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Abstract

NodeTrix representations are a popular way to visualize clustered
graphs; they represent clusters as adjacency matrices and inter-cluster
edges as curves connecting the matrix boundaries. We study the com-
plexity of constructing NodeTrix representations focusing on planarity
testing problems, and we show several NP-completeness results and some
polynomial-time algorithms. Building on such algorithms we develop a
JavaScript library for NodeTrix representations aimed at reducing the
crossings between edges incident to the same matrix.
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1 Introduction and Overview

NodeTrix representations have been introduced by Henry, Fekete, and McGuf-
fin [19] in one of the most cited papers of the InfoVis conference [1]. A NodeTrix
representation is a hybrid representation for the visualization of social networks
where the node-link paradigm is used to visualize the overall structure of the
network, within which adjacency matrices show communities.

Formally, a NodeTrix (NT for short) representation is defined as follows.
A flat clustered graph (V,E, C) is a graph (V,E) with a partition C of V into
sets V1, . . . , Vk, called clusters, that can be defined according to the application
needs. The word “flat” is used to underline that clusters are not arranged in
a multi-level hierarchy (see, e.g., [11, 13] for two papers dealing with non-flat
clustered graphs). An edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster
edge if i = j and is an inter-cluster edge if i 6= j.

In an NT representation the subgraphs induced by the clusters V1, . . . , Vk
are represented by non-overlapping symmetric adjacency matrices M1, . . . ,Mk,
where Mi is drawn in the plane so that its boundary is a square Qi with sides
parallel to the coordinate axes. In the following, with a slight abuse of terminol-
ogy, we call “matrix” both the abstract algebraic concept and the representation
of an algebraic matrix in the plane. Thus, the matrices M1, . . . ,Mk convey the
information about the intra-cluster edges of (V,E, C), while each inter-cluster
edge (u, v) with u ∈ Vi and v ∈ Vj is represented by a curve connecting a point
on Qi with a point on Qj , where the point on Qi (on Qj) belongs to the column
or to the row of Mi (resp. of Mj) associated with u (resp. with v). Fig. 1 shows
an NT representation of a flat clustered graph.
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Figure 1: An NT representation of a flat clustered graph.

Several papers aimed at improving the readability of NT representations by
reducing the number of crossings between inter-cluster edges. For this purpose,
vertices can have duplicates in different matrices [18] or clusters can be computed
so to have dense intra-cluster graphs and a planar inter-cluster graph [10].

In this paper we study the problem of automatically constructing an NT
representation of a given flat clustered graph. This problem combines traditional
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graph drawing issues, like the placement of a set of geometric objects in the
plane (here the squares Q1, . . . , Qk) and the routing of the graph edges (here the
inter-cluster edges), with a novel algorithmic challenge: To handle the degrees
of freedom given by the choice of the order for the rows and the columns of the
matrices and by the choice of the sides of the matrices to which the inter-cluster
edges attach to. Indeed, the order of the rows and columns of a matrix Mi is
arbitrary, as long as Mi is symmetric; further, an inter-cluster edge incident to
Mi can arbitrarily exit Mi from four sides: left or right if it exits Mi from its
associated row, or top or bottom if it exits Mi from its associated column.

When working on a new model for graph representations, the very first
step is usually to study the complexity of testing if a graph admits a planar
representation within that model. Hence, we deal with the problem of testing if
a flat clustered graph admits a planar NT representation. An NT representation
is planar if no inter-cluster edge e intersects any matrix Mi, except possibly at
an end-point of e on Qi, and no two inter-cluster edges e and e′ cross each
other, except possibly at a common end-point. The Nodetrix Planarity
(NT Planarity for short) problem asks if a flat clustered graph admits a
planar NT representation. Fig. 2 shows a planar NT representation of the flat
clustered graph also represented in Fig. 1.
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Figure 2: A planar NT representation of the flat clustered graph from Fig. 1.

Our findings show how tough the problem is (see Table 1). Namely, we show
that NT Planarity is NP-complete and remains so even if the order of the
rows and of the columns of the matrices is fixed (i.e., it is part of the input), or
if the exit sides of the inter-cluster edges on the matrix boundaries are fixed. It
is easy to show that NT Planarity becomes linear-time solvable if both the
row-column order and the exit sides of the inter-cluster edges are fixed. But
this is probably too restrictive for practical applications since all the degrees of
freedom that are representation-specific are lost.

Motivated by such complexity results, we study a more constrained model
that is still useful for practical applications. A monotone NT representation
is an NT representation in which the matrices have prescribed positions and
the inter-cluster edges are represented by xy-monotone curves inside the convex
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General Model Monotone Model
Free Sides Fixed Sides Free Sides Fixed Sides

R
/
C

O
rd

e
r Free NPC [Th. 1] NPC [Th. 2] NPC [Th. 5] NPC [Th. 6 ]

Fixed NPC [Th. 3] P [Th. 4] P [Th. 8 ]† P [Th. 7]

Table 1: Complexity results for NT Planarity. The result marked † assumes
that the number of clusters be constant.

hull of their incident matrices. We require that this convex hull, which might
contain many edges, does not intersect any other matrix. We study this model
for several reasons; we mention two of them here and some other later in the
paper. First, in most of (although not in all) the available examples of NT
representations the inter-cluster edges are represented by xy-monotone curves
(see, e.g., the NodeTrix clips and prototype available online [2]). Second, we
are interested in supporting a visualization system where the position of the
matrices is decided by the user and the inter-cluster edges are automatically
drawn with “few” crossings. Therefore, the crossings between inter-cluster edges
not incident to a common matrix are somehow unavoidable, as they depend
on the matrix positions selected by the users, and we are only interested in
reducing the number of local crossings, that are the crossings between pairs of
edges incident to the same matrix.

We say that an NT representation is locally planar if no two inter-cluster
edges incident to the same matrix cross. Fig. 3 shows a locally-planar monotone
NT representation of the flat clustered graph already depicted in Figs. 1 and 2

While testing if a flat clustered graph admits a monotone NT locally planar
representation is NP-complete even if the sides are fixed (see Table 1), the
problem becomes polynomial-time solvable in the reasonable scenario in which
the number of matrices is constant, the order of the rows and columns is fixed,
and the sides of the matrices to which the inter-cluster edges attach is variable.

Building on the insights for the last result, we developed a library for NT
representations (a demo is available online [3]). The adopted techniques al-
low the user to move the matrices around while the layout of the inter-cluster
edges is automatically recomputed; this happens without any slowdown of the
interaction.

The paper is organized as follows. First, in Section 2 we provide some
definitions and establish some notation. In Section 3 we deal with the problem
of testing if a flat clustered graph admits a planar NT representation. Then,
in Section 4 we study monotone NT representations. Further, in Section 5 we
describe our library for NT representations. Conclusions and open problems
are discussed in Section 6 where NT Planarity is related to graph drawing
problems of theoretical interest.
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Figure 3: A locally-planar monotone NT representation of the flat clustered
graph from Figs. 1 and 2. Note that the representation in Fig. 1 is monotone
however not locally-planar, while the one in Fig. 2 is not monotone.

2 Definitions and Notation

In this section we establish formal definitions and notation. An NT representa-
tion consists of:

1. A row-column order σi for each cluster Vi, that is, a bijection σi : Vi ↔
{1, . . . , |Vi|}.

2. A side assignment si for each inter-cluster edge incident to Vi, that is, a
mapping si :

⋃
j 6=iEi,j → {t,b, l,r}, where Ei,j is the set of inter-cluster

edges between the clusters Vi and Vj (Vi and Vj are adjacent if Ei,j 6= ∅).

3. A matrix1 Mi for each cluster Vi that is, a representation of Vi as a sym-
metric adjacency matrix such that:

(a) the boundary ofMi is a squareQi with sides parallel to the coordinate
axes; let minx(Qi) be the minimum x-coordinate of a point on Qi;
miny(Qi), maxx(Qi), and maxy(Qi) are defined analogously;

(b) the left-to-right order of the columns and the top-to-bottom order of
the rows in Mi is σi; and

(c) any two distinct matrices are disjoint; if Vi has only one vertex, we
often talk about the matrix representing that vertex, rather than the
matrix representing Vi.

4. An edge drawing for each inter-cluster edge e = (u, v) with u ∈ Vi and
v ∈ Vj , that is, a representation of e as a Jordan curve between two points
pu and pv defined as follows. Let mu

t be the mid-point of the line segment
that is the intersection of the top side of Qi with the column associated

1Recall that we use the term “matrix” to indicate both the abstract algebraic concept and
the representation of the algebraic matrix in the plane.
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to u in Mi; points mu
b , mu

l , and mu
r are defined analogously. Then pu

coincides with mu
t , mu

b , mu
l , or mu

r if si(e) = t, si(e) = b, si(e) = l, or
si(e) = r, respectively. Point pv is defined analogously.

3 Testing NodeTrix Planarity

In this section we study the time complexity of testing NodeTrix Planarity
for a flat clustered graph. We start with the following.

Theorem 1 NodeTrix Planarity is NP-complete even if at most three clus-
ters contain more than one vertex.

In the following we prove Theorem 1. First, the membership in NP of NT
Planarity will be proved in Lemma 4.

The Reduction

In order to establish the NP-hardness of NT Planarity, we give a reduction
from the following NP-complete problem [8].

Name: Partitioned 3-Page Book Embedding

Input:
A graph (V,E), together with a partition of E into three sets
E1, E2, and E3.

Question:

Does a total ordering O of V exist such that the end-vertices
of any two edges e and e′ in the same set Ei do not
alternate? Two edges e and e′ alternate if an end-vertex of e′

is between the two end-vertices of e in O and vice versa.

E1

E3

E2

(a)

M1 M2 M3ul ur
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Figure 4: (a) An instance (V,E = E1∪E2∪E3) of Partitioned 3-Page Book
Embedding and (b) the corresponding instance (V ′, E′, C′) of NT Planarity.
The gray regions are R1,2 and R2,3.
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We show how to construct in polynomial time an instance (V ′, E′, C′) of NT
Planarity starting from an instance (V,E = E1 ∪ E2 ∪ E3) of Partitioned
3-Page Book Embedding. Refer to Fig. 4. We define C′ (and hence implicitly
V ′) as follows.

• First, let V ′1 be a set whose elements are in bijection with V ; in particular,
we denote by v′1 the vertex in V ′1 that is in bijection with a vertex v ∈ V .
Analogously, we define a set V ′2 (and a set V ′3) whose elements are in
bijection with V and we denote by v′2 (resp. by v′3) the vertex in V ′2 (resp.
in V ′3) that is in bijection with a vertex v ∈ V . Note that the vertices
v′1, v′2, and v′3 are in bijection with each other (due to their bijection
with v). We now let the set C′ contain three clusters V ′′1 , V ′′2 , and V ′′3 ,
each with |V | + 4 vertices, defined as follows: V ′′1 = V ′1 ∪ {x1, y1, w1, z1},
V ′′2 = V ′2 ∪ {x2, y2, w2, z2}, and V ′′3 = V ′3 ∪ {x3, y3, w3, z3};

• for every edge e ∈ E, the set C′ contains a cluster {u′e}; and

• the set C′ contains clusters {u1b}, {u2b}, {u3b}, {ul}, {ur} and, for i =
1, . . . , 7, clusters {t1i }, {t2i }, {t3i }, {b1i }, {b2i }, and {b3i }.

The set E′ contains an arbitrary set of intra-cluster edges and the following
inter-cluster edges.

• equivalence edges: edges (u′e, r
′
i) and (u′e, s

′
i), for every edge e = (r, s) ∈ Ei;

• bounding edges: the edges of cycleD = (ul, t
1
1, . . . , t

1
7, t

2
1, . . . , t

2
7, t

3
1, . . . , t

3
7, ur,

b37, b
3
6, b

3
5, u

3
b , b

3
4, . . . , b

3
1, b

2
7, b

2
6, b

2
5, u

2
b , b

2
4, . . . , b

2
1, b

1
7, b

1
6, b

1
5, u

1
b , b

1
4, . . . , b

1
1, ul);

• order-preserving edges: edges (v′1, v
′
2) and (v′2, v

′
3), for every vertex v ∈ V ;

• side-filling edges: edges between ul and every vertex in V ′1 , edges between
ur and every vertex in V ′3 , and edges between uib and every vertex in V ′i
for i = 1, 2, 3; and

• corner edges: for i = 1, 2, 3, edges (ti1, yi), (ti2, xi), (ti3, yi), (ti4, wi), (ti5, zi),
(ti6, xi), (ti7, yi), (bi1, wi), (bi2, zi), (bi3, xi), (bi4, yi), (bi5, wi), (bi6, zi), and
(bi7, wi).

The described construction can easily be performed in polynomial time. We
now prove that an instance (V,E = E1∪E2∪E3) of Partitioned 3-Page Book
Embedding is positive if and only if the corresponding instance (V ′, E′, C′) of
NT Planarity admits an NT planar representation.

The Necessity

The necessity is easy to prove. Suppose that (V,E = E1 ∪E2 ∪E3) is a positive
instance of Partitioned 3-Page Book Embedding and let O be a total
ordering of V such that the end-vertices of any two edges e and e′ in the same
set Ei do not alternate in O. For i = 1, 2, 3, let σi be the total order of the
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vertices in V ′′i such that xi, yi, wi, and zi are the first, second, last but one, and
last vertex in σi, respectively, and the vertices in V ′i (which all follow xi and yi
and precede wi and zi in σi) are ordered so that, for every r′i, s

′
i ∈ V ′i , vertex

r′i precedes vertex s′i in σi if and only if r precedes s in O. For i = 1, 2, 3, we
represent V ′′i as a symmetric adjacency matrix Mi whose left-to-right order of
the columns is σi; every other cluster in C′ consists of a single vertex and we
arbitrarily define a matrix for it. We embed these matrices in the plane (except
for the matrices representing vertices u′e with e ∈ E, which will be embedded
later) so that no two of them overlap. The side assignment for the inter-cluster
edges is as follows.

First, we assign:

• edges (tij , t
i
j+1), (ti7, t

i+1
1 ), (bij , b

i
j+1), (bi4, u

i
b), (uib, b

i
5), and (bi7, b

i+1
1 ) to the

right (left) side of the matrix representing the first (resp. second) vertex
in the pair;

• edges (b11, ul), (ul, t
1
1), (b37, ur), and (ur, t

3
7) to the top (bottom) side of the

matrix representing the first (resp. second) vertex in the pair;

• every other edge incident to tij to the bottom side of the matrix represent-

ing tij ;

• every other edge incident to bij to the top side of the matrix representing

bij ;

• every other edge incident to uib to the top side of the matrix representing
uib;

• every other edge incident to ul to the right side of the matrix representing
ul; and

• every other edge incident to ur to the left side of the matrix representing
ur.

By suitably routing the bounding edges, we get that M1, M2, and M3 we
ensure that the cycle D bounds the outer face of the representation, with M1,
M2, and M3 inside it.

Second, we assign the side-filling and order-preserving edges so that none of
them is assigned to the top side of a matrix Mi. To achieve this, we assign:
the side-filling edges incident to ul and to ur to the left side of M1 and to the
right side of M3, respectively; the side-filling edges incident to uib to the bottom
side of Mi; and the order-preserving edges between vertices in V ′i and vertices
in V ′i+1 to the right side of Mi and to the left side of Mi+1. Route all these
edges inside D. In particular, the order-preserving edges can be routed without
crossings since the top-to-bottom order of the vertices in V ′i along the right
side of Mi is σi − {xi, yi, wi, zi}, since the top-to-bottom order of the vertices
in V ′i+1 along the left side of Mi+1 is σi+1 − {xi+1, yi+1, wi+1, zi+1}, and since
σi − {xi, yi, wi, zi} and σi+1 − {xi+1, yi+1, wi+1, zi+1} are the same ordering
according to the bijection between V ′i and V ′i+1.
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Third, we assign the corner edges (ti2, xi), (ti3, yi), (ti4, wi), and (ti5, zi) to the
top side of Mi, (ti6, xi), (ti7, yi), and (bi7, wi) to the right side of Mi, (bi3, xi),
(bi4, yi), (bi5, wi), and (bi6, zi) to the bottom side of Mi, and (ti1, yi), (bi1, wi), and
(bi2, zi) to the left side of Mi. The corner edges can be routed inside D without
crossing the side-filling and order-preserving edges since by construction their
end-vertices in V ′′i are the first, second, last but one, and last vertex in σi.

Fourth, embed the matrices representing u′e with e ∈ Ei in the region Ri
delimited by edges (t3i , t

4
i ), (t3i , yi), and (t4i , wi), and by the top side of Mi.

Assign the equivalence edges (u′e, r
′
i) and (u′e, s

′
i) to the top side of Mi and to any

sides of the matrix representing u′e; route these edges in Ri. This can be done
without introducing crossings, since the left-to-right order σi − {xi, yi, wi, zi}
of the vertices in V ′i along the top side of Mi is the same as the order O of
the vertices in V (according to the bijection between V ′i and V ), hence no
two pairs of edges ((p′i, u

′
e), (u

′
e, q
′
i)) and ((r′i, u

′
f ), (u′f , s

′
i)) have alternating end-

points along the top side of Mi given that edges (p, q) and (r, s) do not have
alternating end-vertices in O.

The Sufficiency

The proof of the sufficiency is more involved. Given a solution Γ for the instance
(V ′, E′, C′) of NT Planarity, we need to define an ordering O for the vertex
set V in the instance (V,E = E1 ∪ E2 ∪ E3) of Partitioned 3-Page Book
Embedding. In order to do that, we prove some claims and lemmata about the
structure of Γ. For i = 1, 2, 3, let Mi be the matrix representing V ′′i in Γ, let Qi
be its boundary, and let σi be the left-to-right order of the vertices in V ′′i along
the top side of Qi. We have the following.

Claim 1 The matrices M1, M2, and M3, and the matrices representing vertices
u′e for all e ∈ E are on the same side of D in Γ.

Proof: The statement follows from the fact that the clusters V ′′i for i = 1, 2, 3
and {u′e} for e ∈ E are connected by inter-cluster edges that are not bounding
edges. Indeed, the clusters V ′′1 , V ′′2 , and V ′′3 are connected by order-preserving
edges and each cluster {u′e} is connected to a cluster V ′′i by two equivalence
edges. Thus, if the matrices representing two of these clusters were on opposite
sides of D in Γ, there would exist: (i) an order-preserving or an equivalence edge
crossing a matrix representing a vertex in D or crossing a bounding edge, or
(ii) a matrix among M1, M2, and M3 or a matrix representing a vertex u′e with
e ∈ E overlapping a matrix representing a vertex in D or crossing a bounding
edge. However, this would contradict the planarity of Γ. �

We henceforth assume that M1, M2, and M3, as well as the matrices rep-
resenting the vertices u′e for all e ∈ E, are inside D in Γ. Indeed, by Claim 1,
these matrices are on the same side of D in Γ. If they are outside D, then the
matrices representing vertices in D are all incident to an internal face f of Γ.
Hence, changing the outer face of Γ to f ensures that M1, M2, and M3 and the
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matrices representing the vertices u′e for all e ∈ E are inside D in Γ. This change
of the outer face can be accomplished by rerouting the inter-cluster edges that
are dual to a simple path in the dual of Γ from f to the outer face.

In the following we also assume that t11, t12, and t13 are encountered in this
order when traversing D in clockwise direction. This is not a loss of generality,
up to a reflection of Γ.

Let Γ′′ be the restriction of Γ to M1, M2, and M3, to the matrices represent-
ing the vertices tij , b

i
j , u

i
b, ul, and ur, and to the bounding and corner edges of

(V ′, E′, C′). For i = 1, 2, let Ri,i+1 be the region of the plane delimited by the
edges (ti7, yi), (bi7, wi), (ti7, t

i+1
1 ), (bi7, b

i+1
1 ), (ti+1

1 , yi+1), and (bi+1
1 , wi+1), by the

boundaries of Mi and Mi+1, and by the boundaries of the matrices representing
vertices ti7, bi7, ti+1

1 , and bi+1
1 . We have the following.

Claim 2 Every order-preserving edge connecting a vertex in V ′i with a vertex
in V ′i+1 lies inside Ri,i+1.

Proof: Assume that i = 1; the discussion with i = 2 is analogous.
We define three regions that partition the interior of Γ′′. Region R1 is the

minimal simple (i.e., without holes) region of the plane containing M1 and con-
taining the matrices and edges representing pathD1 = (w1, b

1
7, b

1
6, b

1
5, u

1
b , b

1
4, b

1
3, b

1
2,

b11, ul, t
1
1, . . . , t

1
7, y1). Region R2 is the minimal simple region of the plane con-

taining M2, M3, and containing the matrices and edges representing path D2 =
(y2, t

2
1, . . . , t

2
7, t

3
1, . . . , t

3
7, ur, b

3
7, b

3
6, b

3
5, u

3
b , b

3
4, b

3
3, b

3
2, b

3
1, b

2
7, b

2
6, b

2
5, u

2
b , b

2
4, b

2
3, b

2
2, b

2
1, w2).

The third region is Ri,i+1.
Since D1 and M1 do not share vertices with D2, M2, and M3, since D1 and

D2 are both incident to the outer face of Γ′′, and since R1 and R2 are simple,
we have that R1 and R2 are disjoint. Further, the only faces of Γ′′ regions R1

and R2 are both incident to (and which the order-preserving edges lie because
of the planarity of Γ) are the outer face of Γ′′ and Ri,i+1; however, neither Mi

nor Mi+1 is incident to the outer face of Γ′′, since Mi and Mi+1 lie inside D. It
follows that every order-preserving edge connecting a vertex in V ′i with a vertex
in V ′i+1 lies inside Ri,i+1. �

We now present the following claim, which argues about the incidences be-
tween the corner edges and the square Qi.

Claim 3 For each i ∈ {1, 2, 3}, one of the following statements holds true (see
respectively Figs. 5a and 5b).

(1) Vertices xi, yi, wi, and zi are the first, second, last but one, and last
vertex in σi, respectively. Further, (ti3, yi) and (ti4, wi) are assigned to the
top side of Qi, (ti7, yi) and (bi7, wi) are assigned to the right side of Qi,
(bi4, yi) and (bi5, wi) are assigned to the bottom side of Qi, and (ti1, yi) and
(bi1, wi) are assigned to the left side of Qi.

(2) Vertices zi, wi, yi, and xi are the first, second, last but one, and last
vertex in σi, respectively. Further, (bi5, wi) and (bi4, yi) are assigned to the
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Figure 5: (a) Statement (1) of Claim 3. (b) Statement (2) of Claim 3.

top side of Qi, (bi1, wi) and (ti1, yi) are assigned to the right side of Qi,
(ti4, wi) and (ti3, yi) are assigned to the bottom side of Qi, and (bi7, wi) and
(ti7, yi) are assigned to the left side of Qi.

Proof: We prove that, if yi precedes wi in σi, then statement (1) holds true. A
similar proof shows that, if wi precedes yi in σi, then statement (2) holds true.

First, each of the four corner edges (ti1, yi), (ti3, yi), (ti7, yi), and (bi4, yi) in-
cident to yi is assigned to a distinct side of Qi in Γ. Indeed assume, for a
contradiction, that two of these corner edges, say (ti1, yi) and (ti3, yi), are as-
signed to the same side of Qi, as in Fig. 6a; this implies that the end-points
of (ti1, yi) and (ti3, yi) on Qi coincide. Let p∗ be the end-point of these edges
on Qi; thus, p∗ is on the boundary of a row or column of Mi associated to
yi. Let R∗ be the region delimited by the corner edges (ti1, yi) and (ti3, yi), by
the bounding edges (ti1, t

i
2) and (ti2, t

i
3), and by the boundaries of the matrices

representing ti1, ti2, and ti3. Suppose that Qi is not contained in R∗. If edge
(ti2, xi) leaves the matrix representing ti2 outside D, then it crosses D since Mi

is inside D, a contradiction. Otherwise, (ti2, xi) leaves the matrix representing
ti2 inside R∗. Since p∗ is the only point on Qi incident to R∗ and since p∗ is
not on the boundary of a row or column of Mi associated to xi, we have that
(ti2, xi) crosses the boundary of R∗, a contradiction. If Qi is contained in R∗,
a contradiction can be derived analogously by considering the routing of edge
(ti6, xi) rather than (ti2, xi).

A similar argument proves that each of the four corner edges (ti4, wi), (bi7, wi),
(bi5, wi), and (bi1, wi) incident to wi is assigned to a distinct side of Qi in Γ.

We now prove that (ti1, yi) is assigned to the left side of Qi. Assume the
contrary, for a contradiction; refer to Fig. 6b, where (ti1, yi) is assigned to the
top side of Qi. Consider the line segment Q+ traversed when walking along Qi
in clockwise direction from the end-point of (ti1, yi) to the end-point of (ti3, yi).
If (ti1, yi) is assigned to the top, right, or bottom side of Qi, we have that Q+

entirely contains the top side of the column of Mi associated to wi, the right side
of the row of Mi associated to wi, or the left side of the row of Mi associated
to wi, respectively. Since one of the four corner edges incident to wi has its
end-point on this segment and since none of ti1, ti2, and ti3 is adjacent to wi, it
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Figure 6: (a) Contradiction to the planarity of Γ if (ti1, yi) and (ti3, yi) are
assigned to the same side of Qi. The gray region is R∗. (b) Contradiction to
the planarity of Γ if (ti1, yi) is assigned to the top side of Qi. (c) All the vertices
in V ′i come after yi and before wi in σi. The gray region is Rb.

follows that: (i) one of the corner edges (ti1, yi) and (ti3, yi), or one of the corner
edges incident to wi crosses a matrix representing a vertex in D or crosses one
of the bounding edges; or (ii) two among the corner edges (ti1, yi) and (ti3, yi),
and among the corner edges incident to wi cross each other. In both cases we
get a contradiction to the planarity of Γ.

Since (ti1, yi) is assigned to the left side of Qi, since each of the four corner
edges incident to y1 is assigned to a distinct side of Qi, and since ti1, ti3, ti7, and
bi4 appear in this clockwise order along D, we have that (ti3, yi), (ti7, yi), and
(bi4, yi) are assigned to the top, right, and bottom side of Qi, respectively.

An analogous proof shows that (ti4, wi), (bi7, wi), (bi5, wi), and (bi1, wi) are
assigned to the top, right, bottom, and left side of Qi, respectively.

Further, (ti2, xi) is assigned to the left or top side of Qi, since (ti1, yi) and
(ti3, yi) are assigned to the left and top side of Qi, respectively, and since ti1, ti2,
and ti3 appear in this clockwise order along D. In both cases, xi precedes yi in
σi. An analogous argument proves that zi follows wi in σi. Hence, xi, yi, wi,
and zi appear in this order in σi.

It remains to argue that xi, yi, wi, and zi are the first, second, last but
one, and last vertex in σi, respectively; refer to Fig. 6c. Let Rb be the region
delimited by the corner edges (bi4, yi) and (bi5, wi), by the bounding edges (bi4, u

i
b)

and (uib, b
i
5), and by the boundaries of the matrices representing bi4, uib, b

i
5, and

V ′′i . If any side-filling edge incident to uib leaves the matrix representing uib
outside D, then this edge crosses D, a contradiction to the planarity of Γ.
Otherwise, every side-filling edge incident to uib leaves the matrix representing
uib inside Rb. Since (bi4, yi) and (bi5, wi) are both assigned to the bottom side
of Qi, it follows that all the side-filling edges incident to uib have their other
end-point on the bottom side of Qi, between the end-point of (bi4, yi) and the
end-point of (bi5, wi). Thus, all the vertices in V ′i come after yi and before wi in
σi; this concludes the proof of statement (1). �

We are now ready to state and prove the following two lemmata.
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Lemma 1 For each i ∈ {1, 2, 3}, all the equivalence edges belonging to the
set E′i = {(u′e, r′i), (u′e, s′i) : e = (r, s) ∈ Ei} are assigned to the same side of
Qi, except possibly for the edges (u′e, r

′
i) and (u′e, s

′
i) such that r′i and s′i are

consecutive in σi.

Proof: We prove that every edge in E′i = {(u′e, r′i), (u′e, s′i) : e = (r, s) ∈ Ei} is
assigned to the same side of Qi edges (ti3, y1) and (ti4, w1) are assigned to, except
possibly for the edges (u′e, r

′
i) and (u′e, s

′
i) such that r′i and s′i are consecutive in

σi. The statement clearly implies Lemma 1. Note that (ti3, yi) and (ti4, wi) are
assigned either both to the top or both to the bottom side of Qi, by Claim 3.

We first prove that, for any edge e = (r, s) ∈ Ei, the edges (u′e, r
′
i) and

(u′e, s
′
i) are assigned to the same side of Qi. Indeed suppose, for a contradiction,

that the edge (u′e, r
′
i) is assigned to, say, the top side of Qi and the edge (u′e, s

′
i)

is assigned to a different side of Qi. By Claim 3, there exist two corner edges
that are assigned to the top side of Qi and that are incident to the second and
to the last but one vertex in σi, respectively; these corner edges are (ti3, yi) and
(ti4, wi), or (bi5, wi) and (bi4, yi). Assume that they are (ti3, yi) and (ti4, wi), as the
other case is analogous. Consider the region Rt delimited by (ti3, yi) and (ti4, wi),
by the bounding edge (ti3, t

i
4), by the boundaries of the matrices representing ti3

and ti4, and by the top side of Qi. By Claim 3, the incidence point of edge (u′e, r
′
i)

on the top side of Qi is between the incidence points of (ti3, yi) and (ti4, wi) on
the top side of Qi, given that r′i ∈ V ′i . Since edge (u′e, r

′
i) does not cross Mi,

it leaves Mi inside Rt. Since (u′e, s
′
i) is assigned to a side of Qi different from

the top side, then edge (u′e, r
′
i), or edge (u′e, s

′
i), or the matrix representing u′e

crosses the boundary of Rt, a contradiction to the planarity of Γ. It follows that
the edges (u′e, r

′
i) and (u′e, s

′
i) are assigned to the same side of Qi. Now suppose

that, for some e = (r, s) ∈ Ei, the edges (u′e, r
′
i) and (u′e, s

′
i) are both assigned to

a side different from the one the edges (ti3, yi) and (ti4, wi) are assigned to, and
suppose that r′i and s′i are not consecutive in σi. By Claim 3, the edges (u′e, r

′
i)

and (u′e, s
′
i) are both assigned to the side (bi4, yi) and (bi5, wi) are assigned to, or

to the side (ti1, yi) and (bi1, wi) are assigned to, or to the side (ti7, yi) and (bi7, wi)
are assigned to.

Assume first that (u′e, r
′
i) and (u′e, s

′
i) are both assigned to the side (bi4, yi)

and (bi5, wi) are assigned to. As in the proof of Claim 3, we can define Rb as
the region delimited by the edges (bi4, yi), (bi5, wi), (bi4, u

i
b), and (uib, b

i
5), and

by the boundaries of the matrices representing bi4, uib, b
i
5, and V ′′i ; then every

side-filling edge incident to uib leaves the matrix representing uib inside Rb, as
otherwise it would cross D. It follows that all the side-filling edges incident to
uib have their other end-point on the same side of Qi edges (bi4, yi) and (bi5, wi)
are assigned to. Let p′i ∈ V ′i be any vertex between r′i and s′i in σi. This vertex
exists by hypothesis. Since p′i is between r′i and s′i in σi, the incidence point of
the side-filling edge (uib, p

′
i) on Qi is between the incidence points of (u′e, r

′
i) and

(u′e, s
′
i) on Qi. It follows that (uib, p

′
i) crosses Mi, or the matrix representing u′e,

or (u′e, r
′
i), or (u′e, s

′
i).

The cases in which (u′e, r
′
i) and (u′e, s

′
i) are both assigned to the side (ti1, yi)

and (bi1, wi) are assigned to (with i = 1), or to the side (ti7, yi) and (bi7, wi) are
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assigned to (with i = 3) are analogous to the previous one, with ul or ur playing
the role of uib, respectively.

Assume next that (u′e, r
′
i) and (u′e, s

′
i) are both assigned to the side (ti7, yi)

and (bi7, wi) are assigned to and i ≤ 2. By Claim 3 and by the planarity of Γ, the
matrix representing u′e and the edges (u′e, r

′
i) and (u′e, s

′
i) lie inside region Ri,i+1.

By Claim 2, every order-preserving edge between a vertex in V ′i and a vertex in
V ′i+1 also lies inside Ri,i+1, hence it is assigned to the same side of Qi as (ti7, yi)
and (bi7, wi). Again by Claim 3, every order-preserving edge between a vertex
in V ′i and a vertex in V ′i+1 has its end-point between the end-points of (ti7, yi)
and (bi7, wi) along the side of Qi these edges are all assigned to. Let p′i ∈ V ′i be
any vertex between r′i and s′i in σi. This vertex exists by hypothesis. Since p′i
is between r′i and s′i in σi, then the incidence point of the order-preserving edge
(p′i, p

′
i+1) on Qi is between the incidence points of (u′e, r

′
i) and (u′e, s

′
i) on Qi. It

follows that (p′i, p
′
i+1) crosses Mi, or the matrix representing u′e, or (u′e, r

′
i), or

(u′e, s
′
i).

The case in which (u′e, r
′
i) and (u′e, s

′
i) are both assigned to the side (ti1, yi)

and (bi1, wi) are assigned to and i ≥ 2 is analogous to the previous one.

This concludes the proof of Lemma 1. �

Lemma 2 For any i, j ∈ {1, 2, 3}, the orderings σi − {xi, yi, wi, zi} of V ′i and
σj−{xj , yj , wj , zj} of V ′j either are the same ordering or are the reverse of each
other (according to the bijection between V ′i and V ′j ).

Proof: By Claim 3, (ti7, yi) and (bi7, wi) are both assigned to the right or to
the left side of Qi, and (ti+1

1 , yi+1) and (bi+1
1 , wi+1) are both assigned to the

right or to the left side of Qi+1. We distinguish four cases, based on these two
assignments.

If (ti7, yi) and (bi7, wi) are both assigned to the right side ofQi, and (ti+1
1 , yi+1)

and (bi+1
1 , wi+1) are both assigned to the left side of Qi+1, then the orderings

σi−{xi, yi, wi, zi} of V ′i and σi+1−{xi+1, yi+1, wi+1, zi+1} of V ′i+1 are the same
ordering (according to the bijection between V ′i and V ′i+1). In fact, traversing
the right side of Qi from the incidence point with (ti7, yi) to the incidence point
with (bi7, wi), the segments delimiting the rows associated to the vertices in V ′i
are encountered in the order σi − {xi, yi, wi, zi}; this is because by Claim 3 the
vertex yi precedes the vertex wi in σi. Analogously, traversing the left side
of Qi+1 from the incidence point with (ti+1

1 , yi+1) to the incidence point with
(bi+1

1 , wi+1), the segments delimiting the rows associated to the vertices in V ′i+1

are encountered in the order σi+1 − {xi+1, yi+1, wi+1, zi+1}. Now if there were
a pair of vertices p′i and q′i such that p′i and q′i are in this order in σi and such
that q′i+1 and p′i+1 are in this order in σi+1, then the order-preserving edges
(p′i, p

′
i+1) and (q′i, q

′
i+1) would cross each other, contradicting the planarity of Γ.

If (ti7, yi) and (bi7, wi) are both assigned to the left side of Qi, and (ti+1
1 , yi+1)

and (bi+1
1 , wi+1) are both assigned to the right side of Qi+1, the proof is analo-

gous.
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If (ti7, yi) and (bi7, wi) are both assigned to the right side ofQi, and (ti+1
1 , yi+1)

and (bi+1
1 , wi+1) are both assigned to the right side of Qi+1, then the order-

ings σi − {xi, yi, wi, zi} of V ′i and σi+1 − {xi+1, yi+1, wi+1, zi+1} of V ′i+1, re-
spectively, are the reverse of each other (according to the bijection between
V ′i and V ′i+1). In fact, traversing the right side of Qi from the incidence
point with (ti7, yi) to the incidence point with (bi7, wi), the segments delim-
iting the rows associated to the vertices in V ′i are encountered in the order
σi − {xi, yi, wi, zi}. However, traversing the right side of Qi+1 from the inci-
dence point with (ti+1

1 , yi+1) to the incidence point with (bi+1
1 , wi+1), the seg-

ments delimiting the rows associated to the vertices in V ′i+1 are encountered in
the reverse order of σi+1 − {xi+1, yi+1, wi+1, zi+1}; this is because by Claim 3
the vertex yi follows the vertex wi in σi. Now if there is a pair of vertices p′i and
q′i such that p′i and q′i are in this order in σi and such that p′i+1 and q′i+1 are in
this order in σi+1, then the order-preserving edges (p′i, p

′
i+1) and (q′i, q

′
i+1) cross

each other, contradicting the planarity of Γ.
If (ti7, yi) and (bi7, wi) are assigned to the left side of Qi, and (ti+1

1 , yi+1) and
(bi+1

1 , wi+1) are assigned to the left side of Qi+1 the proof is analogous. �

We are now ready to present a lemma that concludes the proof of sufficiency.

Lemma 3 The graph (V,E), together with the partition E = E1 ∪ E2 ∪ E3, is
a positive instance of Partitioned 3-Page Book Embedding.

Proof: The proof employs Lemmata 1 and 2.
Consider the ordering O of V corresponding to σ1−{x1, y1, w1, z1} according

to the bijection between V and V ′1 . By Lemma 2, for i = 2, 3, either σi −
{xi, yi, wi, zi} is the same or is the reverse of σ1 − {x1, y1, w1, z1} (according to
the bijection between V ′i and V ′1). Then, for i = 1, 2, 3, no two edges e = (p, q)
and f = (r, s) in Ei have alternating end-vertices in O. Indeed, e and f cannot
have alternating end-vertices if p′i and q′i are consecutive in σi, or if r′i and s′i
are consecutive in σi, as in this case p and q, or r and s would be consecutive
in O, respectively. If p′i and q′i are not consecutive in σi and r′i and s′i are not
consecutive in σi, then by Lemma 1 the edges (u′e, p

′
i), (u′e, q

′
i), (u′f , r

′
i), and

(u′f , s
′
i) are all assigned to the same side of Qi, hence if e and f had alternating

end-vertices then: (i) (u′e, p
′
i) or (u′e, q

′
i) would cross (u′f , r

′
i) or (u′f , s

′
i), or (ii)

(u′e, p
′
i) or (u′e, q

′
i) would cross the matrix representing u′f or Mi, or (iii) (u′f , r

′
i)

or (u′f , s
′
i) would cross the matrix representing u′e or Mi, or (iv) two among Mi

and the matrices representing u′e and u′f would cross each other. In each case
we would get a contradiction to the planarity of Γ. �

Lemma 3 completes the proof that (V,E = E1∪E2∪E3) is a positive instance
of Partitioned 3-Page Book Embedding if and only if (V ′, E′, C′) is a pos-
itive instance of NT Planarity. Thus, the NP-completeness of Partitioned
3-Page Book Embedding [8] concludes the proof of Theorem 1.

We now turn our attention to flat clustered graphs with given side assign-
ments. Let G = (V,E, C) be a flat clustered graph with a given side assignment
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Figure 7: Illustration for the proof of Theorem 2.

si, for each Vi ∈ C. We say that G is NT planar with fixed sides if G admits an
NT planar representation Γ such that, for every edge e = (u, v) ∈ E with u ∈ Vi
and v ∈ Vj , the incidence points of e with the matrices Mi and Mj representing
Vi and Vj in Γ lie on the straight-line segments corresponding to the si(e) side
of Mi and to the sj(e) side of Mj , respectively.

Theorem 2 NodeTrix Planarity with Fixed Sides is NP-complete even
for instances with two clusters.

Proof: Lemma 4 will prove that NT Planarity with Fixed Sides is in NP.
We give a reduction from the NP-complete problem Betweenness [20],

where an instance is a collection of ordered triplets of items and the target is
to find a total order of the items in which, for each of the given triplets, the
middle item in the triplet appears somewhere between the other two items.

Consider an instance T of Betweenness, i.e., a set of h items {a1, a2, . . . ah}
and a collection of t ordered triplets of τj = 〈abj , acj , adj 〉, with j = 1, . . . , t. We
construct the corresponding instance of NT Planarity with Fixed Sides
by defining a flat clustered graph (V,E, C), where C = {V1, V2}, and a side
assignment si, with i ∈ {1, 2}, as follows:

• cluster V1 contains 2 + h× t vertices: that is, vα, vβ , and one vertex v[i,j]
for each i = 1, . . . , h and each j = 1, . . . , t;

• cluster V2 contains 2 + h × (t − 1) + 2t vertices: that is, uα, uβ , plus
one vertex u[i,j] for each i = 1, . . . , h and each j = 1, . . . , t − 1, plus two
vertices u′j and u′′j for each j = 1, . . . , t.

The set E contains an arbitrary set of intra-cluster edges and the following
inter-cluster edges.
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• inter-cluster edge eα = (vα, uα), with s1(eα) = r and s2(eα) = l;

• inter-cluster edge eβ = (vβ , uβ), with s1(eβ) = l and s2(eβ) = r;

• for each i = 1, . . . , h an inter-cluster edge eb[i,1] = (uβ , v[i,1]), with s1(eb[i,1]) =

b and s2(eb[i,1]) = r;

• for each i = 1, . . . , h and j = 1, . . . , t − 1 an inter-cluster edge eb[i,j] =

(u[i,j], v[i,j+1]), with s1(eb[i,j]) = s2(eb[i,j]) = b;

• for each i = 1, . . . , h and j = 1, . . . , t − 1 an inter-cluster edge et[i,j] =

(v[i,j], u[i,j]), with s1(et[i,j]) = s2(et[i,j]) = t;

• for each triplet tj = 〈abj , acj , adj 〉, with j = 1, . . . , t, a path of four inter-
cluster edges joining the five vertices v[abj ,j], u

′
j , v[acj ,j], u

′′
j , and v[adj ,j] in

this order. Each edge e of such a path has s1(e) = r and s2(e) = l.

(=⇒) Suppose that the items of T admit a total order aπ1 , aπ2 , . . . , aπh
in

which for each of the given triplets, the middle item in the triplet appears
somewhere between the other two items. We show how to construct a NodeTrix
planar representation of (V,E, C).

Use for the matrix M1 representing V1 a row-column order σ1 such that
σ1(v[π1,1]) < σ1(v[π2,1]) < · · · < σ1(v[πh,1]) < σ1(v[π1,2]) < · · · < σ1(v[πh,2]) <
· · · < σ1(v[π1,t]) < · · · < σ1(v[πh,t]) < σ1(eα) < σ1(eβ). Use for the ma-
trix M2 representing V2 a row-column order σ2 such that σ2(u′t) < σ2(u′′t ) <
σ2(u[πh,t−1]) < σ2(u[πh−1,t−1]) < · · · < σ2(u[π1,t−1]) < σ2(u′t−1) < σ2(u′′t−1) <
σ2(u[πh,t−2]) < σ2(u[πh−1,t−2]) < · · · < σ2(u[π1,t−2]) < σ2(u′t−2) < σ2(u′′t−2) <
· · · < σ2(u[πh,1]) < σ2(u[πh−1,1]) < · · · < σ2(u[π1,1]) < σ2(u′1) < σ2(u′′1) <
σ2(eα) < σ2(eβ). It can be easily seen that the inter-cluster edges can be drawn
attached to the sides imposed by s1 and s2 without crossings, as in Fig. 7.

(⇐=) Suppose that (V,E, C) admits a NodeTrix planar representation where,
for i ∈ {1, 2}, each inter-cluster edge attaches according to the edge assignment
si to the matrix Mi representing the cluster Vi. We show that T admits a total
order in which for each triplet, the middle item in the triplet appears somewhere
between the other two items.

First observe that, whatever the row-column orders σ1 and σ2 chosen for
matrices M1 and M2 are, respectively, the matrices M1 and M2 form, together
with the edges eα and eβ , a cycle that separates the top sides of the two matrices
from their bottom sides. It follows that all inter-cluster edges that attach to
the top side (to the bottom side) of M1 or M2 are drawn inside the same region
delimited by the boundaries of M1 and M2, by eα, and by eβ ; we denote by Rt

(by Rb) the one of these regions comprising the top side (resp. the bottom side)
of M1 and M2. Refer again to Fig. 7 for an illustration.

Consider the inter-cluster edges eb[i,1], for i = 1, . . . , h. Since they all at-

tach to uβ and since s1(eb[i,1]) = b, they are all drawn inside Rb. Denote by

π = π1, . . . , πh the permutation of the indices 1, . . . , h such that σ1(v[π1,1]) <
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σ1(v[π2,1]) < · · · < σ2(v[πh,1]) (recall that these are the end-vertices of the edges
eb[i,1]).

We claim that σ1(v[π1,1]) < · · · < σ1(v[πh,1]) < σ1(v[π1,2]) < · · · < σ1(v[πh,2]) <
· · · < σ1(v[π1,t]) < . . . σ1(v[πh,t]) holds true. First, we prove that, for each
j ∈ {1, . . . , t}, the vertices v[π1,j], v[π2,j], . . . , v[πh,j] appear in this order in the
row-column order of M1; indeed, by the definition of π, this is the case for j = 1.
Observe that the inter-cluster edges et[i,1], for i = 1, . . . , h, are drawn inside Rt

and force σ2 to be such that σ2(u[πh,1]) < σ2(u[πh−1,1]) < · · · < σ2(u[π1,1]) (re-
call that the end-vertices of the edge et[i,1] are u[i,1] and v[i,1]). Analogously,

the inter-cluster edges eb[i,1], for i = 1, . . . , h, are drawn inside Rb and force

σ1 to be such that σ1(v[π1,2]) < σ1(v[π2,2]) < · · · < σ1(v[πh,2]) (recall that the
end-vertices of the edge eb[i,1] are u[i,1] and v[i,2]). For j = 2, . . . , t− 1, the same

argument can be repeated alternately for all the inter-cluster edges et[i,j] and

then for all the inter-cluster edges eb[i,j]; then for any j ∈ {1, . . . t}, it holds

true that σ(v[π1,j]) < σ(v[π2,j]) < · · · < σ1(v[πh,j]). Also, it is easy to see that,
in order for the drawing to be crossing-free, σ1(v[i′,j′]) < σ1(v[i′′,j′′]) whenever
j′ < j′′. This concludes the proof of the claim.

Now, for each j = 1, . . . , t, consider the inter-cluster edges of the path
v[abj ,j], u

′
j , v[acj ,j], u

′′
j , and v[adj ,j]. In any NT planar representation of (V,E, C)

such a path forces v[acj ,j] to be in the middle of v[abj ,j] and v[adj ,j], that is, it

forces acj to be in the middle of abj and adj in π. It follows that π is an ordering
of the items aπ1 , aπ2 , . . . , aπh

in which, for each triplet, the middle item in the
triplet appears between the other two items. �

Let G = (V,E, C) be a flat clustered graph with a given row-column order
σi, for each Vi ∈ C. We say that G is NT planar with fixed order if it admits an
NT planar representation Γ where, for each cluster Vi ∈ C, each vertex v ∈ Vi
is associated with the σi(v)-th row and column of the matrix Mi representing
Vi in Γ.

Theorem 3 NodeTrix Planarity with Fixed Order is NP-complete even
if at most one cluster contains more than one vertex.

Proof: The membership in NP of NT Planarity with Fixed Order will be
proved in Lemma 4.

For the NP-hardness, we give a reduction from the NP-complete problem
that asks to determine whether a proper 4-coloring exists for a circle graph [23],
which is an intersection graph of chords of a circle. Let G = (N,A) be a circle
graph. First, by means of the algorithm in [22], we construct in polynomial
time an intersection representation 〈P,O〉 of G, where P is a linear sequence
of distinct points on a circle and O is a set of chords between pairs of points
in P such that: (i) each chord c ∈ O corresponds to a vertex n ∈ N and (ii)
two chords c′, c′′ ∈ O intersect if and only if (n′, n′′) ∈ A, where n′ and n′′

are the vertices in N corresponding to c′ and c′′, respectively. Then G admits
a proper 4-coloring if and only if the chords in O can be 4-colored so that no
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(a)

V∗
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vtl v′tr

v′′bl
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v′′tr
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Figure 8: (a) An intersection representation 〈P,O〉 of a circle graph G = (N,A).
(b) Instance (V,E, C) of NodeTrix Planarity corresponding to 〈P,O〉.

two chords of the same color intersect. Starting from 〈P,O〉 we construct an
instance (V,E, C) of NodeTrix Planarity with Fixed Order as follows
(refer to Fig. 8). Set C contains:

• a cluster V∗ containing one vertex vi for each point pi ∈ P, plus two
additional vertices vα and vω;

• six clusters {vtl}, {v′tr}, {v′′tr}, {vbr}, {v′bl}, and {v′′bl}, respectively; and

• a cluster {vc}, for each chord c ∈ O.

The set E contains an arbitrary set of intra-cluster edges and the following
inter-cluster edges.

• bounding edges (vtl, v
′
tr), (v′tr, v

′′
tr), (v′′tr, vbr), (vbr, v

′
bl), (v′bl, v

′′
bl), and (v′′bl, vtl);

• corner edges (vtl, vα), (v′tr, vω), (v′′tr, vα), (vbr, vω), (v′bl, vα), and (v′′bl, vω);
and

• chord edges: for each chord c = (pi, pj) ∈ O, edges (vi, vc) and (vc, vj).

Finally, we fix the row-column order σ∗ of the only non-unitary cluster V∗
to be vα ◦P ◦vω (where with a slight abuse of notation we denote by P not only
the order of the points on the circle in the given intersection representation of
G, but also the corresponding order of the vertices in V∗ − {vα, vω}). We now
prove the equivalence between the problem of properly 4-coloring 〈P,O〉 and
the constructed instance of NodeTrix Planarity with Fixed Order.

(=⇒) Suppose that the chords of 〈P,O〉 can be assigned colors 1, 2, 3, 4 so
that no two chords with the same color intersect. We show how to construct a
NodeTrix planar representation with fixed order of (V,E, C). Represent clusters
V∗, {vtl}, {v′tr}, {v′′tr}, {vbr}, {v′bl}, and {v′′bl} by matrices M∗, Mtl, M

′
tr, M

′′
tr,

Mbr, M
′
bl, and M ′′bl, respectively, where the row-column order of M∗ is σ∗. Draw
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the bounding edges so that M∗ is inside the cycle D they compose together with
Mtl, M

′
tr, M

′′
tr, Mbr, M

′
bl, and M ′′bl. Draw the corner edges also inside D. The

corner edges, together with the boundary of M∗, subdivide the region of the
plane inside D into five regions, namely one region internal to the boundary of
M∗ and four regions incident to the top, right, bottom and left side of M∗. We
refer to these regions as to the top, right, bottom, and left region, respectively.
Depending on whether a chord c = (pi, pj) has color 1, 2, 3, or 4, we draw
the chord edges (vi, vc) and (vc, vj), as well as the matrix Mc representing
cluster {vc}, inside the top, right, bottom, and left region, respectively. We
claim that the obtained NT representation of (V,E, C) is planar. Suppose, for a
contradiction, there is a crossing between two paths (vi, vc′ , vj) and (vk, vc′′ , vh)
corresponding to two chords c′ = (pi, pj) and c′′ = (pk, ph). Then these two
paths are in the interior of the same (top, right, bottom, or left) region, hence
they attach to the same side of M∗; it follows that the two chords c′ and c′′

have the same color. By the definition of σ∗, since the end-vertices of the two
paths alternate along the side of M∗, the end-points of c′ and c′′ alternate in P.
Hence, c′ and c′′ cross, thus contradicting the fact that c′ and c′′ have the same
color.

(⇐=) Suppose that (V,E, C) admits a NodeTrix-planar representation Γ with
a row-column order σ∗ for the unique non-unitary cluster V∗. Denote by M∗ the
matrix representing V∗ in Γ. We show that the chords of 〈P,O〉 are 4-colorable
so that no two chords of the same color intersect.

Similarly to the proof of Theorem 1, it can be proved that the corner edges
subdivide the side of D that contains M∗ into five regions, defined as in the
previous direction, so that all the vertices on the top, right, bottom, and left
side of M∗ are incident to the top, right, bottom, and left region, respectively;
while in the proof of Theorem 1 this was ensured by Claim 3, it is here a
trivial consequence of the fact that vα and vω are the first and the last vertex
in σ∗. By the planarity of Γ, both the incidence points of a path (vi, vc, vj)
with the boundary of M∗ are on the same side of M∗. Then color all the chords
c = (pi, pj) in O such that path (vi, vc, vj) is in the top, right, bottom, or left
region with color 1, 2, 3, or 4, respectively.

We claim that the obtained 4-coloring of the chords of 〈P,O〉 is proper.
Suppose, for a contradiction, there is a crossing in 〈P,O〉 between two chords
c′ = (pi, pj) and c′′ = (pk, ph) both with color 1 – the discussion for the other
colors is analogous. Then c′ and c′′ have alternating end-points in 〈P,O〉. Since
the order of the points in P coincides with the order of the corresponding vertices
in σ∗, it follows that paths (vi, vc′ , vj) and (vk, vc′′ , vh) have alternating end-
points on the top side of M∗, hence they cross, a contradiction to the planarity
of Γ. This concludes the proof. �

Let G = (V,E, C) be a flat clustered graph with a given row-column order σi
and side assignment si, for each Vi ∈ C. Then G is NT planar with fixed order
and fixed side if it is simultaneously planar with fixed order and with fixed sides.
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Theorem 4 NodeTrix Planarity with Fixed Order and Fixed Sides
can be solved in linear time.

Proof: Consider the graph G′ obtained from an instance G = (V,E, C) of Node-
Trix Planarity with Fixed Order and Fixed Sides by collapsing each
cluster Vi ∈ C into a vertex vi. Intuitively, instance G is NT planar with fixed
order and fixed sides if and only if G′ is planar with the additional constraint
that the clockwise order of the edges incident to each vertex vi is “compatible”
with the row-column order σi and the side assignment si for the cluster Vi.

More formally, denote by Ei the set of the inter-cluster edges incident to
Vi and denote by vi(e) the vertex of Vi incident to an edge e ∈ Ei. The edges
in Ei can be decomposed into a circular sequence of sets S = Et,1, Et,2, . . . , Et,|Vi|,
Er,1, Er,2, . . . , Er,|Vi|, Eb,|Vi|, Eb,|Vi−1|, . . . , Eb,1, El,|Vi|, El,|Vi−1|, . . . , El,1, where each
Ex,j , with x ∈ {t,b, l,r} and j ∈ {1, . . . , |Vi|}, contains the edges e ∈ Ei such
that si(e) = x and σi(vi(e)) = j. Let Γ′ be a planar embedding of G′ and let
λi denote the clockwise order of the edges incident to vertex vi of G′ in Γ′. The
embedding Γ′ of G′ is compatible with functions σi and si if: (i) all the edges
belonging to the same set Ex,j appear consecutively in λi, and (ii) for any three
edges e′ ∈ Ex′,j′ , e′′ ∈ Ex′′,j′′ , and e′′′ ∈ Ex′′′,j′′′ , where Ex′,j′ , Ex′′,j′′ , and Ex′′′,j′′′
are all distinct, appear in this clockwise order in λi if and only if Ex′,j′ , Ex′′,j′′ ,
and Ex′′′,j′′′ appear in this circular order in S.

It can be easily seen that an instance of NodeTrix Planarity with Fixed
Order and Fixed Sides has a solution if and only if G′ admits an embedding
Γ′ that is compatible with σi and si, for all vertices vi of G′. We obtain an
instance of constrained planarity for G′ that can be tested in linear time with
known techniques [17]. �

We conclude the section with the following lemma.

Lemma 4 NodeTrix Planarity, NodeTrix Planarity with Fixed Sides,
and NodeTrix Planarity with Fixed Order are in NP.

Proof: We prove the statement for NT Planarity; the other proofs are anal-
ogous. Consider an instance (V,E, C) of NT Planarity. For each Vi ∈ C,
guess a row-column order σi and a side assignment si; then use the algorithm
described in the proof of Theorem 4 to test in linear time whether (V,E, C)
is NT planar with fixed order and fixed sides. Since the number of distinct
row-column orders and side assignments is a function of |V | + |E|, we get the
NP membership. �

4 Monotone NodeTrix Representations

Let G = (V,E, C) be a flat clustered graph and γ be a square assignment
for G that maps each cluster in C to an axis-aligned square in the plane. A
curve is x-monotone (resp. y-monotone) if no two of its points have the same
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projection on the x-axis (resp. on the y-axis) and is xy-monotone if it is either
a horizontal or a vertical segment or it is both x- and y-monotone. A monotone
NT representation Γ of 〈G, γ〉 is an NT representation such that:

1. all the inter-cluster edges are represented by xy-monotone curves;

2. for each cluster Vi ∈ C, the boundary of the matrix Mi representing Vi is
Qi = γ(Vi);

3. for each pair of adjacent clusters Vi and Vj , with i 6= j, the convex hull of
Qi and Qj does not intersect any other square Qk, with k 6= i, j – we call
this convex hull the pipe of Qi and Qj ; and

4. all the inter-cluster edges between vertices in Vi and vertices in Vj lie inside
the pipe of Qi and Qj .

In a monotone NT representation Γ of G let χi(Γ) denote the number of
edge crossings between pairs of inter-cluster edges incident to Vi. Let χ(Γ) =∑
i χi(Γ), where the sum is over all the clusters Vi ∈ C; we say that Γ is locally

planar if χ(Γ) = 0 and no inter-cluster edge intersects any matrix except at
its incidence points. The notions of fixed order and fixed sides easily extend to
monotone NT representations.

In this section we study the complexity of testing if a flat clustered graph with
fixed square assignment admits a monotone locally-planar NT representation, a
problem which we call Monotone NT Local Planarity (MNTLP).

There are several reasons to study the MNTLP problem. First, graph rep-
resentations with monotone edges are natural and have been well investigated
in the graph drawing literature (see, e.g., [4, 16, 21]). Second, straight-line
NT representations, in which inter-cluster edges are straight-line segments, ar-
guably provide a high readability of the adjacencies between vertices in differ-
ent clusters. Note that straight-line NT representations are a particular type
of monotone NT representations. Furthermore, we will prove in Lemma 5 that
monotone NT representations are in fact equivalent to straight-line NT repre-
sentations in terms of local planarity; that is, a flat clustered graph admits a
monotone locally-planar NT representation if and only if it admits a straight-
line locally-planar NT representation. Third, as shown in the previous section
(see Theorems 1–3), the general NT Planarity problem is intractable in most
cases, hence the need for a more constrained and manageable model; we will in
fact show that, while the MNTLP problem is also intractable (see Theorems 5
and 6), it becomes polynomial-time solvable if the matrices have fixed orders
and the number of clusters is bounded by a constant.

We start by proving the NP-hardness of the MNTLP problem and of its
variant with fixed side assignment.

Theorem 5 MNTLP is NP-complete.

Proof: The proof that the problem is in NP is similar to the proof of Theorem 4:
one can guess a row-column order and a side assignment for each cluster; then
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Figure 9: Illustration for the proof of Theorem 5, with m = 3.

the monotone NT local planarity of the given clustered graph with the given
square assignment and the guessed row-column order and side assignment can
be tested in polynomial time by Theorem 7, to be presented later.

For the NP-hardness we give a reduction from the NP-complete problem
Betweenness [20], defined in the proof of Theorem 2. Consider an instance
T of Betweenness consisting of a set of h items {a1, . . . ah} and m ordered
triplets τi = 〈abi , aci , adi〉, with i = 1, . . . ,m. We construct an instance 〈G =
(V,E, C), γ〉 of MNTLP as follows (refer to Fig. 9). Let C consist of:

• for i = 1, . . . ,m, a cluster Vi containing h+ 1 vertices vi1, . . . , v
i
h, x

i;

• two clusters {x0} and {u}; and

• for i = 1, . . . ,m, a cluster {αi, βi}.

The set E contains an arbitrary set of intra-cluster edges and the following
inter-cluster edges.

• order-preserving edges connecting vij with vi+1
j , for 1 ≤ i ≤ m − 1 and

1 ≤ j ≤ h;

• side-filling edges connecting u with v1j , for 1 ≤ j ≤ h;

• protecting edges connecting xi with xi+1, for 0 ≤ i ≤ m− 1;

• corner edges connecting xi with αi and βi, for 1 ≤ i ≤ m; and

• betweenness edges connecting, for each triplet τi = 〈abi , aci , adi〉 with i ∈
{1, . . . ,m}, the vertex vibi with αi, the vertex vidi with βi, and the vertex

vici with both αi and βi.

Finally, square assignment γ is defined as follows:

• for i = 1, . . . ,m, the cluster Vi is assigned to a square Qi so that, for every
1 ≤ i < j ≤ m, we have miny{Qi} = miny{Qj}, maxy{Qi} = maxy{Qj},
and maxx{Qi} < minx{Qj};

• the cluster {x0} (the cluster {u}) is assigned to a square Q0 (resp. Qu),
so that minx{Q0} = minx{Qu} < maxx{Q0} = maxx{Qu} < minx{Q1},
and miny{Q1} < miny{Qu} < maxy{Qu} < miny{Q0} < maxy{Q0} <
maxy{Q1}; and
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• for i = 1, . . . ,m, the cluster {αi, βi} is assigned to a square Qαi so that
maxx{Qi−1} < minx{Qαi } < maxx{Qαi } < minx{Qi}, and maxy{Qi} <
miny{Qαi }.

Notice that the above definition of γ is such that, for each pair of adjacent
clusters Vi and Vj , with i 6= j, the convex hull of Qi and Qj does not intersect
any other square Qk, with k 6= i, j.

We now prove the equivalence between the given instance of Betweenness
and the constructed instance of MNTLP.

(=⇒) If T admits an order σ = (aπ1
, . . . , aπh

) in which aci appears between
abi and adi in σ, for each triplet τi = 〈abi , aci , adi〉, we construct a monotone
locally-planar NT representation Γ with fixed square assignment of G as follows.
For i = 1, . . . ,m, represent Vi as a matrix Mi with boundary Qi and with row-
column order xi, viπ1

, . . . , viπh
; represent {αi, βi} as a matrix Mα

i with boundary
Qαi and with row-column order αi, βi or βi, αi depending on whether vibi follows

or precedes vidi in σ, respectively; the representation of the unitary clusters {x0}
and {u} in Γ is trivially defined. Assign every inter-cluster edge incident to x0

(or u) to the right side of Q0 (or Qu) and to the left side of Q1, every order-
preserving or protecting edge between a vertex in Vi and a vertex in Vi+1 to
the right side of Qi and to the left side of Qi+1, every corner edge incident to
xi to the top side of Qi and to the bottom side of Qαi , and every betweenness
edge incident to a vertex in Vi to the top side of Qi and to the right side of Qαi .
Finally, draw all the inter-cluster edges as straight-line segments in Γ. Observe
that such segments are xy-monotone curves inside the corresponding pipe.

Representation Γ has no crossing between any inter-cluster edge and any
matrix, as a consequence of the square and side assignments and independently
of the row-column order of the matrices. Further, the order-preserving, side-
filling, and protecting edges do not cross the corner and betweenness edges
since they are separated by the horizontal line y = maxy{Q1}, and do not cross
each other since the row-column orders of any two matrices Mi and Mi+1 both
correspond to σ with xi and xi+1 as the first element, respectively. The corner
edges incident to xi do not cross the betweenness edges incident to vertices in
Vi, because of the side assignment of these edges to Qαi and since xi precedes
viπ1

, . . . , viπh
in the row-column order of Mi. Finally, the betweenness edges do

not cross each other because of the row-column order defined for Mα
i and since

the top side of the column representing vici in Mi is between the top sides of the
columns representing vibi and vidi in Mi.

(⇐=) Suppose that G admits a monotone locally-planar NT representation
Γ with fixed square assignment γ. Let M1, . . . ,Mm be the matrices representing
the clusters V1, . . . , Vm in Γ, respectively. First, the monotonicity of Γ and the
placement of squares Q0, Q1, and Qu imply that the side-filling edges, as well
as the edge (x0, x1), lie to the right of Q0 and Qu, to the left of Q1, above the
line y = miny{Q1}, and below the line y = maxy{Q1}. Since maxy{Qu} <
miny{Q0}, we have that all the side-filling edges lie below edge (x0, x1), hence
the planarity of Γ implies that x1 is the first vertex in the row-column order
of M1; let x1, v1π1

, . . . , v1πh
be such an order, for some permutation π1, . . . , πh of
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{1, . . . , h}. We claim that the total ordering σ = (aπ1 , . . . , aπh
) is a solution to

instance T of betweenness.
We first prove that the order x1, v1π1

, . . . , v1πh
is “preserved” in M2, . . . ,Mm.

The monotonicity of Γ and the placement of squares Qi imply that, for 1 ≤
i ≤ m − 1, the order-preserving and protecting edges between vertices in Vi
and vertices in Vi+1 are to the right of Qi, to the left of Qi+1, above the line
y = miny{Qi}, and below the line y = maxy{Qi}. Then the planarity of Γ
implies that, if the row-column order of Mi is xi, viπ1

, . . . , viπh
, the row-column

order of Mi+1 is xi+1, vi+1
π1

, . . . , vi+1
πh

.
Now consider any triplet τi = 〈abi , aci , adi〉 in T . The monotonicity of Γ and

the placement of the squares Qi and Qαi imply that every corner or betweenness
edge is assigned to the top or left side of Qi and to the bottom or right side of Qαi .
Further, since xi is the first element in the row-column order of Mi and since
maxy{Qi} < miny{Qαi }, no betweenness edge is assigned to the left side of Qi,
as otherwise it would cross edge (xi−1, xi). Hence, all the betweenness edges are
assigned to the top side of Qi. Since xi is the first vertex in the row-column order
of Mi and by the planarity of Γ, we have that, when traversing Qαi in clockwise
direction starting from its top-right corner, the incidence points between Qαi
and the betweenness edges are encountered before the incidence points between
Qαi and the corner edges; in particular, no betweenness edge incident to the first
vertex – say αi as other case is analogous – in the row-column order of Mα

i is
assigned to the bottom side of Mα

i , as otherwise this edge would cross the corner
edge incident to βi. The planarity of Γ also implies that, when traversing the top
side of Qi from left to right, the end-points of the betweenness edges incident to
βi are encountered all before the end-points of the betweenness edges incident
to αi. Since vici is the only vertex among vibi , v

i
ci , and vidi that is neighbor of

both αi and βi, then its associated column is between the columns associated
to vibi and vidi , hence aci is between abi and adi in σ. �

Theorem 6 MNTLP with Fixed Sides is NP-complete.

Proof: The reduction presented in the proof of Theorem 5, equipped with the
side assignment for the inter-cluster edges described in the direction (=⇒) im-
plies the statement. �

Since the instances of MNTLP used in the proof of Theorem 5 are planar
whenever they are locally planar, testing the existence of a monotone planar
NT representation with fixed square assignment is also NP-complete. Further,
the instances of NT Planarity used in the proof of Theorem 1 can be drawn
planarly with straight-line (hence monotone) edges, whenever they are planar.
Hence, testing whether a flat clustered graph admits a monotone planar NT
representation – without square assignment – is also NP-complete.

Consider now a flat clustered graph G = (V,E, C) and a monotone NT
representation Γ of G with fixed square assignment γ. Consider two clusters
Va, Vb ∈ C and let Qa = γ(Va) and Qb = γ(Vb). Since Qa and Qb are disjoint,
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Figure 10: Possible arrangements for squares Qa and Qb. Thick red segments
represent sides of Qa and Qb edge (u, v) cannot be assigned to. Red curves show
further forbidden side assignment pairs for edge (u, v).

there exists either a vertical or a horizontal line separating them. Suppose that
the former holds, the other case being analogous. Also suppose that maxx(Qa) <
minx(Qb) and maxy(Qa) ≥ maxy(Qb), the other cases being analogous up to
reflections of the Cartesian axes (refer to Fig. 10). Also, consider an inter-cluster
edge e = (u, v) ∈ Ea,b. Depending on the relative positions of Qa and Qb in
Γ, not all the possible combinations of side assignments for e might be allowed,
as described in the following property. Notice that, by the assumptions on the
relative positions of Qa and Qb in Γ and by the monotonicity and the local
planarity of Γ, we have that sa(e) 6= l,t and sa(e) 6= r.

Property 1 Let yu and yv be the y-coordinate of points mu
r and mv

l , respec-
tively. The following three arrangements are possible for Qa and Qb in Γ.

Arrangement 1: maxy(Qb) < miny(Qa). Then sb(e) 6= b and all other
four side assignments 〈sa(e) = r, sb(e) = t〉, 〈sa(e) = r, sb(e) = l〉, 〈sa(e) =
b, sb(e) = t〉, and 〈sa(e) = b, sb(e) = l〉 are allowed for e.

Arrangement 2: miny(Qb) < miny(Qa) ≤ maxy(Qb). Then sb(e) 6= b; also,
pair 〈sa(e) = b, sb(e) = t〉 is not allowed, while pair 〈sa(e) = r, sb(e) = l〉 is
allowed. The remaining two possible pairs 〈sa(e) = r, sb(e) = t〉 and 〈sa(e) =
b, sb(e) = l〉 are or are not allowed, depending on yu and yv. In particular, if
yu ≤ maxy(Qb), then 〈sa(e) = r, sb(e) = t〉 is not allowed, otherwise it is; also,
if yv ≥ miny(Qa), then 〈sa(e) = b, sb(e) = l〉 is not allowed, otherwise it is.

Arrangement 3: miny(Qa) ≤ miny(Qb). Then sa(e) 6= b; also, pair 〈sa(e) =
r, sb(e) = l〉 is allowed. The remaining two possible pairs 〈sa(e) = r, sb(e) = t〉
and 〈sa(e) = r, sb(e) = b〉 are or are not allowed, depending on yu. In partic-
ular, if yu ≤ maxy(Qb), then 〈sa(e) = r, sb(e) = t〉 is not allowed, otherwise it
is, and if yu ≥ miny(Qb), then 〈sa(e) = r, sb(e) = b〉 is not allowed, otherwise
it is.

Note that if an edge e can be drawn as an xy-monotone curve not crossing
any matrix, then it can also be drawn as a straight-line segment not crossing
any matrix, since the pipe of Qa and Qb does not intersect any matrix other
than Ma and Mb. The next lemma extends this observation by arguing that
the xy-monotonicity constraint can be replaced by a straight-line requirement
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Figure 11: Illustration for the proof of Lemma 5. (a) Case 1. (b) Case 2.

also for what concerns crossings between inter-cluster edges incident to the same
matrix.

Lemma 5 An instance 〈G = (V,E, C), γ〉 of MNTLP with Fixed Order
and Fixed Sides is locally planar if and only if it admits a monotone lo-
cally planar NT representation in which all the inter-cluster edges are drawn as
straight-line segments.

Proof: Since a straight-line segment is an xy-monotone curve, one direction of
the proof is trivial. Consider an NT representation Γ of 〈G = (V,E, C), γ〉 with a
fixed row-column order, a fixed side assignment, and a fixed square assignment,
in which all the inter-cluster edges are straight-line segments. Suppose that Γ
is not locally planar and consider two crossing inter-cluster edges e = (va,1, vb)
and f = (va,2, vc) such that va,1 and va,2 belong to the same cluster Va ∈ C. We
show that e and f cross in any monotone NT representation Γ′ with the same
row-column order, side assignment, and square assignment as Γ. Two are the
cases: either vb and vc belong to the same cluster Vb as in Fig. 11a (Case 1), or
they belong to different clusters Vb and Vc, respectively, as in Fig. 11b (Case 2).

In Case 1, consider the region Rab of the plane inside the pipe of Qa and
Qb and outside each of Qa and Qb. Edge e splits Rab into two regions R1 and
R2. Since e and f cross in Γ, the end-points of f are one incident to R1 and
one incident to R2 in Γ′. Since the representation of f has to lie inside Rab, it
follows that e and f cross in Γ′.

In Case 2, consider the region Rab defined as in Case 1 and consider the
region Rac of the plane inside the pipe of Qa and Qc and outside each of Qa
and Qc. Since e lies in Rab and f in Rac, and since e and f cross in Γ, it follows
that the intersection of Rab and Rac is a non-empty region R∩. The part of
e inside R∩ partitions R∩ into two regions R1 and R2. Since e and f cross in
Γ, the end-point of f on the boundary of Qa is incident to the one between
R1 and R2 that does not share the boundary with region Rac − R∩. Since the
representation of f has to lie inside Rac, it follows that e and f cross in Γ′. �

The previous lemma, in contrast to the negative results of Theorems 5 and 6,
allows us to show that MNTLP with Fixed Order and Fixed Sides is a
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polynomial-time solvable problem.

Theorem 7 MNTLP with Fixed Order and Fixed Sides can be solved
in polynomial time.

Proof: We check whether every edge can be represented as an xy-monotone
curve by Property 1. Further, we check whether all the pairs of inter-cluster
edges incident to the same cluster admit a non-crossing straight-line drawing; by
Lemma 5 this is equivalent to testing the given instance for local planarity with
fixed row-column order, fixed side assignment, and fixed square assignment. �

The remaining piece of the complexity puzzle for MNTLP is the setting with
fixed row-column order and free side assignment. Although we are not able to
establish the complexity of the corresponding decision problem, we show that
testing MNTLP with fixed order is a polynomial-time solvable problem if the
number of clusters is constant. In order to do that, we show how to transform
the instances of our problem into instances of 2-SAT.

Assuming the hypotheses stated before Property 1 about the relative posi-
tions of Qa and Qb, we say that an inter-cluster edge e = (u ∈ Va, v ∈ Vb) is
S-drawn in Γ if:

(i) Qa and Qb are arranged as in Arrangement 1 of Property 1 and either
〈sa(e) = r, sb(e) = l〉 or 〈sa(e) = b, sb(e) = t〉; or

(ii) Qa and Qb are arranged as in Arrangement 2 of Property 1 and it holds
that (a) 〈sa(e) = r, sb(e) = l〉, (b) yu > maxy(Qb), and (c) yv <
miny(Qa).

Note that if Qa and Qb are arranged as in Arrangement 3 of Property 1, then
e is not S-drawn in Γ, by definition. The representation of an S-drawn edge is
an S-drawing. We have the following.

Lemma 6 Let 〈G = (V,E, C = {Va, Vb}), γ, σ〉 be an instance of MNTLP with
Fixed Order. Consider the following two cases:

• Case 1: an inter-cluster edge e∗ ∈ E has a given S-drawing Γe, or

• Case 2: no inter-cluster edge in E has an S-drawing.

Both in Case 1 and in Case 2, we can construct in O(|E|2) time a 2-SAT
formula φ(a, b,Γe) and φ(a, b), respectively, with length O(|E|2) that is satisfiable
if and only if 〈G, γ, σ〉 admits a monotone locally planar NT representation with
fixed order satisfying the constraint of the corresponding case.

Proof: Consider the squares Qa = γ(Va) and Qb = γ(Vb). If they are not dis-
joint, no NT representation of G exists, hence the statement is trivially true.
Otherwise, there exists either a vertical line or a horizontal line separating them.
Suppose that the former holds, the other case being analogous. Suppose that
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Figure 12: Illustrations for the proof of Lemma 6, Case 1, Arrangement 1.

maxx(Qa) < minx(Qb) and maxy(Qa) ≥ maxy(Qb), the other cases being anal-
ogous up to reflections of the Cartesian axes.

Suppose that an inter-cluster edge e∗ is required to have a drawing Γe as
in Case 1. By the definition of an S-drawn edge, if Qa and Qb are arranged as
in Arrangement 3 of Property 1, then the required NT representation does not
exist, thus the statement trivially holds. Hence, we can assume that Qa and
Qb are arranged as in Arrangement 1 or 2 of Property 1. Let e 6= e∗ ∈ E be
any inter-cluster edge not adjacent to e. Denote by σa and σb the row-column
orders associated to Va and Vb in σ, respectively.

Consider Arrangement 1 and suppose sa(e∗) = r and sb(e
∗) = l. The end-

vertices of e and e∗ in Va (in Vb) have two possible relative positions in σa (resp.
in σb). This leads to four possible combinations for these relative positions.

If σa(e∗) < σa(e) and σb(e) < σb(e
∗), then any xy-monotone curve represent-

ing e crosses e∗, independently of the side assignment for e, and the statement
trivially holds. See Fig. 12a. For each of the three remaining combinations,
exactly two side assignments for e create no crossing with e∗. Indeed:

• If σa(e) < σa(e∗) and σb(e) < σb(e
∗), then it holds true that either sa(e) =

r and sb(e) = t, or that sa(e) = r and sb(e) = l. See Fig. 12b.

• If σa(e) < σa(e∗) and σb(e
∗) < σb(e), then it holds true that either sa(e) =

r and sb(e) = t, or that sa(e) = b and sb(e) = l. See Fig. 12c.

• If σa(e∗) < σa(e) and σb(e
∗) < σb(e), then it holds true that either sa(e) =

r and sb(e) = l, or that sa(e) = b and sb(e) = l. See Fig. 12d.

The discussion for the case in which Qa and Qb are arranged as in Arrange-
ment 1, sa(e∗) = b, and sb(e

∗) = t is analogous to the previous one.
Consider now Arrangement 2. According to the definition of S-drawing it

holds true for e∗ = (u, v) that (a) sa(e∗) = r and sb(e
∗) = l, (b) the y-coordinate

of pu is greater than maxy(Qb), and (c) the y-coordinate of pv is smaller than
miny(Qa).

Similarly to Arrangement 1, there are four possible combinations for the
relative positions of the end-vertices of e and e∗ in σa and σb. If σa(e∗) < σa(e)
and σb(e) < σb(e

∗), then any xy-monotone curve representing e crosses e∗,
independently of the side assignment for e, and the statement trivially holds.
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Figure 13: Illustrations for the proof of Lemma 6, Case 1, Arrangement 2.

See Fig. 13a. For each of the three remaining combinations, exactly two side
assignments for e create no crossing with e∗.

• If σa(e) < σa(e∗) and σb(e) < σb(e
∗), then it holds true that either sa(e) =

r and sb(e) = t, or that sa(e) = r and sb(e) = l. See Fig. 13b.

• If σa(e) < σa(e∗) and σb(e
∗) < σb(e), then it holds true that either sa(e) =

r and sb(e) = t, or that sa(e) = b and sb(e) = l. See Fig. 13c.

• If σa(e∗) < σa(e) and σb(e
∗) < σb(e), then it holds true that either sa(e) =

r and sb(e) = l, or that sa(e) = b and sb(e) = l. See Fig. 13d.

Hence, for each inter-cluster edge e 6= e∗ ∈ E not adjacent to e∗, there exist
two side assignments for e that allow it to be represented as an xy-monotone
curve not intersecting e∗.

We are now ready to show, for Case 1 of the lemma, that a monotone
locally planar NT representation of 〈G = (V,E, C = {Va, Vb}), γ〉 in which e∗

is represented by Γe exists if and only if a suitable 2-SAT formula φ(a, b,Γe) is
satisfiable.

For each inter-cluster edge e 6= e∗ ∈ E not adjacent to e∗, we define a Boolean
variable xe. The above discussion shows that, if we did not conclude that a
trivially false formula exists, then there are exactly two distinct side assignments
for e. We select one arbitrarily, which we call canonical side assignment, and
associate xe = true to it and xe = false to the other.

For each pair of non-adjacent inter-cluster edges e1, e2 6= e∗ ∈ E, consider
the four possible side assignments for them. We add to φ(a, b,Γe) at most four
clauses defined as follows.

• If the canonical side assignment for e1 and the canonical side assignment
for e2 generate a crossing between e1 and e2, then we add clause {xe1∨xe2}
to φ(a, b,Γe).

• If the canonical side assignment for e1 and the non-canonical side assign-
ment for e2 generate a crossing between e1 and e2, then we add clause
{xe1 ∨ xe2} to φ(a, b,Γe).

• If the non-canonical side assignment for e1 and the canonical side assign-
ment for e2 generate a crossing between e1 and e2, then we add clause
{xe1 ∨ xe2} to φ(a, b,Γe).
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Figure 14: Illustrations for the proof of Lemma 6, Case 2, Arrangement 2.

• If the non-canonical side assignment for e1 and the non-canonical side
assignment for e2 generate a crossing between e1 and e2, then we add
clause {xe1 ∨ xe2} to φ(a, b,Γe).

As a consequence of the above discussion 〈G = (V,E, C = {Va, Vb}), γ〉
admits a monotone locally planar NT representation in which e∗ is represented
by Γe if and only if φ(a, b,Γe) is satisfiable. Further, since the number of clauses
in φ(a, b,Γe) is upper-bounded by O(|E|2) and since it can be determined in
constant time whether a side assignment for any two edges produces a crossing,
then formula φ(a, b,Γe) can be constructed in O(|E|2) time and has O(|E|2)
size. Since 2-SAT formulae can be tested for satisfiability in linear time [9], the
statement of Case 1 follows.

Suppose now that Case 2 of the statement holds. According to Property 1,
squares Qa and Qb can be arranged as in Arrangement 1, 2, or 3.

Consider Arrangement 1. By the hypothesis of the case, no edge is allowed
to be S-drawn. Hence, for each inter-cluster edge e, we have either sa(e) = r
and sb(e) = t or sa(e) = b and sb(e) = l.

Consider Arrangement 2. Let e = (u, v) be an inter-cluster edge. We dis-
tinguish four cases depending on the y-coordinate yu of mu

r with respect to
maxy(Qb) and on the y-coordinate yv of mv

l with respect to miny(Qa). In each
of the four cases, at most two side assignments for e are possible so that e is not
S-drawn.

• If yu > maxy(Qb) and yv ≥ miny(Qa), then it holds true that either
sa(e) = r and sb(e) = t, or that sa(e) = r and sb(e) = l. See Fig. 14a.

• If yu > maxy(Qb) and yv < miny(Qa), then it holds true that either
sa(e) = r and sb(e) = t, or that sa(e) = b and sb(e) = l. See Fig. 14b;
notice that the side assignment sa(e) = r and sb(e) = l would imply that
e is S-drawn, which is not possible by hypothesis.

• If yu ≤ maxy(Qb) and yv ≥ miny(Qa), then it holds true that sa(e) = r
and sb(e) = l. See Fig. 14c.

• If yu ≤ maxy(Qb) and yv < miny(Qa), then it holds true that either
sa(e) = r and sb(e) = l, or that sa(e) = b and sb(e) = l. See Fig. 14d.

Consider Arrangement 3. Let e = (u, v) be an inter-cluster edge. By def-
inition e cannot be S-drawn. We distinguish three cases depending on the
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Figure 15: Illustrations for the proof of Lemma 6, Case 2, Arrangement 3.

y-coordinate yu of mu
r with respect to miny(Qb) and maxy(Qb). In each of the

three cases, at most two side assignments for e are possible.

• If yu > maxy(Qb), then it holds true that either sa(e) = r and sb(e) = t,
or that sa(e) = r and sb(e) = l. See Fig. 15a.

• If miny(Qb) ≤ yu ≤ maxy(Qb), then it holds true that sa(e) = r and
sb(e) = l. See Fig. 15b.

• If yu < miny(Qb), then it holds true that either sa(e) = r and sb(e) = l,
or that sa(e) = r and sb(e) = b. See Fig. 15c.

Hence, regardless of whether Qa and Qb are arranged as in Arrangement 1, 2,
or 3, and regardless of the y-coordinate of mu

r and mv
l , there exist at most two

side assignments for e that allow it to be represented as an xy-monotone curve.
The construction of the 2-SAT formula and the bound on its size can be

derived analogously to Case 1; the only difference is that, when only one side
assignment is possible, a clause with a single literal is generated. This concludes
the proof of the lemma. �

We now turn to the study of flat clustered graphs with three clusters.

Lemma 7 Let 〈G = (V,E, C = {Va, Vb, Vc}), γ, σ〉 be an instance of MNTLP
with Fixed Order. Consider the four cases that are generated by assuming
that an edge e∗ ∈ Ea,b has a prescribed S-drawing or not and that an edge
f∗ ∈ Ea,c has a prescribed S-drawing or not. In each case, we can construct in
O(|E|2) time a 2-SAT formula φ(a, b, c) with length O(|E|2) that is satisfiable
if and only if 〈G, γ, σ〉 admits a monotone NT representation with fixed order
that satisfies the constraints of the corresponding case, such that no inter-cluster
edge intersects any matrix except at its incidence points, and such that there are
no two edges, one in Ea,b and one in Ea,c, that cross each other.

Proof: In each of the four cases, the hypotheses lead us in either Case 1 or
Case 2 of Lemma 6 for the edges in Ea,b and the same holds for the edges
in Ea,c. Hence, by Lemma 6, each of these edges admits at most two side
assignments in each case. Moreover, each of these side assignments corresponds
to a directed or negated literal. For each pair of edges e ∈ Ea,b and f ∈ Ea,c
and for each of the at most four side assignments for them, we exploit Lemma 5
to test whether a side assignment for e and f leads to a crossing and in the case
of a crossing we introduce suitable clauses to rule out that side assignment. �
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We finally get the following.

Theorem 8 MNTLP with Fixed Order can be tested in |E|O(|C|2) time for
an instance 〈G = (V,E, C), γ, σ〉.
Proof: For each pair Va, Vb of adjacent clusters in C, we guess whether Va, Vb
belongs to a set Ps or to a set Pn. The set Ps contains all the pairs Va, Vb of
clusters that have an inter-cluster edge that is S-drawn. The set Pn contains
all the pairs Va, Vb of clusters that do not have an inter-cluster edge that is
S-drawn. For each pair Va, Vb of clusters in Ps we guess an inter-cluster edge
e ∈ Ea,b that can be S-drawn and one of its possible S-drawings Γe for e; we
remark that the guess of Γe consists of a guess of the side assignment for e,
hence there are a constant number of possible guesses for each edge e.

By means of Lemma 6 we compute the following formula:

φpairs =
∧

Va,Vb∈Ps

φ(a, b,Γe)
∧

Va,Vb∈Pn

φ(a, b).

Further, let Ptriplet be the set of triplets Va, Vb, Vc of clusters in C such that
Vb and Vc are adjacent to Va. We write one of the formulae φ(a, b, c) of the
four cases of Lemma 7 according to the presence in Ps of an inter-cluster edge
between Va and Vb or of an inter-cluster edge between Va and Vc. By means of
Lemma 7, we compute the following:

φtriplets =
∧

Va,Vb,Vc∈Ptriplet

φ(a, b, c).

Finally, we define
φ = φpairs ∧ φtriplets.

We have that instance 〈G = (V,E, C), γ, σ〉 is a positive instance if and only
if there exists a guess such that the corresponding formula φ is satisfiable.

About the time complexity, for each guess O(|E|2) time is needed to compute
the corresponding formula φ and to check it for satisfiability, due to Lemmata 6
and 7. The number of guesses can be bounded as follows. For each pair of adja-
cent clusters Va, Vb we have to guess among 2|Ea,b|+1 possibilities, correspond-
ing to the choice of |Ea,b| edges to be S-drawn, each in two possible ways, plus

the possibility of not having any S-drawn edge. This leads to O((2|E|+ 1)|C|
2

),

which is in |E|O(|C|2), guesses. �

Observe that the computational complexity of the algorithm described in
the proof of Theorem 8 is polynomial if the number of clusters is constant.

5 A JavaScript Library for Monotone NodeTrix
Representations

In this section we consider the following scenario. A user moves (e.g. via a drag-
and-drop primitive) the matrices representing the clusters of a flat clustered
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graph, choosing also her preferred row-column order. A system automatically
selects sides for the inter-cluster edges so to produce a monotone NT represen-
tation Γ with a “small” χ(Γ).

The algorithm in the proof of Theorem 8 suggests the following strategy:

1. Compute the 2-SAT formula associated to each possible guess of S-drawings
of edges between adjacent matrices. In each formula the value of a vari-
able represents the two possible side assignments for an edge; further, each
unsatisfied clause corresponds to a crossing in the monotone NT represen-
tation.

2. If one of such formulae admits a solution, draw the edges according to the
values of the associated variables, obtaining an MNTLP representation.

3. Otherwise, for each formula, heuristically search for a solution of the cor-
responding MAX-2-SAT problem and keep the solution with the smallest
number of false clauses, corresponding to a drawing with few local cross-
ings.

Such a strategy requires polynomial time if the number of clusters is constant
(Theorem 8) and the selected MAX-2-SAT heuristic is polynomial. However,
solving a MAX-2-SAT instance for each of the guesses of the proof of Theorem 8
is unfeasible even in a static setting.

Therefore, we modify the above strategy as follows. We restrict to monotone
NT representations without S-drawn edges. A locally-planar flat clustered graph
may become non-planar with this restriction, hence this choice corresponds to
trading accuracy for efficiency. However, the proof of Theorem 8 shows that in
this setting there is a unique formula associated to an instance, hence we need
to solve one MAX-2-SAT instance.

A JavaScript library implementing the above heuristic has been designed and
used in a proof-of-concept editor available at [3] (see Fig. 16). The internal part
of the matrices is not shown in the editor, and inter-cluster edges are polylines
or splines; this is not intended to be the best choice and many alternatives for
the actual geometry of the edges are possible whose visual appeal should be
considered according to the specific application domain.

We performed the following experiments in order to check if the strategy is
usable on medium-size instances, that is, on instances whose size is reasonable
with respect to the need of guaranteeing the visibility of the matrix labels on
the display of a laptop. We computed the running time of the layout algorithm
on 1,200 instances, each composed of two 30-vertex matrices. The instances
are grouped into 30 sets I1, . . . , I30, such that instances in set Ik contain k
random inter-cluster edges between the two matrices. Our current implementa-
tion, which is not meant to achieve good time performance, computes the layout
within 3 ms on average for all sets (we used the Google Chrome 62.03 browser on
a 64 bit 2.2 GHz Intel Core i7 with 16 GB RAM). This implies that an instance
with ten 30-vertex matrices of which 20 pairs are connected by 30 inter-cluster
edges would allow 15 frames per second, which enables a fluid interaction.
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Figure 16: A NodeTrix Representation created by the demo editor [3].

We did not compare the number of crossings produced by our heuristic with
other approaches because, as far as we know, this is the first attempt to reduce
local crossings in NT representations. Also, it would be pointless to compare
our approach with the original NT software, since in that case the edges just
attach to the nearest sides. The JavaScript software of our library is freely
available and can be integrated in any NodeTrix-style interface. As an example,
it can be coupled with an algorithm that automatically places matrices based on
a force-directed approach or with one that computes row-column order for the
matrices with the purpose of clarifying the internal structure of the clusters [14].

6 Conclusions and Open problems

We have shown that clustered graphs for Nodetrix planarity is NP-complete
even if the order of the rows and columns is fixed or if the matrix sides to which
the inter-cluster edges attach is fixed. We have also studied the setting where
matrices have fixed positions and inter-cluster edges are xy-monotone curves. In
this case we established negative and positive results; leveraging on the latter,
we developed a library that computes a layout of the inter-cluster edges with
few crossings. A demo [3] shows that the computation allows the user to move
matrices without any slowdown of the interaction.

Several theoretical problems are related to the planarity of Nodetrix rep-
resentations. First, the NP-completeness of Nodetrix planarity can be inter-
preted as a proof of the NP-completeness of clustered planarity (see, for exam-
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ple, [5, 7, 12, 15]) when a specific type of representation is required. Observe,
though, that a flat clustered graph may be Nodetrix planar even if its underly-
ing graph is not planar. Second, planarity of hybrid representations have been
recently studied [6] in the setting in which clusters are represented as the inter-
sections of geometric objects. Our results can be viewed as a further progress
in this area. Third, given a flat clustered graph with two clusters, computing a
locally planar Nodetrix representation in which the clusters are represented as
matrices aligned along their principal diagonal is equivalent to solve the 2-page
bipartite book embedding with spine crossings problem [6]. Interestingly, if the
two matrices are aligned along their secondary diagonal this equivalence is not
evident anymore.

Among the future research directions, we mention the one of automatically
embedding the matrices in order to minimize the number of crossings in mono-
tone Nodetrix representations.
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