

θ2(F,W ) ≡ (∀e)[(∀v)[I(e, v)→ v ∈W ]→ e ∈ F ]

θ3(Ui, Uj) ≡ ¬(∃e)(∃u, v)[I(e, u) ∧ I(e, v) ∧ u ∈ Ui ∧ v ∈ Uj ]

express in MSO2 Properties 1, 2, and 3 of 1 respectively.
To express Property 4 we use the following characterization of consecutive

pairs of vertices in outerplanar embeddings:

Lemma 7 The following three conditions on an undirected graph G with desig-
nated vertices u and v are equivalent to each other:

1. G has an outerplanar embedding with u and v consecutive in the spine
ordering.

2. G is K4-minor-free, K2,3-minor-free, and has no C4 (four-vertex cycle)
minor such that u and v belong to subsets Ui for opposite vertices of the
C4.

3. The graph G′ formed from G by adding a new vertex w and edges uw and
vw is outerplanar.

Proof: We prove separate implications between these three conditions, as
follows.

(1)⇒ (2):
Because G is assumed outerplanar, it has no K4 or K2,3 minor by Lemma 4.
If it had a C4 minor in which u and v belong to subsets Ui for opposite
vertices of the C4, this minor would necessarily be obtained by a sequence of
vertex deletions, edge deletions, and edge contractions (for edge contractions
that would not merge u and v into the same supervertex). However, this
is impossible, as each of these operations preserves the existence of an
outerplanar embedding with u and v consecutive, and they would not be
consecutive in the resulting C4 minor.

(2)⇒ (3):
We assume the contrary, that Condition 3 fails, and prove that this implies
the existence of K4, K2,3, or C4 (with u and v opposite) as a minor in
G. If Condition 3 fails, then G′ is not outerplanar and by Lemma 4 it
contains a K4 or K2,3 minor H. As discussed in Subsection 3.2, having H
as a minor means that the vertices of H can be associated with disjoint
connected subsets Ui of vertices of G′ in such a way that each edge of
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Figure 7: Cases for when ŵ = û or ŵ = v̂ (but not both) in Lemma 7. Top: If
H is K4 (top left), then removal of w may eliminate the edge ûv̂ from H (top
middle). Removing one more edge leaves a C4 minor with û and v̂ opposite (top
right). Bottom: If H is K2,3 (bottom left), then removing v and eliminating
edge ûv̂ leaves a graph with a four-cycle and an extra edge (bottom middle).
Contracting the extra edge produces a C4 minor with û and v̂ opposite (bottom
right).

H can be represented by an edge between the two subsets corresponding
to its endpoints. Let û, v̂, and ŵ denote the vertices of H (if they exist)
whose sets Ui contain u, v, or w. We consider the following cases for how
w can participate in this representation.

• If w does not belong to any of the subsets Ui, so ŵ does not exist,
then H forms a K4 or K2,3 minor in G.

• If w is the only member of its subset Ui, then (as w has only two
adjacencies in G′) ŵ must have degree two in H, and its two neighbors
must be two distinct vertices û and v̂. In this case, H must be K2,3

with û and v̂ as its two degree-three vertices. Removing w from G′

and ŵ from H leaves a C4 minor in G in which u and v are opposite.

• In the remaining cases, ŵ = û or ŵ = v̂. Suppose first that û and v̂
are distinct. Then the removal of w from G′ cannot disconnect the
subset Ui containing w, but it can eliminate the edge between û and
v̂. If H is K4, the subgraph of H obtained by removing this edge
can be transformed into C4 with u and v opposite by removing one
more edge, the one between the other two vertices (Figure 7, top). If
H is K2,3, then the subgraph obtained by removing edge ûv̂ can be
transformed into a C4 with u and v opposite by the contraction of
one more edge, the one that is not in the remaining 4-cycle (Figure 7,
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Figure 8: Cases for when û = v̂ = ŵ in Lemma 7, so that removing w may split
this vertex of H into two vertices. Top: H is K4. Middle: H is K2,3 and ŵ is a
degree-two vertex in H. Bottom: H is K2,3 and ŵ is a degree-three vertex in H.
In all cases, the remaining graph after the split has a C4 minor with û and v̂
opposite.

bottom).

• Finally, suppose that û = v̂ = ŵ. If the removal of w from G′ does not
disconnect the set Ui containing u, v, and w, then H is a K4 or K2,3

minor of G. If removing w does disconnect this set, it disconnects it
into two non-adjacent components, forming a minor of G in which
one of the vertices of H has been split into two, and in which the
edges incident to the split vertex have been assigned to one of its two
copies. Note also that u belongs to one copy, and v belongs to the
other copy. We have the following sub-cases:

– If all of the edges incident to the split vertex are assigned to the
same copy of that vertex, then (ignoring the other copy) we have
H as a minor of G.

– If H is K4, then splitting ŵ into the two vertices û and v̂ leaves a
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graph in which contracting one edge (the one incident to whichever
of û or v̂ has degree one) and then deleting one edge (the one
incident to neither û nor v̂) produces a C4 minor with û and v̂
opposite (Figure 8, top).

– If H is K2,3, and the split vertex has degree two in H, then
splitting ŵ into the two vertices û and v̂ leaves a graph in the form
of a four-cycle with two additional edges, connecting opposite
vertices of the four-cycle to û and v̂. Contracting these two
additional edges produces a C4 minor with û and v̂ opposite
(Figure 8, middle).

– If H is K2,3, and the split vertex has degree three in H, then
splitting ŵ into the two vertices û and v̂ leaves a graph in the form
of a four-cycle containing one of the two vertices û or v̂, with the
opposite vertex of the four-cycle connected by a two-edge path
to the other of û or v̂. Contracting this two-edge path produces
a C4 minor with û and v̂ opposite (Figure 8, bottom).

(3)⇒ (1):
By the assumption that Condition 3 holds, G′ has an outerplanar drawing.
In this drawing, the edges uw and vw partition the bounding disk of the
drawing into three regions: a region bounded by edge uw and incident to
vertices u and w (but not to vertex v), a second region bounded by edge
vw and incident to vertices v and w (but not to u), and a third region
bounded by both edges and incident to all three vertices. If the first region
is non-empty, the vertices and edges within it touch only each other and
u, and can be reflected across u into the space between u and the next
vertex on the other side of w, emptying the region without affecting the
outerplanarity of the drawing. Similarly, if the second region is non-empty,
its vertices and edges touch only each other and v, and can be reflected
across v into the space between v and the next vertex on the other side of
w, again emptying the region without affecting the outerplanarity of the
drawing. Once both of the first two regions have been emptied in this way,
w can be removed from the drawing to create an outerplanar drawing of
G in which u and v are adjacent.

Thus, each condition implies the other two, so the three conditions are equivalent.
�

Corollary 1 Property 4 can be expressed as an MSO2-formula θ4(Ui, vi, vj).

Proof: We may easily modify Lemma 3 to recognize the three forbidden minors
of Lemma 7, by restricting the edges that participate in the minor to the given
parameter Ui of θ4 and by checking that vi and vj correspond to opposite vertices
of any C4 minor. �

Lemma 2 tells us that there are 2O(k2) ways of satisfying Property 5 of
1. For each crossing diagram D with k crossings we can construct a for-
mula αD(v0, . . . , v`, e0, . . . , er) specifying that the vertices v0, . . . , v` and edges



594 Bannister and Eppstein Crossing Minimization for 1-page and 2-page...

e0, . . . , er are in configuration D. We then construct the formula

βD ≡ (∃v0, . . . v`)(∃e0, . . . , er)(∃U0, . . . , U`)[
αD(v0, . . . , v`, e0, . . . , er) ∧

(⋃̀
i=0

Ui

)
= V \ {v0, . . . , v`}

∧
∧
i6=j

(
Ui ∩ Uj = ∅

)
∧ θ1(v0, . . . , v`; e0, . . . , er)

∧ θ2(e0, . . . , er; v0, . . . , v`)

∧
∧
i6=j

θ3(Ui, Uj)

∧
∧̀
i=0

θ4(Ui, vi, vi+1)
]

of length O(k2). This formula expresses the property that, in the given graph G,
we can construct a crossing diagram of type D, and a corresponding partition
of the vertices into subsets Ui, that obeys Properties 1–4 of 1. By 1, this is
equivalent to the property that G has a 1-page drawing with k crossings in
configuration D. Finally, we construct onepagek by taking the disjunction of
the βD where D ranges over all crossing diagrams with ≤ k crossings. Thus,
onepagek is a formula of length 2O(k2), expressing the property that cr1(G) ≤ k.

Theorem 1 There exists a computable function f such that cr1(G) can be
computed in O(f(k)n) time for a graph G with n vertices and with k = cr1(G).

Proof: We have shown the existence of a formula onepagek such that a graph
G |= onepagek if and only if cr1(G) ≤ k. By Lemma 6, the treewidth of any
graph with crossing number k is O(k). Applying Courcelle’s theorem with the
formula onepagek and the O(k) treewidth bound, it follows that computing
cr1(G) is fixed-parameter tractable in k . �

5 Two-page planarity

A classical characterization of the graphs with planar 2-page drawings is that
they are exactly the subhamiltonian planar graphs:

Lemma 8 (Bernhart and Kainen [8]) A graph is 2-page planar if and only
if it is the subgraph of planar Hamiltonian graph.

However, this characterization does not directly help us to construct an
MSO2-formula expressing the 2-page planarity of a graph, as we do not know
how to construct a formula that asserts the existence of a supergraph with the
given property. Hamiltonicity and planarity are both straightforward to express
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in MSO2, but there is no obvious way to describe a set of edges that may be of
more than constant size, is not a subset of the existing edges, and can be used
to augment the given graph to form a planar Hamiltonian graph.

For this reason we provide a new characterization, which we model on a
standard characterization of planar graphs: a graph is planar if and only if,
for every cycle C, the flaps of C can be partitioned into two subsets (the
interior and exterior of C) such that no two flaps in the same subset cross
each other. For instance, this characterization has been used as the basis for a
cubic-time divide and conquer algorithm for planarity testing, which recursively
subdivides the graph into cycles and non-crossing subsets of flaps [4, 30,47]. In
our characterization of 2-page graphs, we apply this idea to a special set of
cycles, the cycles that lie within one halfplane and are not surrounded by any
other cycles. The cycles of this type are edge-disjoint, and if a single cycle of this
type has been identified then its interior flaps can also be identified easily: each
interior flap is a single edge, and an edge forms an interior flap if and only if it
belongs to the same page as the cycle in the book embedding and has both its
endpoints on the cycle. As well as identifying which of the two pages each edge
of a given graph is assigned to, our MSO2 formula will partition the edges into
three different types of edges: the ones that belong to these special cycles, the
ones that form interior flaps of these special cycles, and the remaining isthmus
edges that, if deleted, would disconnect parts of their page.

Suppose we are given a graph G = (V,E) and a partition of its edges into two
subsets A,B, intended to represent the two pages of a 2-page drawing of G. We
define the graph separate(G;A,B) that splits each vertex of G into two vertices,
one in each page, with a new edge connecting them. Thus, separate(G;A,B) has
2n vertices, which can be labeled by pairs of the form (v,X) where v is a vertex
in V and X is one of the two sets in A,B. It has an edge between (x,X) and
(y, Y ) if either of two conditions is met: (1) x = y and X 6= Y , or (2) X = Y
and there is an edge between x and y in X.

See Figure 10 for an illustration of the separate(G;A,B) construction.

Lemma 9 A graph G = (V,E) is 2-page planar if and only if there exists a
partition Ab, Ac, Ad, Bb, Bc, Bd of the edge set E into six subsets such that, for
each of the two choices of X = A and X = B, these subsets satisfy the following
properties:

1. Xc is a union of edge-disjoint cycles.

2. Xc ∪Xb does not contain any additional cycles that involve edges in Xb.

3. For every edge e in Xd there exists a cycle in Xc containing both endpoints
of e.

4. The graph formed by the edges Xd ∪Xc ∪Xb is outerplanar.

5. For each cycle C in Xc it is not possible to find two vertex-disjoint paths
P1 and P2 in E such that neither path is a single edge in Xd, all four path
endpoints are distinct vertices of C, neither path contains a vertex of C in
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Figure 9: A 2-page planar graph with its edges partitioned into the six sets Ab

(green edges), Ac (blue edges), Ad (red edges), Bb (yellow edges), Bc (purple
edges), and Bd (gray edges).

Figure 10: The graph separate(G;A,B) where G is the graph in Figure 9, and
A and B are respectively the edges in the first and second page.

its interior, and the two pairs of path endpoints are in crossing position
on C.

6. The subdivision separate(G;Ab ∪Ac ∪Ad, Bb ∪Bc ∪Bd) is planar.

Proof: Suppose G has a 2-page planar drawing. This drawing partitions the
edges of G into two sets A and B. For X = A or B, let Xc be the set of edges
X forming a union of edge disjoint cycles that surround a maximal subset of
their page. Then let Xd be the edges in X drawn in the interior of one of these
cycles, and Xb the remaining edges in X. Figure 9 illustrates this division of
edges into six subsets. It can be easily verified that the constructed partition
satisfies Properties 1 through 6.

Conversely, suppose we have a graph G with a partition of its edges satisfying
the properties of the lemma. By Property 6, separate(G;Ab∪Ac∪Ad, Bb∪Bc∪Bd)
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has a planar embedding. We may assume without loss of generality that, in
this embedding, the cycles of Xc given by Property 1 separate the edges of Xd

(interior to the cycles) from the rest of the graph (exterior to the cycles). For, by
Property 4, no two interior edges can cross, and by Property 5, no two exterior
paths can cross. So, if we have a cycle in Xc that does not properly separate Xd

from the rest of the graph, we may modify the embedding to flip the edges of
Xd into the interior of the cycle and to flip the components of the rest of the
graph to the exterior of the cycle, preserving the (reflected) planar embedding of
each flipped component, without introducing any new crossings. By performing
this flipping operation to all cycles of Ac and Bc, we obtain an embedding in
which the cycles of Xc separate Xd from the rest of the graph, as stated above.

Next, given this embedding of separate(G;Ab ∪Ac ∪Ad, Bb ∪Bc ∪Bd), we
contract all of the cycles (Xc) and isthmuses (Xb) in each page (X = A and B),
maintaining the orientation and embedding of the edges that were not contracted
(Figure 11). As a consequence, the edges in Xd within each cycle of Xc are also
contracted. However, in the embedding of separate(G;Ab∪Ac∪Ad, Bb∪Bc∪Bd),
none of the contracted cycles surrounds any part of the graph that is not itself
contracted. Because the edges of G are all contracted, the remaining uncontracted
edges are only the ones separating A from B, so the contracted graph is bipartite.
As a result, we are left with an embedding of a planar embedded bipartite
multigraph that has one edge (v,A)–(v,B) for each vertex v in the original
graph. Because this multigraph is bipartite, its dual graph has even degree
at every vertex, and as the dual graph of a planar graph it is necessarily
connected. Thus, the dual of the bipartite multigraph has an Euler tour, and (as
with any Eulerian planar graph) this Euler tour can be made non-self-crossing
by local uncrossing operations at each vertex. This tour can be represented
geometrically as a Jordan curve J that passes through the faces of the embedding
of separate(G;Ab ∪Ac ∪Ad, Bb ∪Bc ∪Bd) (in some cases more than once per
face) and crosses each edge (v,A)–(v,B) exactly once.

From the embedding of separate(G;Ab ∪ Ac ∪ Ad, Bb ∪ Bc ∪ Bd) we can
obtain a planar embedding of G itself by contracting all the edges of the form
(v,A)–(v,B). If we augment G by adding an edge uv between any two vertices
u and v whose edges (u,A)–(u,B) and (v,A)–(v,B) are crossed consecutively
by the Jordan curve J , then J can be used to guide a non-crossing placement
of these additional edges within the resulting embedding of G. Thus, we have
augmented G to a Hamiltonian planar supergraph. The result that G has a
2-page book embedding follows by Lemma 8. �

We construct a formula twopage based on Lemma 9 with the property that
G |= twopage if and only if G is 2-page planar. First, we construct formulas
θ1, . . . , θ5 expressing Properties 1 through 5 in Lemma 9, as we did for 1-page
crossing. Each of these properties has a straightforward expression in MSO2.
To express Property 6 we will need the following technical lemma, which can
be proved using the method of syntactic interpretations. (For details on this
method see [26,31].)
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Figure 11: The contraction of the graph in Figure 10 and its planar dual
(drawn with blue vertices and green edges). The edge labels correspond to the
Hamiltonian cycle ordering of the vertices of G.

Lemma 10 For every MSO2-formula φ there exists an MSO2-formula φ∗(A,B)
such that G |= φ∗(A,B) if and only if separate(G;A,B) |= φ.

Now, we can express Property 6 as an MSO2-formula θ6 using Lemma 10,
as planarity is expressible by Lemma 3 and the fact that planar graphs are the
graph that avoid K5 and K3,3 as minors. Thus, we define twopage to be the
formula expressing the existence of Ab, Ac, Ad, Bb, Bc, Bd satisfying θ1, . . . θ6.

Theorem 2 There exists a computable function f and an algorithm that can
decide whether a given graph with treewidth k is 2-page planar in O(f(k)n) time.

Proof: The result follows from Courcelle’s theorem together with the construc-
tion of the MSO2 formula twopage representing the existence of a two-page
planar embedding. �

6 Two-page crossing minimization

We now extend the results of the previous section from 2-page planarity to
2-page crossing minimization. As in the 1-page case, we will use a formula that
involves a disjunction over crossing diagrams. Given a crossing diagram D with k
crossings and r+1 edges, whose graph is G, we define the planarization of G with
respect to D to be the graph in which each edge ei is replaced by a path of degree
four vertices, such that two of these replacement paths share a vertex if and only
if the original two edges cross in D. As explained earlier, we do not care about
the order of crossings along each edge: two crossing diagrams with the same
sets of crossing pairs but with different crossing orders are considered equivalent.
Nevertheless, we do preserve the order of crossings from (one representative of
an equivalence class of) crossing diagrams to their planarizations, in order to
ensure that the planarizations form planar graphs.
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Lemma 11 A graph G = (V,E) has cr2(G) ≤ k if and only if there exists edges
e0, e1, · · · , er with r < 2k and a 2-page crossing diagram D with k crossings on
these edges such that when G is planarized with respect to D the resulting graph
GD = (VD, ED) has a partition of ED into Ab, Ac, Ad, Bb, Bc, Bd such that, for
X = A,B:

1. Xc is a union of edge disjoint cycles.

2. None of the cycles of Xc ∪Xb contains an edge in Xb.

3. If e is an edge introduced in the planarization, then e ∈ Ab ∪Ac ∪Ad if e
is in the first page of D, and e ∈ Bb ∪Bc ∪Bd if it is in the second page
of D.

4. Each endpoint of an edge in Xd either belongs to an edge in Xc or is a
crossing of D.

5. Every path of edges in Xd that starts and ends in vertices of Xc, with no
interior points that belong to Xc, starts and ends in vertices of the same
cycle in Xc.

6. For every cycle C in Xc, let PC be the subset of Xd consisting of edges that
belong to at least one path of edges in Xd that starts and ends at vertices
of C and has no interior vertices in C. Let HC be the graph formed from
C ∪ PC by adding a single new vertex incident to all vertices in C. Then
C ∪ PC is planar.

7. Each edge in Xi belongs to a unique subset PC .

8. For each cycle C in Xc there do not exist two vertex-disjoint paths in E,
such that neither path uses edges of Ad ∪Bd nor has any interior vertices
on C, with four distinct endpoints on C in crossing position.

9. the subdivision separate(G;Ab ∪Ac ∪Ad, Bb ∪Bc ∪Bd) is planar.

Proof: We follow the same general steps as the proof of Lemma 9.
If G has cr2(G) ≤ k, consider any 2-page drawing with crossing number k,

find the diagram D of its crossing edges, and planarize the drawing to produce
GD. Partition GD into two subgraphs A and B according to the pages of D.
For X = A,B, let Xc be the graph formed by the cycles in X that are not
surrounded in their page by any other cycle, let Xb be the subgraph formed
by the edges of X that are not surrounded by cycles of Xc, and let Xd be the
edges of X that are surrounded by cycles of Xc. Then the first three items
in the lemma follow by construction. Item (4) follows from the fact that all
vertices of G belong to the spine of the drawing, so all vertices of GD that are
surrounded by cycles of Xc must correspond to crossings in G. Item (5) follows
from the Jordan curve theorem. In item (6), each of the paths defining PC must
lie entirely within PC in the drawing, for otherwise the path together with an
arc of C would form a cycle that surrounds C, contradicting the definition of Xc.
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As a subgraph of GD, C ∪ PC is planar, and because PC is entirely surrounded
by C, adding an extra vertex incident to all vertices of C does not affect its
planarity. Item (7) again uses the fact that the subgraphs PC are surrounded by
their cycles, together with the Jordan curve theorem. In item (8), the two paths
would both have to be exterior to C in the drawing of G, and would necessarily
cross each other. But because the paths avoid Ad∪Bd, they cannot pass through
any crossings of the drawing. This contradiction shows that the two paths in
question cannot exist. Finally, for item (9), a planar drawing of the subdivision
may be obtained from the planar drawing of GD by replacing the spine of the
2-page drawing by a narrow strip, and replacing each vertex along the spine
by two copies of the vertex connected by an edge, as was already depicted (for
2-page embeddings without crossings) in Figure 10.

In the other direction, suppose that the edges ei, crossing diagram D, and
edge partition obeying the conditions of the lemma all exist. By item (9) we
can find a planar embedding of separate(G;Ab ∪ Ac ∪ Ad, Bb ∪ Bc ∪ Bd). By
items (6) and (8) we can modify this drawing (if necessary) by flipping flaps
of cycles in Xc so that the flaps in Xd lie inside these cycles and the other
flaps lie outside the cycles, without causing any additional crossings with these
flips. As in Lemma 9, we then contract all the edges of the embedding except
the separation edges to obtain a planar-embedded bipartite multigraph, and
use a non-crossing Euler tour of the planar dual of this multigraph to guide a
Hamiltonian cycle in an augmentation of the given crossing diagram. This part
of the proof is unchanged from Lemma 9, as the parts of GD that differ from G
will all have been contracted. �

The conditions of Lemma 11 do not enforce the condition that each crossing
of D remains a crossing in the resulting diagram. Violating this condition this
can only reduce the total number of crossings, and does not affect the conclusion
of the lemma.

Now, we construct an MSO2-formula ζk based on Lemma 11 such that
G |= ζk if and only if cr2(G) = k. To handle the planarization process we use
the following lemma. In the lemma, the notation Ge1×e2 describes the graph
obtained from a graph G by deleting two edges e1 and e2 that do not share a
common endpoint, and adding a new degree-4 vertex connected to the endpoints
of e1 and e2.

Lemma 12 (Grohe [31]) For every MSO2-formula φ there exists an MSO-
formula φ∗(x1, x2) such that G |= φ∗(e1, e2) if and only if Ge1×e2 |= φ.

Given any MSO2-formula φ and crossing diagram D, we can repeatedly apply
the lemma above to construct a formula φD such that G |= φD(e0, . . . , er) if
and only if GD |= φ. With this tool in hand it is straightforward to construct a
formula γD , expressing the property that, in a given graph G we can build a
crossing diagram with the structure of D, and partition the planarization GD

into six sets, satisfying Lemma 11. So we can define ζk to be the disjunction of
the γD ranging over all 2-page crossing diagrams with k-crossings.
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Theorem 3 There exists a computable function f such that cr2(G) can be
computed in O(f(k, t)n) time for a graph G with n vertices, k = cr2(G), and
t = tw(G).

7 Conclusion

We have provided new fixed-parameter algorithms for computing the crossing
numbers for 1-page and 2-page drawings of graphs with bounded treewidth. The
use of monadic second order logic and Courcelle’s theorem in our solutions causes
the running times of our algorithms to have an impractically high dependence
on their parameters. We believe that it should be possible to achieve a better
dependence by directly designing dynamic programming algorithms that use
tree-decompositions of the given graphs, rather than by relying on Courcelle’s
theorem to prove the existence of these algorithms. Indeed, Kobayashi et al.
have already provided such an algorithm for 1-page crossing minimization [38].
Can this dependency be reduced to the point of producing practical algorithms?
For 2-page crossing minimization the runtime is parameterized by both the
treewidth and the crossing number. Is 2-page crossing minimization NP-hard for
graphs of fixed treewidth? We leave these questions open for future research.

Dujmović and Wood asked [25], “is there a polynomial-time algorithm for
computing the book thickness of graphs with bounded treewidth?” Our Theo-
rem 2 provides a partial solution to this question for book thickness 2. Can the
graph property of having book thickness k be expressed in MSO2, answering
the question of Dujmović and Wood? The special case of k = 3 is of particular
interest, to provide a computational attack on the still-open problem of whether
there exist planar graphs that require four pages [24, 51]. Heath has shown that
every planar graph of treewidth three has a planar 3-page drawing [34], but
recognizing three-page graphs of higher treewidth efficiently remains open.
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