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Abstract

Given positive integers k, q, we say that a graph is edge k-q-colorable
if its edges can be colored in such a way that the number of colors incident
to each vertex is at most q and that the size of a largest color class is at
most k. The problem of minimizing k for a given q was considered in [T.
Larjomaa and A. Popa, The min-max Edge q-coloring Problem, Journal of
Graph Algorithms and Applications, vol 19(1) pp. 505-528 (2015)]. In this
paper, we first fix k = 2 and give an O(min {m2

√
n/ logm , nm1.5})-time

algorithm which given an arbitrary graph G with n vertices and m edges,
and a positive integer q decides whether G is 2-q-colorable and outputs a
2-q-coloring if such a coloring exists. Then, we fix q = 2 and we focus on
cubic graphs. In particular, we prove that every cubic graph admits a 4-2-
coloring such that the corresponding edge decomposition uses only paths.
We give an O(n log2 n)-time algorithm constructing such a decomposition.
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1 Introduction

We consider undirected graphs with n vertices and m edges. Given a graph
G and a positive integer q, an edge q-coloring of G is an assignment of colors
to the edges of G such that each vertex is incident to at most q colors. A
maximum edge q-coloring of G is a q-coloring of G that uses the maximum
number of colors. The maximum edge q-coloring problem is the problem of
finding a maximum edge q-coloring for a given graph. This problem is motivated
by the design of multi-channel wireless mesh networks (WMN) architectures (see
[7, 8] for references). In such networks, each node can be equipped with multiple
network interface cards (NIC), each interface card providing a different channel
frequency. Allowing each node to use multiple frequencies tends to reduce the
interference phenomenen in the network. There is certainly a limitation on the
number q of interface cards attached to a given node. Each link (edge) has to
be assigned a frequency (a color) such that at each node (vertex), the number of
different channels does not exceed q. At first thought, maximizing the number of
used frequencies (colors) tends to reduce the interference. However, as observed
by the authors in [7, 8], in optimal maximum q-colorings, a same color is assigned
to many edges while each other color occurs once. This led the authors in [7] to
define the min-max edge q-coloring problem where the goal is to balance the size
of the groups of edges of different colors, rather than to maximize the number of
colors. The min-max edge q-coloring problem can be stated as follows. Given a
graph G, and a positive integer q, find an edge q-coloring of G such that the size
of a largest color class is minimized. In [8], the authors proved the NP-hardness
of the min-max edge q-coloring problem for every q ≥ 2, and gave an exact
polynomial time algorithm for the min-max 2-coloring problem in trees. They
also provided exact formulas or tight bounds for some classes of graphs, and an
approximation algorithm for planar graphs.

The following example shows the difference between the maximum edge q-
coloring and the min-max edge q-coloring problems. Consider the biconnected
cubic graph G of order n = 4p with p ≥ 2 and size m = 6p, formed by a cycle
C4p = x1x2 · · ·x4px1 and the 2p diametral chords xixi+2p. Coloring each of p
pairwise disjoint cycles C4 with a different color, and then assigning a different
color to each remaining edge gives a 2-coloring of G. It uses 3p colors. Hence
the optimum of G for the maximum 2-coloring problem is at least 3p. We will
see in Section 3 that G has no 2-coloring such that all color classes have size less
than 3 but admits 2-colorings using only paths of length 3. Hence the optimum
of G for the min-max 2-coloring problem is 3 and it uses m/3 = 2p balanced
classes.

In this paper, we consider a property of graphs that we call k-q-colorability
which is related to the min-max q-coloring problem. A graph is said to be (edge)
k-q-colorable if it admits an edge q-coloring such that the size of a largest color
class is at most k. We note that if this problem has a solution then there exists
a solution where each color class induces a connected subgraph (give different
colors to the edges of the different components of a non connected class if any).
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In section 2, we fix k = 2, and we study the following problem:

Instance: A graph G, a positive integer q.
Solution: A partition of E(G) into connected subgraphs of size at most 2, no
more than q of them share a vertex.

We provide an algorithm solving this problem and running in time
O(min {m2

√
n/ logm , nm1.5}) for arbitrary graphs. We also prove that d-

regular graphs are 2-q-colorable if and only if q ≥ d3d/4e.

In section 3, we fix q = 2 and we consider cubic graphs. We prove the 3-2-
colorablity of some classes of cubic graphs, and that there are classes of cubic
graphs that cannot be 3-2-colorable. However, they all admit a 4-2-coloring
using only paths. We give an O(nlog2n)-time algorithm constructing such a
decomposition. Lovász [9] showed that every simple odd graph G (a graph such
that every vertex has odd degree) admits a path decomposition where every
vertex of G is an extremity of exactly one path of the corresponding partition
of E(G). To our knowledge, there is no result concerning the length of a longest
path in such a decomposition. For cubic graphs, a Lovász path decomposition
is clearly a 2-coloring such that all color classes are paths. Our result shows
that a Lovász path decomposition of cubic graphs can be done with paths of
length at most 4.

In Section 4, we generalize the previous results to subcubic graphs and multi-
graphs. Faithful path decompositions were defined by Cai [2] as a generalization
of the Lovász path decompositions to all graphs and multigraphs. We prove that
subcubic multigraphs have faithful path decompositions using paths of length
at most 4.

A graph of maximum degree ∆ is k-q-colorable for every k and every q ≥ ∆
by letting one different color per edge, and if G is k-q-colorable, then ∆ ≤ kq.
Moreover, a graph is k-q-colorable if and only if each of its connected components
is k-q-colorable. We suppose henceforth that G is connected and that d∆/ke ≤
q < ∆.

Clearly, every subgraph of a k-q-colorable graph is k-q-colorable. We deduce
the following general property.

Theorem 1 1. If every d-regular graph is k-q-colorable for some k and q < d,
then every graph with maximum degree ∆ ≤ d is k-q-colorable.
2. If every bipartite d-regular graph is k-q-colorable for some k and q < d, then
every bipartite graph with maximum degree ∆ ≤ d is k-q-colorable.
3. Moreover, if every d-regular (bipartite d-regular) graph admits a k-q-coloring
where each color class is a path, then so does every graph (bipartite graph) with
maximum degree d.

Proof: 1. Let G = (V,E) be a graph with maximum degree ∆ ≤ d and
minimum degree δ. The proof is by induction on ∆ − δ. If ∆ = δ, we are
done by the hypothesis. Otherwise, let W = {x ∈ V | dG(x) < ∆}, and let
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G′ = (V ′, E′) be a graph isomorphic to G. We denote by φ : V → V ′ the
corresponding bijection. Let H be obtained from the disjoint union of G and
G′ and by adding the matching M = {xφ(x) | x ∈ W}. Then ∆(H) = ∆(G),
δ(H) = δ(G) + 1, and H is k-q-colorable by the induction hypothesis. Its
subgraph G is k-q-colorable too.
2. If G is bipartite then the previous graph H is also bipartite since the addition
of the edges of the matching M cannot create any odd cycle.
3. At each step of the induction, each color class induces a path which is a
subpath of a color class in the path decomposition of the d-regular (bipartite
d-regular) graph. �

2 2-q-colorability

We begin with two definitions relative to a graph G = (V,E) of maximum degree
∆ and a positive integer q < ∆. We let Vq = {v ∈ V | dG(v) ≥ q + 1}. We say
that an orientation D = (V,A) of G has Property (P) if d−D(v) ≥ 2(dG(v) − q)
for each v ∈ Vq.

Theorem 2 Let G = (V,E) be a connected graph of maximum degree ∆, and
let q be a positive integer with ∆/2 ≤ q < ∆. There exists an orientation
D = (V,A) of G with Property (P) if and only if G is 2-q-colorable.

Proof: Let D be an orientation of G satisfying (P). At each vertex v with
dG(v) > q, we pair 2(dG(v) − q) edges entering into v, and we give each pair
a new color. After treating all vertices v of Vq in this way, if there are still
edges in G that have not yet received a color, assign each of them a new color.
We obtain a coloring of the edges of G, where each color class has size at
most two. The number of colors present at each vertex v with dG(v) ≤ q
is dG(v). At each vertex v of Vq, the number of present colors is at most
dG(v)− bd−D(v)/2c ≤ dG(v)− (dG(v)− q) = q. Hence the resulting coloring is a
2-q-coloring of G.

Conversely, assume that G is 2-q-colorable and consider a 2-q-coloring of G,
where each color class induces a connected subgraph. Hence, two edges with
the same color are incident. Orient them to their common extremity. Let v be a
vertex with dG(v) > q. At least (dG(v)−q) pairs of edges incident to v have the
same color and are oriented to v. After treating all vertices v with dG(v) > q
in this way, if there are still edges in G that have not yet got an orientation,
orient them in an arbitrary way. We obtain an orientation D = (V,A) of G
satisfying (P). �

Theorem 3 For any connected graph G and any positive integer q, the 2-q-
colorability of G can be checked in time O(min {m2

√
n/ logm , nm1.5}).

Proof: Let V = {v1, · · · , vn′ , · · · , vn} where Vq = {v1, · · · , vn′}. For each
i, 1 ≤ i ≤ n′, let l(vi) = dG(vi)− q and Xi = {xi,1, · · · , xi,2l(vi)}. Consider the

bipartite graph B = (X,Y, F ) with X = ∪i=n′

i=1 Xi and Y = {y1, . . . , ym}. We
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put an edge in B between xi,j and yk if and only if the edge ek is incident to

vi in the graph G. The number of vertices of B is |X|+ |Y | = 2
∑n′

i=1(dG(vi)−
q) +m < 2

∑n
i=1 dG(vi) +m = 5m. If ek = v1kv

2
k, the degree in B of the vertex

yk is dB(yk) = max{0, 2(d(v1k)− q)}+ max{0, 2(d(v2k)− q)} < 2(d(v1k) + d(v2k)).
Thus the number |E(B)| =

∑m
k=1 dB(yk) of edges of B is at most equal to

2
∑

vi∈V (G)
d2(vi).

De Caen [3] proved that
∑

vi∈V (G)
d2(vi) ≤ m(n − 2 + 2m

n−1 ) in every graph

G. Therefore |V (B)| = O(m) and |E(B)| = O(mn).

Claim. B has a matching that covers all the vertices of the side X if and only
if G has an orientation satisfying Property (P).
Proof. Assume that such a matching covering X exists in B. For each i, 1 ≤
i ≤ n′, we consider the matching Bi covering the vertices xi,j , 1 ≤ j ≤ 2l(vi). It
defines a subset Yi of Y that is in bijection with a subset Ei of edges of G, each
of them incident with vi. Orient the edges of Ei such that they are entering
into vi. This operation can be done for each i without any conflict because the
sets Yi are disjoint. Then arbitrarily orient the remaining edges. The resulting
orientation satisfies Property (P). Conversely, assume G has an orientation sat-
isfying Property (P). For each i, 1 ≤ i ≤ n′, consider the subset Ei of edges
oriented into vi. It defines a subset Yi of Y in bijection with Ei and satisfying
y ∈ NB(xi,j) for each y ∈ Yi and each j, 1 ≤ j ≤ 2l(vi), where NB(xi,j) denotes
the neighborhood of the vertex xi,j in B. The subgraph B[Xi, Yi] is complete
bipartite, with |Xi| = 2l(vi) ≤ |Yi|. Hence B[Xi, Yi] has a matching Fi that
covers all the vertices of Xi. Since Ei ∩Ej = ∅, for every i, j, 1 ≤ i < j ≤ n′, it

follows that ∪i=n′

i=1 Fi is a matching of B covering all the vertices of the side X.
This ends the proof of the claim.

From the previous claim and Theorem 2, we can construct a 2-q-coloring of

G if and only if the matching number of B is equal to |X| =
∑i=n′

i=1 2(dG(vi)−q).
The matching number can be found in time O(|V |1.5

√
|E|/ log |V |) for bipartite

graphs ([1]) or O(
√
|V | · |E|) for arbitrary graphs ([10, 13]). Depending on the

density of G, we apply one or the other algorithm. �

Corollary 1 1. A d-regular graph is 2-q-colorable if and only if q ≥ d3d/4e.
2. Every graph with maximum degree ∆ is 2-d3∆/4e-colorable.

Proof: 1. If G is d-regular then Vq = V , and the bipartite graph B in the proof
of Theorem 3 satisfies |Xi| = 2(d−q) for 1 ≤ i ≤ n, |X| =

∑n
i=1 |Xi| = 2n(d−q)

and |Y | = m = nd/2. Moreover, B is biregular since ∀x ∈ X, dY (x) = d and
∀y ∈ Y , dX(y) = 4(d− q). If B admits a matching covering X then |X| ≤ |Y |,
which is equivalent to q ≥ 3d/4. Conversely, if q ≥ 3d/4 then dX(y) ≤ dY (x).
Let X ′ be any subset of X, and let N(X ′) ⊆ Y be the neighborhood of X ′. Let
e(X ′, N(X ′)) be the number of edges between X ′ and N(X ′). The inequality
dY (x)|X ′| = e(X ′, N(X ′)) ≤ dX(y)|N(X ′)| implies that |N(X ′)| ≥ |X ′|. By
the König-Hall’s theorem, B admits a matching covering X. The result follows
from Theorem 2 and the claim in the proof of Theorem 3.
2. This is a consequence of Theorem 1. �
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This proves that cubic graphs are not 2-2-colorable. This will be seen again
in 1. of Theorem 4.

3 k-2-colorability of cubic graphs

When ∆ = 3, the relation d∆/ke ≤ q < ∆ implies q = 2. In this case, the
property of k-2-colorability is related to that of ∗-decomposition defined below.
A biconnected component of a graph G is a maximal biconnected subgraph of
G with a least 2 vertices. We denote by Qi the path with i edges.

Definition 1 Let S be a set of connected graphs.
1. A graph G is S-decomposable if E(G) can be partitioned into subgraphs
isomorphic to graphs from S.
2. A graph G is S∗-decomposable or ∗-decomposable into subgraphs from S if
it is S-decomposable and each vertex of G belongs to at most two subgraphs of
the partition.

Remark 1 1. If a graph is k-2-colorable, then it is S∗-decomposable where S
is the set of all the connected graphs with at most k edges.
2. If a graph is G∗-decomposable where G is a set of connected graphs with at
most k edges, then it is k-2-colorable.
3. If S is an hereditary family of connected graphs, then every subgraph of a
S∗-decomposable graph is S∗-decomposable.
4. A cubic graph is 3-2-colorable if and only if it is {Q1, Q2, Q3, C3}∗-decomposable
since K1,3 is ∗-decomposable into one Q1 and one Q2.

We give a property relating the numbers νi of paths Qi and t of triangles in a
∗-decomposition of a cubic graph into paths and triangles. We limit ourselves to
paths of length at most 4 since as we will see, every cubic graph is {Q2, Q3, Q4}∗-
decomposable.

Theorem 4 If a cubic graph admits a ∗-decomposition into νi paths Qi and t
triangles, then 3t = Σi(3− i)νi. In particular:
1. No cubic graph is {Q1, Q2}∗-decomposable.
2. Any {Q1, Q2, Q3}∗-decomposition of a cubic graph is a {Q3}∗-decomposition.
3. Any {Q1, Q2, Q3, Q4}∗-decomposition of a cubic graph satisfies ν4 = 2ν1+ν2.

Proof: In a ∗-decomposition of a cubic graph into paths and triangles, each
vertex of G is an inner vertex of exactly one path or triangle. Hence n = Σi(i−
1)νi + 3t. On the other hand, the number of edges of G satisfies m = Σiiνi + 3t.
Since G is cubic, 2m = 3n. Therefore 3t = Σi(3− i)νi.
1. If G admits a {Q1, Q2}∗-decomposition, then 2(ν1 + 2ν2) = 3ν2. Hence
2ν1 + ν2 = 0 and thus ν1 = ν2 = 0. Such a decomposition does not exist.
2. If G admits a {Q1, Q2, Q3}∗-decomposition, then 2(ν1 + 2ν2 + 3ν3) = 3(ν2 +
2ν3). Hence 2ν1 + ν2 = 0 and thus ν1 = ν2 = 0.
3. For any {Q1, Q2, Q3, Q4}∗-decomposition of G, 2(ν1 + 2ν2 + 3ν3 + 4ν4) =
3(ν2 + 2ν3 + 3ν4). Hence ν4 = 2ν1 + ν2. �
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Corollary 2 Let G be a cubic graph. The following properties are equivalent.
1. G has a perfect matching.
2. G has a {Q3}∗-decomposition.
3. G has a {Q1, Q2, Q3}∗-decomposition.

Proof: 1 ⇔ 2. Kotzig [5] proved that a cubic graph has a decomposition into
paths Q3 if and only if it has a perfect matching M . The edges of E(G) −M
form a 2-factor, each cycle of which can be cyclically oriented. Then each edge
of M is extended to a path Q3 by adding the outgoing edge at both extremities.
The edges of M are the middle edges of the paths and the {Q3}-decomposition
is a {Q3}∗-decomposition.
2⇒ 3. This is obvious from the definition.
3⇒ 2. This is a consequence of 2. of Theorem 4. �

Corollary 3
1. Cubic bipartite graphs are {Q3}∗-decomposable and thus they are 3-2-colorable.
2. Biconnected cubic graphs are {Q3}∗-decomposable and thus they are 3-2-
colorable.
3. Triangle-free cubic graphs without a perfect matching are not 3-2-colorable.

Proof:
1. It is known from König-Hall’s theorem that every regular bipartite graph has
a perfect matching.
2. Petersen showed that every biconnected cubic graph has a perfect matching
(this is even true if the graph is not biconnected but its bridges are all con-
tained in one path). Hence biconnected cubic graphs are {Q3}∗-decomposable
by Corollary 2.
3. If G has no perfect matching, then it is not {Q1, Q2, Q3}∗-decomposable.
Since it is triangle-free, then it is not {Q1, Q2, Q3, C3}∗-decomposable and thus
it is not 3-2-colorable by Remark 1. �

Theorem 5 Let G be a cubic graph such that every cutvertex of G belonging to a
biconnected component is contained in a triangle. Then G is {Q1, Q2, Q3, C3}∗-
decomposable and thus it is 3-2-colorable.

Proof: Let C be a biconnected component of G different from a triangle and
let a1, · · · , ap, be the cutvertices of G that belong to C. If C is a diamond, we
decompose it into a triangle and a path Q2. Otherwise, let aibici, 1 ≤ i ≤ p, be
the triangle of C containing ai. All these triangles are pairwise disjoint. Let C ′

be the graph obtained from C by replacing for each i, the edge [bi, ci] by a path
[bi, a

′
i, ci] and adding the edge [ai, a

′
i]. The graph C ′ is cubic and biconnected.

Hence, it admits a {Q3}∗-decomposition by Corollary 3. By Remark 1, the sub-
graph induced by V (C ′)−∪1≤i≤p{ai, a′i} admits a {Q1, Q2, Q3}∗-decomposition.
The addition of the p triangles aibici gives a {Q1, Q2, Q3, C3}∗-decomposition
of C. The forest separating the biconnected components of G consists of trees
with vertices of degree 3 or 1. Each of these trees is {Q1, Q2}∗-decomposable
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with exactly one Q1, as can be seen by rooting the tree at some vertex of de-
gree 1. Removing the edge incident to the root leaves a binary tree which is
Q∗2-decomposable. In the recomposition of G, each leaf of the forest belongs
to a triangle of the ∗-decomposition of a biconnected component, or to the
inner vertex of a path Q2 in the case of a diamond. Hence we get a global
{Q1, Q2, Q3, C3}∗-decomposition of G. �

As a consequence of Theorem 5, claw-free cubic graphs are 3-2-colorable. We
note that it was already known that connected claw-free graphs of even order
have a perfect matching [12].

Theorem 5 shows a class of cubic graphs, some of them have not a perfect
matching but are nevertheless 3-2-colorable thanks to the presence of many
triangles. We describe now an arbitrarily large family of 3-2-colorable cu-
bic graphs without a perfect matching and with a unique triangle. For 1 ≤
j ≤ 3, let F j be the graph on seven vertices aji , 1 ≤ i ≤ 7, and edge set

{ajia
j
(i+1) mod 7, a

j
2a

j
5, a

j
3a

j
6, a

j
4a

j
7}. We still denote by F 1 the graph obtained

from F 1 by inserting k vertices bi, 1 ≤ i ≤ k, on the edge a11a
1
2, k vertices ci,

1 ≤ i ≤ k, on the edge a11a
1
7, and the k edges bici. Let G be the cubic graph

obtained by connecting a new vertex x to the three vertices aj1, 1 ≤ j ≤ 3. We
can find a {Q1, Q2, Q3, C3}∗-decomposition of G using the unique triangle, one
path Q1 in F 1, one path Q2 in G− F 1 and k + 9 paths Q3.

Since by Corollary 3, a cubic graph without a perfect matching cannot be
3-2-colorable if it is triangle-free, we study below its 4-2-colorability.

Theorem 6 Every connected cubic graph G is {Q2, Q3, Q4}∗-decomposable and
thus it is 4-2-colorable.

Proof: To make a proof by induction, we first define two cubic graph trans-
formations which allow us to deduce a {Q2, Q3, Q4}∗-decomposition of G from
a {Q2, Q3, Q4}∗-decomposition of a smaller graph. In the proof, we precise the
notation which will be used in the writing of the algorithm.

A triangle tt′t′′ is said to be isolated if it shares no edge with another trian-
gle. If tt′t′′ is an isolated triangle in G, and w,w′, w′′ are the three respective
neighbors of vertices t, t′, t′′, we write G′ = f(G; tt′t′′, ww′w′′) to denote the
graph obtained from G by deleting the vertices t′, t′′, and connecting by an edge
vertices t and w′, and connecting by an edge vertices t and w′′ (equivalently, the
triangle tt′t′′ is replaced by a single vertex adjacent to w,w′, w′′). Assume that
G′ admits a {Q2, Q3, Q4}∗-decomposition D′. By exchanging the names of the
involved vertices, we can assume w.l.o.g. that the edges [w′, t] and [w′′, t] are on
the same path P ′ from D′. Let P ′1, P ′2 be the two paths of the subgraph induced
by the subset of edges E(P ′)−{[w′, t], [w′′, t]}. Assume that l(P ′1) ≥ l(P ′2), and
that w′ ∈ V (P ′1). We have 0 ≤ l(P ′1) ≤ 2, and 0 ≤ l(P ′2) ≤ 1. We denote by
P1 the path of G obtained by extending P ′1 with the path [w′, t′, t′′], and by P2

the path of G obtained by extending P ′2 with the path [w′′, t′′, t, t′]. We have
2 ≤ l(P1) ≤ 4, and 3 ≤ l(P2) ≤ 4. We get a {Q2, Q3, Q4}∗-decomposition D of
G where D = D′ ∪ {P1, P2} − {P ′}. We write D = 4(tt′t′′, ww′w′′)D′.
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If vv′v′′w is a diamond of G (that is two triangles vv′v′′, and v′v′′w) such
that the third neighbors w′ of w, and u of v are distinct and non-adjacent, we
write G′ = g(G; vv′v′′w, uw′) to denote the graph obtained from G by deleting
the vertices v, v′, v′′, w, and connecting by an edge vertices u and w′. Assume
that G′ admits a {Q2, Q3, Q4}∗-decomposition D′. Let P ′ be the path from
D′ containing the edge [u,w′]. Let P ′1, P ′2 be the two paths of the subgraph
induced by the subset of edges E(P ′) − {[u,w′]}. Assume that l(P ′1) ≥ l(P ′2),
and that w′ ∈ V (P ′1). We have 1 ≤ l(P ′1) ≤ 3, and 0 ≤ l(P ′2) ≤ 1. We denote
by P1 the path of G obtained by extending P ′1 with the edge [w′, w], and P2 is
the path of G obtained by extending P ′2 with the path [u, v, v′, v′′]. We have
2 ≤ l(P1) ≤ 4, and 3 ≤ l(P2) ≤ 4. Let P3 be the path [v, v′′, w, v′] of G. We get
a {Q2, Q3, Q4}∗-decomposition D of G where D = D′ ∪{P1, P2, P3}−{P ′}. We
write D = ♦(vv′v′′w, uw′)D′.

We prove the theorem by induction on b + n where b is the number of
biconnected components of G. The smallest value, 5, of b + n corresponds to
G = K4. Suppose b + n > 5. If b = 1, then G is a biconnected cubic graph
which admits a {Q3}∗-decomposition by Corollary 3. Hence we assume that G
is a connected cubic graph with b ≥ 2 biconnected components. We consider
an extremal biconnected component B of G, that is a biconnected component
containing exactly one cutvertex u of G. Then u has two neighbors u′, u′′ in
B and is the extremity of a bridge [u, v] of G. Let v′, v′′ be the neighbors
of v other than u. Assume that uu′u′′ form a triangle (such a triangle is not
part of a diamond since otherwise B would contain two cutvertices of G). By
induction hypothesis, G′ = f(G;uu′u′′, vw′w′′), where w′, w′′ are the respective
third neighbors of u′, u′′, admits a {Q2, Q3, Q4}∗-decomposition. We get a
{Q2, Q3, Q4}∗-decomposition of G as previously described. Similarly, if v is
involved in a diamond vv′v′′w, or in an isolated triangle vv′v′′, then by induction
hypothesis, G′ = g(G; vv′v′′w, uw′), where w′ is the third neighbor of w, or G′ =
f(G; vv′v′′w, uw′w′′), where w′, w′′ are the respective third neighbors of v′, and
v′′, has a {Q2, Q3, Q4}∗-decomposition. We get a {Q2, Q3, Q4}∗-decomposition
ofG as described above. Assume that both u and v are not involved in a triangle.
We letG′ = h(G;u, v, u′, u′′, v′, v′′) be the graph with two connected components
obtained by deleting the vertices u and v, and connecting by an edge the vertices
u′, u′′, on one hand, and the vertices v′, v′′, on the other hand. The component
G′1 of G′ containing u′ and u′′ is a biconnected cubic graph. By Corollary 3, G′1
has a {Q3}∗-decomposition D′1. We let P be the path from D′1 containing the
edge [u′, u′′]. Let G1 be the graph obtained from G′1 by inserting vertex u in the
edge [u′, u′′]. We turn D′1 into a {Q3, Q4}∗-decomposition D1 of G1 by inserting
u in P between u′ and u′′. This lengthens by 1 the path P without changing its
endvertices. We write D1 = insert(D′1;uu′u′′). The other connected component
G′2 of G′ is cubic and has a {Q2, Q3, Q4}∗-decomposition D2 by the induction
hypothesis. Let P ′ be the path from D2 containing the edge [v′, v′′]. Let P ′1, P ′2
be the two paths of the subgraph induced by E(P ′) − {[v′, v′′]}. Assume that
l(P ′1) ≥ l(P ′2), and that v′ ∈ V (P ′1). We have 1 ≤ l(P ′1) ≤ 3, and 0 ≤ l(P ′2) ≤ 1.
We denote by P1 the path of G obtained by extending P ′1 with the edge [v′, v],
and P2 is the path of G obtained by extending P ′2 with the path [v′′, v, u]. We
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have 2 ≤ l(P1) ≤ 4, and 2 ≤ l(P2) ≤ 3. We get a {Q2, Q3, Q4}∗-decomposition
D of G, where D = D1∪D2∪{P1, P2}−{P ′}. We write D = D1⊕u,vv′v′′ D2. �

Theorem 7
We can 4-2-color simple cubic graphs in time O(n log2 n).

Proof: First we note that a maximum matching M in a biconnected cubic
graph can be computed in time O(nlog2n) ([4]), and that the extension of the
edges of M to paths Q3 is linear time. Hence a Q∗3-decomposition D of a given
biconnected cubic graph can be obtained in time O(nlog2n). We will write
D = Kotzig(M).

Given a simple cubic graph G, we compute its vertex decomposition B into
the biconnected components. It is well known that the biconnected components
of an arbitrary graph can be computed in time O(n+m) (see [11] for example).
Hence, this computation is done in time O(n) for cubic graphs. An endblock is
a biconnected component with at most one cutvertex of G. If v is a vertex, B(v)
denotes the biconnected component containing v. The variable list maintains a
list of operations on path decompositions. The notation < op1 � op2 > D means
that we will perfom op2 on D, and then op1 on the resulting path decomposi-
tion. We denote by <> the empty list of operations. We start by performing
A(G;B;<>).

A(G;B; list)
begin
Pick an endblock B from B;
B := B − {B} ;
if B = ∅

then Compute a perfect matching M of G ;
D := kotzig(M) ;
return D ;

else u is the cutvertex lying in B.
e = [u, v] is the bridge attaching B.
u′, u′′ are the neighbors of u in B.
v′, v′′ are the neighbors of v other than u.
lst :=<> ;
while u is on a triangle uu′u′′ do
{w′ (resp. w′′) is the third neighbor of u′ (resp. u′′)}
G := f(G;uu′u′′, vw′w′′) ;
lst := lst �4(uu′u′′; vw′w′′) ;
u′ := w′; u′′ := w′′;

while v is on a triangle vv′v′′ do
if v is on a diamond vv′v′′w

then G := g(G; vv′v′′w, uw′) ; {w′ is the third neighbor of w}
lst := lst �♦(vv′v′′w, uw′) ;
B := B − {B(v)} ;
v := w′ ;

else {v is on an isolated triangle vv′v′′}
{w′ (resp. w′′) is the third neighbor of v′ (resp. v′′)}
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G := f(G; vv′v′′, uw′w′′) ;
lst := lst �4(vv′v′′, uw′w′′) ;
v′ := w′; v′′ := w′′;

G′ = h(G;u, v, u′, u′′, v′, v′′) is the subgraph induced by V (G)− {u, v} in
which the vertices u′, u′′ are connected by an edge as well as the vertices v′, v′′.
G′

1 is the connected component of G′ containing u′, u′′.
G′

2 is the other connected component.
Compute a perfect matching M in G′

1 ;
D1 := kotzig(M) ;
Exchange the names of u′ and u′′ if necessary so that, in the path P from D1,
the length of the subpath ending at u′′ and not containing u′, is no more than
the length of the other subpath of the subgraph induced by E(P )− {[u′, u′′]} ;
D1 := insert(D1;uu′u′′) ;
list := lst ;
D2 := A(G′

2;B; list);
Exchange the names of v′ and v′′ if necessary so that, in the path P from D2,
the length of the subpath ending at v′′ and not containing v′, is no more than
the length of the other subpath of the subgraph induced by E(P )− {[v′, v′′]} ;
D := D1 ⊕u,vv′v′′ D2;
D := list D;
return D ;

end

There are at most b(G) calls to the procedure A, where b(G) is the number
of biconnected components. The overall time needed for reduction operations
f , g, and restore operations 4 and ♦ is O(n). So, the running time is due to the
computation of perfect matchings in biconnected cubic graphs. We can prove by
induction on b(G) that the algorithm runs in time O(n log2 n). This is true for
biconnected cubic graphs since we compute once a perfect matching. Assume
that cubic graphs with b biconnected components consume time O(n log2 n),
and consider a cubic graph G with b+1 biconnected components. After picking
an endblock and performing a sequence of reductions if necessary, the algorithm
ends up by computing a perfect matching in a graph having O(n) vertices,
and recalling the procedure A on a graph having no more than b biconnected
components and O(n) vertices. By the induction hypothesis, the running time
in the latter graph is O(n log2 n). �

4 k-2-colorability of subcubic graphs and multi-
graphs

Theorem 8 1. Every subcubic graph is {Q1, Q2, Q3, Q4}∗-decomposable and
thus it is 4-2-colorable.
2. Every subcubic bipartite graph is {Q1, Q2, Q3}∗-decomposable and thus it is
3-2-colorable.

Proof: 1. This is a consequence of Theorems 6 and 1.
2. This is a consequence of Corollary 3 and Theorem 1. �
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Corollary 4

Every subcubic multigraph has a {Q1, Q2, Q3, Q4, C2}∗-decomposition and thus
it is 4-2-colorable.

Proof: Let G be a subcubic multigraph of order n. If there exists a triple edge
then n = 2, and G is {Q1, C2}∗-decomposable. Suppose that n ≥ 3 and let G′

be the graph obtained from G by deleting all the double edges. Each component
of G′ is a simple subcubic graph admitting a {Q1, Q2, Q3, Q4}∗-decomposition
by Theorem 8. The addition of the deleted C2’s gives a {Q1, Q2, Q3, Q4, C2}∗-
decomposition of G. �

In his generalization of Lovász path decompositions, Cai [2] introduced a
function φ : V (G)→ Z+ that depends on the parity of the degree of the vertex
x and on the maximum multiplicity of the edges of G incident to x. For a
subcubic multigraph, φ(x) = 1 if x is the extremity of one or three simple
edges, φ(x) = 2 if d(x) = 2, and φ(x) = 3 if d(x) = 3 and x is the extremity of
a double or a triple edge. Cai defined a path decomposition as being faithful if
each vertex is the end of exactly φ(x) paths from the decomposition. He proved
that every multigraph admits a faithful path decomposition. We show that if
∆ ≤ 3, this can be done by paths of length at most 4.

Corollary 5 Every subcubic multigraph admits a faithful decomposition by paths
of length at most 4.

Proof: For simple cubic graphs, this is a consequence of Theorem 6 since every
∗-decomposition by paths is faithful. For subcubic graphs or multigraphs, we
start from a {Q1, Q2, Q3, Q4, C2}∗-decomposition and we replace each C2 of the
decomposition by two paths Q1. Then for each vertex x of degree two which
is an inner vertex of a path Qi, i ≥ 2, we cut the path at x and replace it by
two paths Qj and Qk with j + k = i. In the resulting path decomposition, each
vertex x is the end of exactly φ(x) paths. �

For even regular graphs, there exist some results on the length of the paths in
a faithful path. In [6], Kouider and Lonc proved that every 2p-regular graph with
girth (the length of a shortest cycle) at least (p+ 3)/2 admits a decomposition
into paths of length p such that every vertex is the extremity of exactly two
paths and conjectured that the result remains true without any restriction on
the girth. Such a decomposition is faithful since in Cai’s definition, φ(x) = 2 for
each vertex of even degree of a simple graph. This shows that every 2p-regular
graph with girth g ≥ (p+ 3)/2 has a p-(p+ 1)-coloring by paths Qp.

We note that every 2p-regular graph of any girth admits a p-(p+ 1)-coloring
by considering an eulerian cycle and giving color i to all the edges going into
vertex vi. In this case, the color classes have a large maximum degree while in
the former p-(p+ 1)-coloring, all color classes have maximum degree 2.
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5 Concluding remarks

Our results show that, for cubic graphs, the smallest k such that G is k-2-
colorable is 3 or 4. The complexity of deciding whether it is 3 or 4 remains an
open problem.

The case q = 2 is the most interesting in the design of WMN architectures
as it requires the minimum on the number of NICs per node. However, it is
worthwhile to investigate other values of q. We recall that the goal in such
architectures is to reduce the interference caused by close nodes. In this work,
we used an approach that consists in balancing the sizes of groups of links set
up with different frequency channels. Another approach would be to seek a
tradeoff between the sizes of the color classes and the maximum degree of the
subgraphs induced by the q-coloring. For example, consider the case q = 3, and
a node x with five incident links. In an assignment of frequencies resulting in
a group of four links around x with the same frequency, the signal along each
link in this group may be distorted by the interference of three other incident
links. If the frequencies are assigned to the links in such a way that each group
of links with the same frequency channel is a path, then each link is potentially
altered by the noise of at most two other incident links. This makes worthwhile
the study of q-colorings resulting in color classes of low maximum degrees as
done in this work by considering path decompositions.
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