
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 4, pp. 491–525 (2017)
DOI: 10.7155/jgaa.00426

Bounded, minimal, and short representations of
unit interval and unit circular-arc graphs.

Chapter II: algorithms

Francisco J. Soulignac 1,2

1CONICET
2Universidad Nacional de Quilmes, Buenos Aires, Argentina

Abstract

This is the second and last chapter of a work in which we consider
the unrestricted, minimal, and bounded representation problems for unit
interval (UIG) and unit circular-arc (UCA) graphs. In the unrestricted
version (Rep), a proper circular-arc (PCA) model M is given and the
goal is to obtain an equivalent UCA model U . In the bounded version
(BoundRep), M is given together with some lower and upper bounds
that the beginning points of U must satisfy. In the minimal version
(MinUCA), the circumference of the circle and the length of the arcs
in U must be simultaneously as small as possible, while the separation of
the extremes is greater than a given threshold. In this chapter we take
advantage of the theoretical framework developed in Chapter I to design
efficient algorithms for these problems. We show a linear-time algorithm
with negative certification for Rep, that can also be implemented to run
in logspace. We develop algorithms for different versions of BoundRep
that run in linear space and quadratic time. Regarding MinUCA, we
first show that the previous linear-time algorithm for MinUIG (i.e., Min-
UCA on UIG models) fails to provide a minimal model for some input
graphs. We fix this algorithm but, unfortunately, it runs in linear space
and quadratic time. Then, we apply the algorithms for MinUIG and
MinUCA (Chapter I) to find the minimum powers of paths and cycles
that contain given UIG and UCA models, respectively.

Submitted:
February 2016

Reviewed:
October 2016

Revised:
October 2016

Accepted:
February 2017

Final:
February 2017

Published:
April 2017

Article type:
Regular paper

Communicated by:
S. Whitesides

Supported by PICT ANPCyT grants 2013-2205 and 2015-2419, and by PUNQ Grant 1451/15.
E-mail address: francisco.soulignac@unq.edu.ar (Francisco J. Soulignac)

http://dx.doi.org/10.7155/jgaa.00426
mailto:francisco.soulignac@unq.edu.ar

492 Soulignac Representations of UIG and UCA graphs. Algorithms

1 Introduction

This is the second and last chapter of a work that is concerned with some repre-
sentation problems for unit interval and unit circular-arc models. Although the
work is envisioned as one unit, a split was required during the reviewing process
because of its length. Chapter I [20] provides a thorough motivation to study
the representation problems at hand, while it prepares the theoretical ground
required for Chapter II. Chapter II, i.e. the present manuscript, deals with the
implementation of efficient algorithms for the different problems. Naturally,
some information is repeated in both chapters to make them self-contained.

Besides the contributions on each of the representation problems, our main
goal is to show that synthetic graphs —which were originally defined for proper
interval models— provide a convenient tool for studying proper circular-arc
models, both from the theoretical and algorithmic points of view. Yet, this goal
is achieved only when Chapters I (theory) and II (algorithms) are considered
as being parts of a whole. Chapter I provides this unified view as it contains
a detailed summary, that we shall not repeat here, of all the contributions of
this work. Nor do we repeat the motivations for studying the representation
problems, as they follow from Chapter I. Instead, the remainder of this section
introduces what are synthetic graphs, what they represent, and why they play
an important role in the study of interval and circular-arc models. This pre-
sentation is done from a big picture perspective and, so, it complements the
introduction of Chapter I, whose focus is on the particular applications. Later,
we provide a brief introduction to each representation problem in its correspond-
ing section. We remark that, although some key concepts are briefly introduced
in informal terms, the formal definitions are deferred to the subsequent sections.

A proper circular-arc (PCA) model is a pairM = (C,A) where C is a circle
and A is a family of inclusion-free arcs of C in which no pair of arcs in A cover
C. Each arc A = (s, t) ∈ A is described by its extreme points, being s(A) = s
the beginning point and t(A) = t the ending point. We assume C has a special
point, called 0, such that s(A) and t(A) correspond to the lengths of the arcs
that go from 0 to s(A) and to t(A), respectively. This allows us to define an
ordering < on A such that A1 < A2 if and only if s(A1) < s(A2). In this work,
a proper interval (PIG) model is a PCA model in which no arc contains 0. Unit
circular-arc (UCA) and unit interval (UIG) models correspond to the PCA and
PIG models in which all the arcs have the same length, respectively. Through
this work we also assume that no arc shares an extreme with another arc.

The aim of this Chapter is to provide new algorithms to improve the time
and space complexities required to solve different representation problems on
UCA models. The main results, together with a high-level description of the
problems, are given in Section 1.1. What the problems have in common is that
they follow the same generic specification. The input is a PCA modelM with
arcs A1 < . . . < An and a set S of “separation constraints”. The output is an
UCA model U with arcs U1 < . . . < Un such that:

(i) U is equivalent to M, i.e., s(Ai) (resp. t(Ai)) is the j-th extreme point

JGAA, 21(4) 491–525 (2017) 493

that appears in a traversal of the circle of M from 0 if and only if s(Ui)
(resp. t(Ui)) is the j-th extreme point that appears when traversing, from
0, the circle of U ,

(ii) the beginning points of the arcs in U satisfy the “separation constraints”,
and

(iii) U has some properties of interest that depend on the problem at hand.

A separation constraint is an inequality that dictates how far or close must a
beginning points s(Ui) be from either 0 or another beginning point of U . For
instance, it could specify that s(Ui) ≥ 3 or s(Ui) ≥ s(Uj) − 7. Regarding 0
as the beginning point of a fictitious arc U0, we can define such constraints as
being triplets (i, j, δij), for 0 ≤ i, j ≤ n, that represent the inequality s(Uj) ≥
s(Ui) + δij .

An `-IG model is a UIG model whose arcs have length `. A key fact observed
by Pirlot [16] is that, given a PIG model M and a length `, we can model
the existence of an `-IG model U equivalent to M by using O(n) separation
constraints. For instance, if Ai ∩ Aj = ∅ for Ai < Aj , then we can specify
that Ui ∩ Uj 6= ∅ with the inequality s(Uj) ≥ s(Ui) + ` + 1. Similarly, Klavík
et al. [9] use separation constraints that involve 0 to bound the position of the
beginning points in U . This construction can be applied to PCA models as
well; all we have to do is to add the circumference of the circle into the game.
Say that a UCA model is a (c, `)-CA model when its circle has circumference c
while its arcs have length `. Chapter I shows that O(n) separation constraints,
that involve c and `, are enough to express the existence of a (c, `)-CA model
U equivalent to a PCA modelM. Once the separation constraints are defined,
we can reduce the problem of finding U to that of finding appropriate values
for the beginning points. That is, given a set of separation constraints S whose
triplets (i, j, δij) are such that 0 ≤ i, j ≤ n, the goal is to find the values p(0),
. . . , p(n) such that p(j) ≥ p(i) + δij , for every triplet (i, j, δij) ∈ S. We say that
S is satisfiable when p exists; in such case p is a solution to S.

Let GS be the weighed (multi)digraph that has a vertex vi, for 0 ≤ i ≤ n,
and an edge vi → vj with weight δij , for (i, j, δij) ∈ S. It is well known that S is
satisfiable if and only if GS has no cycles of positive weight (cf. [18]). Further-
more, the function p such that p(i) is the weight of the heaviest path from v0
to vi is a solution to S. That is, a solution to S can be obtained by solving the
shortest path problem on GS . In a nutshell, the idea to solve the different rep-
resentation problems onM is to specify the output by using a set of separation
constraints S. From S we build the graph GS that describe the solutions to S,
and we seek one solution by solving different path (or connectivity) problems.

The goal of the representation problem for PIG graphs is to find a UIG model
U equivalent to an input PIG graphM. As mentioned above, the representation
problem can be reduced to that of finding a solution to a specific set S of O(n)
separation constraints [15, 17]. Pirlot [16, 17] refers to GS as being the synthetic
graph of M. The name could come from the fact that S is a simplification
(i.e., synthesis) of a family with O(n2) inequalities, or from the fact that the

494 Soulignac Representations of UIG and UCA graphs. Algorithms

unweighted version of GS is a compact (i.e., requiring O(n) space) representation
ofM. The fact that GS uniquely representsM is a desired property, because S
defines the representation problem. Not surprisingly, the representation problem
can be specified by different sets of separation constraints, while other sets of
separation constraints arise when different problems are specified. In the latter
case, the corresponding graphs are also representations ofM, but adorned with
certain vertices and edges that are particular to the specific problem. Following
Pirlot’s terminology, we refer to all these graphs as being synthetic graphs.

Synthetic graphs appeared more than two decades ago, and they are cov-
ered in detail in a book by Pirlot and Vincke [18, Chapter 4]. Yet, they have
gone unnoticed by many researchers in the field of algorithmic graph theory
(see Chapter I). The reason for this ignorance could be, perhaps, the fact that
Pirlot’s article is written in terms of semiorders; its emphasis is on preference
modeling and order theory. Subsequent articles on synthetic graph are also
written in terms of semiorders. Up to our knowledge, the first graph theoretical
article that uses synthetic graphs appeared in 2017 [9]. Yet, the preprint of
this manuscript [8], from 2012, has no mention to Pirlot’s work. In fact, the
authors claim [8, p. 2] that “specific properties of unit interval representations
were never investigated [since] it is easier to work with combinatorially equiva-
lent proper interval representations”.1 The published version acknowledges the
the present manuscript and its relation to Pirlot’s work, but it does not show
the strong relation between their techniques and those by Pirlot. In fact, the au-
thors fail to mention that the so-called left-most representation was studied by
Pirlot, even though this is one of the main problems in the present manuscript
(see Section 5). So, besides improving some known algorithms for the different
recognition problems, our main meta-contribution is to bring the attention to
synthetic graphs, showing that they provide a simpler theoretical ground for
understanding PCA models with separation constraints. To highlight this fact,
we even re-prove some known theorems and rewrite some known algorithms in
terms of synthetic graphs.

1.1 The algorithmic problems: contributions

The next paragraphs describe the main contributions of the present chapter. We
recall that these paragraphs use an informal language and omit some important
details; the formal specifications of the problems are deferred to Section 2.
Remember also that Section I.1 provides a thorough motivation to study each
of these problems.

The (unrestricted) representation problem. In the representation (Rep)
problem a UCA model equivalent to an input PCA modelMmust be generated.
Of course, Rep is unsolvable whenM is equivalent to no UCA model; a negative

1N.B.: this assertion was replaced with “specific properties of unit interval representations
were not much investigated” in [9]

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.1

JGAA, 21(4) 491–525 (2017) 495

witness is desired in such a case. In Section 4.1 we provide two algorithms for
Rep, one runs in linear time and the other one runs in logspace.

Theorem 2 There is an algorithm that solves Rep in O(n) time.

Theorem 5 There is an algorithm that solves Rep in logspace.

Rep is strongly related to the recognition problem for UCA graphs, whose
goal is to determine if a given graph G is UCA. Again, we seek for a certifying
algorithm that outputs either a UCA model of G or a witness certifying that
G is not UCA. We can solve the recognition problem in two steps. First, we
compute a PCA model M of G. Then, we apply Rep to transform M into
an equivalent UCA model. This algorithm is correct because G is UCA if and
only if every PCA model M representing G graph is equivalent to some UCA
model [22]. As for the complexity, we can find a PCA model of G in either
linear time [7] or logspace [10]. Thus, the whole algorithm runs in either linear
time or logspace. Moreover, as the algorithms in [7] and [10] are certifying, we
obtain that the whole recognition algorithm is certifying.

The bounded representation problems. We use the term bounded repre-
sentation to encompass a family of similar representation problems. All these
problems are generalizations of Rep, as a UCA model equivalent to an input
PCA modelM must be found. The difference is that at least three other input
parameters are required for the bounded problems: two lengths c, ` ∈ Q≥0 and
a set of separation constraints S, all of whose triplets contain the 0 point. The
goal, then, is to find a (c, `)-CA model U equivalent to M whose beginning
points satisfy the separation constraints in S. The term bounded comes from
the fact that all the constraints in S are of the form s(A) ≥ b or s(A) ≤ c − b
for some bound b ∈ Q≥0. As in Rep, a negative witness is desired when the
problem is unsolvable.

We consider three variants of bounded representation problems: Bound-
Rep, IntBoundRep, and u-Rep. These variants depend on whether c and `
are integer, the arcs of U are required to have integer extremes, and the addi-
tional constraints that S could contain. The details, together with a comparison
of the problems, appear in Section 2. The main result is that we can solve all
the discussed problems in quadratic time and linear space.

Theorem 1 BoundRep, IntBoundRep, and u-Rep can be solved in O(n2)
time and O(n) space.

The minimal representation problems. Theminimal representation prob-
lems also refer to a family of problems. In the general setting, we are given a
UCA model M that satisfies a set S of separation constraints, and the goal is
to find an “S-minimal” model equivalent toM. Roughly speaking, a (c, `)-CA
model U satisfying S is S-minimal when c ≤ c′ and ` ≤ `′ for every (c′, `′)-CA
model that satisfies S. Of course, it is not obvious that such a minimal S-model

496 Soulignac Representations of UIG and UCA graphs. Algorithms

should exist. In this work we solve two flavors of minimal representation prob-
lems: MinUIG and IntMinUCA; in the former problem both M and U are
UIG, while in the latter they are UCA. The important observation is that both
problems are solvable; see [16] for MinUIG and Chapter I for MinUCA.

The negative result of this article is that the linear-time algorithm by Mi-
tas [15] has a flaw that prevents it from solving MinUIG on some inputs (see
Section 5). Fortunately, her algorithm correctly solves Rep and, so, it can be
used to find a “short” UIG model when an input PIG model is given. We patch
Mitas’ algorithm to solve MinUIG; unfortunately, the new algorithm runs in
O(n2) time. Solving MinUIG in linear time remains, thus, an open problem.

Theorem 7 MinUIG can be solved in O(n2) time and linear space.

Powers of paths and cycles. Let Ckq (resp. P kq) be the k-th power of the
cycle (path) graph on q vertices. Lin et al. [12] observed that a graph G is a
UCA (resp. UIG) if and only if G is an induced subgraph of Ckq (resp. P kq) for
some q, k (see also [5] for UIG graphs and [6] for UCA graphs). In the minimal
power of a cycle MinCk

q (resp. MinPkq) problem we are given a UCA (resp.
UIG) modelM of a graph G, and the goal is to find an equivalent UCA model
U that “implicitly” represents Ckq (resp. P kq), where q and k are as small as
possible. In Section 6 we show that MinPkq and MinCk

q are strongly related to
MinUIG and IntMinUCA, respectively. As a consequence of this fact, MinCk

q

can be solved in O(n4 log n) time and linear space, and MinPkq can be solved in
O(n2) time and linear space.

2 Preliminaries
In this article we consider (simple) graphs, (simple) digraphs, and q-digraphs.
A q-digraph, for q ∈ N, is a (q + 1)-tuple G = (V,E1, . . . , Eq) such that (V,Ei)
is a digraph, for 1 ≤ i ≤ q. Clearly, every digraph is a 1-digraph. For the sake
of simplicity, we refer to the directed edges in Ei as being edges of G, unless
otherwise stated. For a (q-di)graph G, we write V (G) and E(G) to denote the
sets of vertices and (bag of) edges of G, respectively, while we use n and m
to denote |V (G)| and |E(G)|, respectively. For any pair u, v ∈ V (G), we write
uv to denote the pair (u, v); note that uv is an unordered pair when G is a
graph, while it is an ordered pair when G is a q-digraph. To avoid confusion,
we write u → v as an equivalent of uv when G is a q-digraph. Sometimes we
may refer to the pair uv as being the (directed) edge between u and v (from
or starting at u to or ending at v), regardless of whether uv ∈ E(G). The in-
and out-degrees of v in a q-digraph are the number of edges of G starting and
ending at v, respectively.

A walk W of a (q-di)graph G is a sequence of edges v1v2, v2v3 . . . , vk−1vk of
G. Walk W goes from (or starts at) v1 to (or ends at) vk. We say that W is a
circuit when vk = v1, that W is a path when vi 6= vj for every 1 ≤ i < j ≤ k,
and that W is a cycle when it is a circuit and v1v2, . . . , vk−2vk−1 is a path. If G

JGAA, 21(4) 491–525 (2017) 497

contains no cycles, then G is an acyclic (q-di)graph. For the sake of notation,
we could say that W is a circuit when v1 6= vk; this means that W, vkv1 is a
circuit. Moreover, we may write that a sequence of vertices v1, . . . , vk is a walk
of G to express that some sequence of edges v1v2, . . . , vk−1vk is a walk of G.
Both conventions are ambiguous when G is a q-digraph for q > 1, as there could
be q edges from vi to vi+1 (or from vk to v1 in the former case). In general, the
edge represented by vivi+1 is clear by context. When this is not the case, vivi+1

refers to any of the edges from vi to vi+1.
An edge weighing, or simply a weighing, of a (q-di)graph G is a function

w : E(G)→ R. The value w(uv) is referred to as the weight of uv (with respect
to w). For any bag of edges E, the weight of E (with respect to an edge weighing
w) is w(E) =

∑
uv∈E w(uv). We use two distance measures on a (q-di)graph

G with a weighing w. For u, v ∈ V (G), we denote by d∗w(G, u, v) the max-
imum among the weights of the walks from u to v, while dw(G, u, v) denotes
the maximum among the weights of the paths starting at u and ending at v.
Note that dw(G, u, v) < ∞ for every u, v, while d∗w(G, u, v) = dw(G, u, v)
when G contains no cycle of positive weight [1]. For a weighing w′, we write
(dw ◦ dw′)(G, u, v) = max{w(W) | W is a path from u to v with w′(W) =
dw′(G, u, v)}. In other words, dw ◦ dw′ measures the “w-distance” from u
to v when only those paths that impose the maximum “w′-distance” from u to v
are considered. For the sake of notation, we omit the parameter G when there
are no ambiguities.

A straight plane (q-di)graph, or simply a plane (q-di)graph, is a (q-di)graph
whose vertices are coordinates in the plane and whose edges are non-crossing
straight lines. Similarly, a toroidal (q-di)graph is a (q-di)graph whose vertices
and edges can be placed on the surface of a torus in such a way that no pair of
edges intersect.

A proper circular-arc (PCA) modelM is a pair (C,A), where C is a circle
and A is a collection of open arcs of C such that no arc contains another arc and
no pair of arcs in A cover C. When traversing the circle C, we always choose
the clockwise direction. If s, t are points of C, we write (s, t) to mean the arc
of C defined by traversing the circle from s to t, and |s, t| to mean the length
of (s, t). Sometimes we refer to |s, t| as being the separation from s to t. Points
s and t are the extremes of (s, t), while s is its beginning point and t its ending
point. For A ∈ A, we write A = (s(A), t(A)). The extremes of A are those of
all arcs in A. In this article we assume that no pair of extremes of A coincide.
An ordered pair of extremes s1s2 ofM is consecutive when there is no extreme
s ∈ (s1, s2) (note that s2s1 is not consecutive in this case, unless |A| = 1).
We assume C has a special point 0 with the property that s(Ai) = |0, s(Ai)|
and t(Ai) = |0, t(Ai)|, for every 1 ≤ i ≤ n. For every pair of points p1, p2, we
write p1 < p2 to indicate that p1 appears before p2 in a traversal of C from 0.
Similarly, we write A1 < A2 to mean that s(A1) < s(A2) for any pair of arcs
A1, A2 on C.

A unit circular-arc (UCA) model is a PCA model M in which all the arcs
have the same length. Let A1 < . . . < An be the arcs ofM = (C,A), c, ` ∈ Q>0,
d, ds ∈ Q≥0, and d`, dr : A → Q≥0. We say that M is a (c, `, d, ds, d`, dr)-CA

498 Soulignac Representations of UIG and UCA graphs. Algorithms

model when:

(unit1) C has circumference c,

(unit2) all the arcs of A have length `,

(unit3) |p1, p2| ≥ d for every pair of consecutive extremes p1p2,

(unit4) |s1, s2| ≥ d+ ds for any pair of beginning points s1, s2, and

(unit5) d`(Ai) ≤ s(Ai) ≤ c− dr(Ai) for every 1 ≤ i ≤ n.

Intuitively, M is a UCA model in which consecutive extremes are separated
by at least d space, the beginning points are separated by d + ds space, and
d`(Ai) and dr(Ai) are lower bounds of the separation from 0 to s(Ai) and from
s(Ai) to 0, respectively. We simply write thatM is a (c, `, d, ds)-CA model to
indicate that d` = dr = 0, and thatM is a (c, `)-CA model to mean thatM is
a (c, `, 1, 0)-CA model. To further simplify the notation, we refer to the tuple
u = (c, `, d, ds, d`, dr) as a UCA descriptor, and we say that u is integer when
c, `, d, ds, d`, and dr are integers. Similarly, a u-CA modelM is integer when
c, ` and all the extremes ofM are integers.

A proper interval (PIG) model is a PCA modelM in which no arc crosses
0; ifM is also UCA, thenM is a unit interval (UIG) model. Any UIG model
M is a u-CA model for some large enough c; for simplicity, we just write c =∞
in this case. For this reason, we say that M is an (`, d, ds)-IG (resp. `-IG)
model when M is a (∞, `, d, ds)-CA (resp. (∞, `)-CA) model. That is, M is
an (`, d, ds)-IG model when all the arcs have length `, every pair of consecutive
extremes is separated by d space, and every pair of beginning points is separated
by d+ ds space.

Each PCA modelM defines a graph G(M) that contains a vertex for each
arc ofM where two vertices are adjacent if and only if their corresponding arcs
have nonempty intersection. We say thatM represents a graph G, and that G
admits M, when G is isomorphic to G(M). A graph is a proper circular-arc
(PCA), unit circular-arc (UCA), proper interval (PIG), or unit interval (UIG)
graph when it admits a PCA, UCA, PIG, or UIG model, respectively.

Clearly, two PCA models M1 = (C1,A1) and M2 = (C2,A2) are equal
when C1 = C2 and A1 = A2. We say that M1 is equivalent to M2 when the
extremes ofM1 appear in the same order as inM2 in the traversals of C1 and
C2 from their respective 0 points. Formally,M1 andM2 are equivalent if there
exists f : A1 → A2 such that e(f(A)) < e′(f(B)) if and only if e(A) < e′(B),
for e, e′ ∈ {s, t}. By definition, M1 and M2 are equivalent whenever they are
equal.

In this manuscript we consider several representation problems. In the (un-
restricted) representation (Rep) problem a UCA model equivalent to an input
PCA modelMmust be generated. Recall that Rep is solvable and only if G(M)
is UCA; a negative witness must be provided when G(M) is not UCA. In the
u-Rep problem, a (an integer) UCA descriptor u is given together withM, and
the goal is to build a (an integer) u-CA model U . Clearly, U is a solution to Rep;

JGAA, 21(4) 491–525 (2017) 499

this time, however, U need not exists when G(M) is UCA. As before, a negative
witness should be provided in this case. Note that U is required to be integer
when u is integer. As proven in Theorem I.1, such an integer model exists when
u-Rep is solvable. The bounded representation (BoundRep) problem is a slight
variation of u-Rep in which a feasible d > 0 must be found by the algorithm,
as it is not given as input. That is, we are given a PCA model M = (C,A)
together with c, ` ∈ Q>0, ds ∈ Q≥0 and d`, dr : A → Q≥0, and we have to find
a u-CA model equivalent toM for some UCA descriptor u = (c, `, d, ds, d`, dr)
with d ∈ Q>0. Note that BoundRep admits a solution if and only if u-Rep
is solvable for d = 1

B , where B =
∏k
i=1 bi for the bounds a1

b1
, . . . , akbk of d` and

dr. Unlike u-Rep, some instances of BoundRep could admit only non-integer
solutions (e.g., the path on 3-vertices admits a (2, 1, 13 , 0)-CA model but no
integer (2, 1)-CA models). Thus, it makes sense to study the integer bounded
representation (IntBoundRep) problem in which all the input values are inte-
gers and the output model must be integer as well. As before, IntBoundRep
admits a solution if and only if u-Rep is solvable for d = 1. We also study
the MinUIG, IntMinUCA, MinPkq , and MinCk

q problems that are related to
minimal models. We postpone their definitions to Sections 5 and 6.

2.1 Restrictions on the input models

As it is customary in the literature, in this work we assume that all the arcs
of a PCA model M are open and no two extremes of M coincide. Also, by
definition, no pair of arcs of M cover the whole circle. For technical reasons,
we also assume thatM is not trivial; if A1 < . . . An are the arcs ofM, thenM
is trivial when either:

1. s(An) < t(A1), or

2. s(Ai)t(Ai) are consecutive for some 1 ≤ i ≤ n.

The reasons behind these assumptions are thoroughly explained in Section I.1.
In short, all the considered problems are trivial when the input model either is
trivial or has two arcs covering the circle, while all the arguments in this work
can be easily adapted when PCA models with closed arcs, or whose extremes
could coincide, are considered.

2.2 What is linear time/space for PCA models?

As discussed in [19], every PCA model M can be encoded with O(n) bits, n
being the number of arcs in M. Thus, in theory, an algorithm on M is linear
when it applies O(n) operations on bits. However, it is a common practice
to assume that M is implemented with Θ(n) pointers in such a way that the
extremes of an arc can be obtained in O(1) time when the other extreme is given
(see [19]). Following this tradition, we state that an algorithm is linear when it
performs O(n) operations on pointers of size Θ(log n).

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.1

500 Soulignac Representations of UIG and UCA graphs. Algorithms

3 The bounded representation problems

Pirlot introduced the synthetic graph of a PIG model [16, 17] to represent the
separation constraints of its extremes in any equivalent UIG representation. In
Section I.3 we extended them to PCA models to reflect the separation con-
straints in any equivalent UCA model. In this section we solve different flavors
of the bounded representation problem by taking advantage of our generalized
synthetic graphs.

Let M = (C,A) be a PCA model with arcs A1 < . . . < An. The bounded
synthetic graph of M is the 4-digraph B(M) (see Figure 1) that has a vertex
v(Ai) for each Ai ∈ A and a vertex A0, and whose bag of edges is Eσ ∪ Eν ∪
Eη ∪ Eβ , where:

• Eσ = {v(Ai)→ v(Ai+1) | 1 ≤ i ≤ n, An+1 = A1},

• Eν = {v(Ai)→ v(Aj) | t(Ai)s(Aj) are consecutive inM},

• Eη = {v(Ai)→ v(Aj) | s(Ai)t(Aj) are consecutive inM}, and

• Eβ = {A0 → v(Ai), v(Ai)→ A0 | 1 ≤ i ≤ n}.

The edges in Eσ, Eν , Eη, and Eβ are the steps, noses, hollows, and bounds of
B(M), respectively. (We remark that Eσ, Eν and Eη could have a nonempty
intersection. However, B(M) has no loops as M is not trivial.) For the sake
of simplicity, we drop the parameter M from B(M) when no ambiguities are
possible. Moreover, we regard the arcs of M as being the vertices of B, thus
we may say that Ai → Aj is a nose instead of writing that v(Ai) → v(Aj) is a
nose.

A1

A2

A3

A4

0

b

b

b

b

b

A1

A2

A3

A4

bb

b

b

b

b
A0

(a) (b)

Figure 1. (a) A PCA model M and the graph G(M) it represents. (b) The
synthetic graph of M where thick solid, dashed, dotted, and thin solid lines
represent noses, hollows, steps, and bounds, respectively. Internal edges are
black, whereas external edges are gray.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.3

JGAA, 21(4) 491–525 (2017) 501

A step (resp. nose) Ai → Aj is internal when i < j, while a hollow is internal
when i > j. Non-internal edges are referred to as external ; in particular, all the
bounds are external. In other words, a step (resp. nose) Ai → Aj is external if
and only if (s(Ai), s(Aj)) crosses 0, while a hollow Ai → Aj is external if and
only if (s(Aj), s(Ai)) crosses 0.

Each UCA descriptor u implies an edge weighing sepu of B whose purpose
is to indicate how far or close s(Ai) and s(Aj) must be in any u-CA model
equivalent toM, for every edge Ai → Aj of B. The edge weighing sepu is such
that, for every 1 ≤ i, j ≤ n:

(sep1) sepu(Ai → Aj) = d+ ds − cq if Ai → Aj is a step,

(sep2) sepu(Ai → Aj) = d+ `− cq if Ai → Aj is a nose,

(sep3) sepu(Ai → Aj) = d+ cq − ` if Ai → Aj is a hollow, and

(sep4) sepu(A0 → Ai) = d`(Ai) and sepu(Ai → A0) = dr(Ai)− c,

where q ∈ {0, 1} equals 0 if and only if Ai → Aj is internal. In turn, the weigh-
ing sepu can be used to define the u-CA model U(M, u) with arcs U1, . . . , Un
such that s(Ui) = dsepu(A0, Ai), for every 1 ≤ i ≤ n (we assume arithmetic
modulo c). For the sake of notation, we omit the subscript u from sep, and the
parametersM and u from U , when no ambiguities are possible. The following
theorem is the main result in Section I.3 that generalizes [16, Proposition 2.5]
and [9, Proposition 4.4] which consider only PIG graphs.

Theorem I.1 The following statements are equivalent for a PCA model M
with arcs A1 < . . . < An and a (an integer) UCA descriptor u:

(i) M is equivalent to a u-CA model.

(ii) sep(W) ≤ 0 for every cycle W of B.

(iii) U is a (an integer) u-CA model equivalent toM.

Though simple enough, Theorem I.1 allows us to solve u-Rep as follows.
First, we build the 4-digraph B in which every edge Ai → Aj is weighed with
sij = sepu(Ai → Aj). Then, we invoke the Bellman-Ford shortest path algo-
rithm [1] on B to obtain si = d∗sep(A0, Ai) for every 0 ≤ i ≤ n. If Bellman-
Ford ends in success, then we output U(M, u); otherwise, we output the cycle
of positive weight found as the negative witness. Recall that Bellman-Ford
ends in success if and only if B has no cycle of positive weight, in which case
dsep = d∗sep and, so, U(M, u) is well defined.

Bellman-Ford computes each value si = sni in an iterative manner. At
iteration k, the value of si is updated to ski = max{sk−1j + sji | Aj → Ai ∈
E(B)} for every 0 ≤ i ≤ n. As B has O(n) edges, a total of O(n2) arithmetic
operations are performed. By (sep 1)–(sep 4), ski ∈ N when u is integer, thus
O(1) time is required by each operation. However, as it was noted by Klavík
et al. [9], we cannot assume O(1) time per operation when u is non-integer.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.3
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1

502 Soulignac Representations of UIG and UCA graphs. Algorithms

The inconvenience is that, to compare two fractional values a1/b1 and a2/b2,
we have to multiply them with a common multiple of b1 and b2. Thus, a priori,
the number of bits used to represent sk−1j could be large, and the operations
required to compute ski could take more than constant time.

It turns out that we can represent ski with O(1) words in a simple manner.
The idea is to use a distance tuple t = 〈b, [c], [`], [d], [ds]〉 with b ∈ {d`(A), dr(A) |
A ∈ A} ∪ {−∞}, [c], [`] ∈ Z, and [d], [ds] ∈ N, in order to represent the rational

[t] = b+ [c]c+ [`]`+ [d]d+ [ds]ds.

So, for instance, we can represent sij = sep(Ai → Aj) as in the following table,
where q ∈ {0, 1} equals 0 if and only if Ai → Aj is internal.

Type b [c] [`] [d] [ds]

Step 0 −q 0 1 1
Nose 0 −q 1 1 0
Hollow 0 q −1 1 0
Bound (i = 0) d`(Aj) 0 0 0 0
Bound (j = 0) dr(Ai) −1 0 0 0

Analogously, we implement ski using a distance tuple for every 0 ≤ i, k ≤ n.
Just note that if sk0 is ever updated, then B has a cycle of positive weight,
thus we can immediately halt Bellman-Ford in failure. By doing so we observe,
by invariant, that ski = [t] for every iteration k and some distance tuple t =
〈b, [c], [`], [d], [ds]〉 in which −k ≤ [c], [`] ≤ k, 0 ≤ [d], [ds] ≤ k. Figure 2 depicts
an execution of Bellman-Ford in which every weight is implemented using a
distance tuple.

With the above implementation, each arithmetic operation performed by
Bellman-Ford costs O(1) time, as it involves only O(1) of the input values. (We
emphasize that using distance tuples in a real implementation is not required.
The advantage of distance tuples is that they allow us to conclude that each
fractional value can be represented with O(1) words. Of course, this is true
even when a traditional implementation of fractional values is employed.) We
conclude, therefore, that u-Rep can be solved in O(n2) time, even when u
is non-integer. As far as our knowledge extends, this is the first polynomial
algorithm to solve this problem.

By definition, (Int)BoundRep is solvable if and only if u-Rep is solvable for
some (integer) UCA descriptor u. The main difference between both problems is
that d is an input of u-Rep whereas a feasible d must be found by BoundRep.
A simple solution for (Int)BoundRep is to invoke the above algorithm with
a small enough value of d. For instance, if a1/b1, . . . , ak/bk are the bounds of
d` and dr, then we can take d = 1

B where B =
∏k
i=1 bi. In other words, we

transform every weight of sep into an integer before invoking Bellman-Ford in
the algorithm above. This algorithm is efficient when d consumes O(1) bits,
e.g., when u is integer. But, it is not efficient in the general case because to
compare two distance tuples we need to operate with d.

JGAA, 21(4) 491–525 (2017) 503

Weights of the edges implemented with distance tuples
Edge sepu

〈
b ,[c],[`],[d],[ds]

〉
A0

β→ A1
3
2

〈
3
2 , 0 , 0 , 0 , 0

〉
A0

β→ A2
9
4

〈
9
4 , 0 , 0 , 0 , 0

〉
A0

β→ A3
27
8

〈
27
8 , 0 , 0 , 0 , 0

〉
A0

β→ A4
81
16

〈
81
16 , 0 , 0 , 0 , 0

〉
A1

β→ A0
−647
16

〈
81
16 ,-1, 0 , 0 , 0

〉
A2

β→ A0
−337

8

〈
27
8 ,-1, 0 , 0 , 0

〉
A3

β→ A0
−173

4

〈
9
4 ,-1, 0 , 0 , 0

〉
A4

β→ A0 −44
〈

3
2 ,-1, 0 , 0 , 0

〉

Edge sepu
〈
b,[c],[`],[d],[ds]

〉
A1

σ→ A2
14
3

〈
0, 0 , 0 , 1 , 1

〉
A2

σ→ A3
14
3

〈
0, 0 , 0 , 1 , 1

〉
A3

σ→ A4
14
3

〈
0, 0 , 0 , 1 , 1

〉
A4

σ→ A1
−245

6

〈
0,-1, 0 , 1 , 1

〉
A2

ν→ A4
125
6

〈
0, 0 , 1 , 1 , 0

〉
A3

η→ A1
−73
6

〈
0, 0 ,-1, 1 , 0

〉
A3

ν→ A1
−74
3

〈
0,-1, 1 , 1 , 0

〉
A4

ν→ A2
−74
3

〈
0,-1, 1 , 1 , 0

〉
x→ is used to mean that an edge belongs to Ex.

Weights of the vertices implemented with distance tuples
After Step 1

Vertex
〈
b ,[c],[`],[d],[ds]

〉
A0

〈
0 , 0 , 0 , 0 , 0

〉
A1

〈
3
2 , 0 , 0 , 0 , 0

〉
A2

〈
9
4 , 0 , 0 , 0 , 0

〉
A3

〈
27
8 , 0 , 0 , 0 , 0

〉
A4

〈
81
16 , 0 , 0 , 0 , 0

〉

After Step 2〈
b ,[c],[`],[d],[ds]

〉〈
0, 0 , 0 , 0 , 0

〉〈
3
2 , 0 , 0 , 0 , 0

〉〈
3
2 , 0 , 0 , 1 , 1

〉〈
9
4 , 0 , 0 , 1 , 1

〉〈
9
4 , 0 , 1 , 1 , 0

〉

After Step 3〈
b ,[c],[`],[d],[ds]

〉〈
0, 0 , 0 , 0 , 0

〉〈
3
2 , 0 , 0 , 0 , 0

〉〈
3
2 , 0 , 0 , 1 , 1

〉〈
3
2 , 0 , 0 , 2 , 2

〉〈
3
2 , 0 , 1 , 2 , 1

〉

sn

0
3
2
37
6
65
6

27

Figure 2. Execution of Bellman-Ford on the synthetic graph of Figure 1
weighed with sepu, where:

u =

〈
c :

91

2
, ` :

33

2
, d :

13

3
, ds :

1

3
, d` : Ai →

(
3

2

)i

, dr : Ai →
(
3

2

)5−i
〉

.

An alternative solution for BoundRep is to find any d < d∗, where d∗ is the
maximum such thatM is equivalent to a (c, `, d∗, ds, d`, dr)-CA model. To find
d we invoke the algorithm for u-Rep, but instead of giving an input number for
d, we just think of d as a placeholder for a value lower than or equal to d∗. As
before, sij = sep(Ai → Aj) and ski are encoded with distance tuples [tij] and
[ti], respectively. However, we re-implement the comparison operator to cope
with the fact that d is an indeterminate value.

Let [di] and [dij] be the coefficients of ti and tij that multiply d, respectively.
For a distance tuple t = 〈b, [c], [`], [d], [ds]〉, let

‖t‖ = [t]− [d]d = b+ [c]c+ [`]`+ [ds]ds.

The main observation is that d∗sep(A0, Ai) < d∗sep(A0, Aj) + sep(Aj → Ai) if

504 Soulignac Representations of UIG and UCA graphs. Algorithms

and only if

• ‖ti‖ < ‖tji‖+ ‖sj‖, or

• ‖ti‖ = ‖tji‖+ ‖sj‖ and [di] < [dj] + [dji].

Hence, every arithmetic operation —including comparisons— costs O(1) time,
as it involves only O(1) input values.

If Bellman-Ford ends in success, then a value d such that

min{d∗sep(A0, Ai)− d∗sep(A0, Aj)− sep(Aj → Ai) | Aj → Ai ∈ E(B)} =

min{[ti]− [tj]− [tij] | Ai → Aj ∈ E(B)} =

min{‖ti‖+ d[di]− ‖tj‖ − d[dj]− ‖tij‖ − d[dij] | Ai → Aj ∈ E(B)} > 0

can be obtained in O(n) time. By Theorem I.1, the algorithm is correct as
sep(W) ≤ 0 for every cycle W of B. As for the certification problem, note
that d consumes O(1) bits, thus we can output U(M) in O(n) time. Moreover,
any cycle of positive weight found by Bellman-Ford can be used for negative
certification.

Theorem 1 BoundRep, IntBoundRep, and u-Rep can be solved in O(n2)
time and O(n) space.

4 The unrestricted representation problem
In 1974, Tucker showed a characterization by forbidden subgraphs of those PCA
graphs that are UCA [22]. His proof yields an effective method to transform a
PCA modelM into an equivalent UCA model U . Unfortunately, the extremes
of U are not guarantied to be of a polynomial size and, thus, the corresponding
representation algorithm cannot be regarded as polynomial. The representation
problem remained unsolved until 2008, when Lin and Szwarcfiter designed the
algorithm LS that transforms any PCA model into an equivalent UCA model
in linear time [13]. The LS algorithm, however, gives no output when the input
graph is not UCA. A year later, Kaplan and Nussbaum [7] devised the algorithm
KN that solves the problem of finding a forbidden induced subgraph in linear
time.

The pair (LS, KN) can be regarded as a certifying algorithm. The advantage
of certifying algorithms [14] over their non-certifying counterparts is that they
provide a witness guaranteeing the validity of the YES-NO answer. The end
user can authenticate the witness to be confident that the answer is correct,
even in the presence of an incorrect implementation. However, an erroneous
implementation of LS could claim that a UCA graph G admits no UCA models,
while a correct implementation of KN claims that G is UCA. In such a case, no
witness is obtained at all, defeating the purpose of a certifying algorithm. Is for
this reason that Kaplan and Nussbaum [7] leave open the problem of finding a
unified certifying algorithm. Regarding the space complexity, Köbler et al. [10]
mention that the representation problem in logspace is open as well.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1

JGAA, 21(4) 491–525 (2017) 505

In this section we design two unified certifying algorithms for the representa-
tion problem; one runs in linear time and the other in logspace. Our algorithms
depend on Theorem I.2 that brings Tucker’s characterization to the framework
of synthetic graphs. One of the main features of Theorem I.2 is that it exhibits
other equivalences that can be used for positive and negative certification. In
particular, it shows how to obtain an integer (c, `)-CA model equivalent toM
with c and ` polynomial in n.

4.1 Efficient Tucker’s characterization
The cycles of B with maximum sep-values play a fundamental role when deciding
if M admits an equivalent u-CA model. The key idea of the representation
algorithm is to take U∗ = U(c∗, `∗) as in Theorem I.1 for some appropriate
values c∗ and `∗. There are two reasons why c∗ and `∗ are appropriate: first,
U∗ is a UCA model equivalent to M whenever G(M) is UCA; second, even
though the best algorithm we know requires O(n2) time to compute U(c, `) for
general values of c and `, we can compute U∗ in O(n) time. Before we define
c∗ and `∗, we need to introduce some concepts to describe the sep-values of
the boundless synthetic graph. The (boundless) synthetic graph of M is just
S(M) = B(M) \ A0; for the sake of simplicity, we drop the parameter M as
usual. (Note that S is a 3-digraph as it contains no bounds.)

Let M = (C,A) be a PCA model with arcs A1 < . . . < An. The height
h(Ai) of Ai (1 ≤ i ≤ n) is recursively defined as follows:

h(Ai) =

{
0 if s(Ai) < t(A1)

1 + h(Aj) otherwise, where Aj = max{Aj | t(Aj) < s(Ai)}.

The height of M is defined as h(M) = h(An); note that h(M) ≥ 1 (because
M is not trivial). For the sake of notation, we drop the parameterM as usual.
Figure 3 depicts the synthetic graph of a PCA model with the vertices drawn
in levels according to their height.

Following Section I.3.3, we refer to a nose (resp. step, hollow) Ai → Aj as
being a δ-nose (resp. δ-step, δ-hollow) to indicate that h(Aj)− h(Ai) = δ. For
every walk W of S, we write νδ(W), ηδ(W), and σδ(W) to indicate the number
of δ-noses, δ-hollows, and δ-steps of W, respectively. As usual, we do not write
the parameter W when it is clear from context.

It is not hard to see (check Figure 3 and Section I.3.3) that S has three kinds
of noses —namely 1-, (−h)-, and (1−h)-noses—, three kinds of steps —namely
0-, 1-, and (−h)-steps—, and four kinds of hollows —namely 0-, (−1)-, h-, and
external (h − 1)-hollows. A priori, we need to differentiate between internal
0-hollows and external (h − 1)-hollows when h = 1. However, we will refer to
Ai → Aj as being an (h − 1)-hollow to mean that Ai → Aj is an external
(h− 1)-hollow; no confusions are possible becauseM has no external 0-hollows
when h = 1 (otherwise Ai and Aj would cover the circle of M). Note that
h(Aj) = 0 when Ai → Aj is a (−h)- or (1− h)-nose; h(Ai) = 0 when Ai → Aj
is a h- or (h− 1)-hollow; and h(A1) = 0 for the unique (−h)-step An → A1.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#subsection.3.3
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#subsection.3.3

506 Soulignac Representations of UIG and UCA graphs. Algorithms

A1 A2

A3

A4

A5

A6

A7

A8

A9

(a) A PCA modelM.

bA1
b
A2

b
A3

bA4
bA5 bA6

bA7
bA8

bA9

b A1

b A4

b A7

b A9

bA1
bA2

b A3

b A8

bA9

0

3

2

1

0

3

2

(b) The synthetic graph S(M).

Figure 3. (Boundless) synthetic graph S of a PCA model M. Each gray
vertex corresponds to a black vertex (we separate them for the sake of expo-
sition) and each edge is drawn only once. The edges are solid, dashed, and
dotted, according to whether they are noses, hollows, and steps, respectively.
The height of M is h = 3 and each vertex is drawn in a row that corresponds
to its height; the height is indicated to the left. Note that there are 1-, (−h)-,
and (1−h)-noses, 0-, (−1)-, h-, and (h−1)-hollows, and 0-, 1-, and (−h)-steps.

“Nose” and “hollow” walks are of particular interest for two coincident rea-
sons. On the one hand, they correspond to what Tucker calls by the names of
(a, b)-independents and (x, y)-circuits (see Section I.5). On the other hand, as it
happens with (a, b)-independents and (x, y)-circuits, their “ratios” impose lower
and upper bounds on the length of any UCA model equivalent to M. A walk
of S is a nose walk when it contains no hollows, while it is a hollow walk when
it contains no noses and ηh + ηh−1 ≥ σ−h. Note that a walk is both a nose and
a hollow walk only if all its edges are steps; in general, walks that contain only
steps are referred to as step walks.

The ratio of nose walk WN is the value r(WN) = ν−h−σ1

ν1−h+ν−h+σ−h
, while

the nose ratio of M is r(M) = max{r(WN) | WN is a nose cycle of M}.
Similarly, R(WH) = η0+ηh+σ1

ηh+ηh−1−σ−h
is the ratio of a hollow walk WH , while

R(M) = min{R(WH) | WH is a hollow cycle ofM} is the hollow ratio of M.
The following observation describes the bounds on c implied by both ratios;
note that, as usual, we omit the parameterM from r and R.

Lemma I.2 For every u-CA model,

(`+ d)(h+ r) ≤ c ≤ (`− d)(h+R) (1)

By (1),M is equivalent to a u-CA model only if c = (` + d)(h + r) + e for
some e ≥ 0. In general, e = c− (`+ d)(h+ r) is referred to as the extra space.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#lemma.2

JGAA, 21(4) 491–525 (2017) 507

The next lemma describes the value of sep(W) in terms of ` and e, for every
walk W of S.

Lemma 1 (see (5)–(8), Ch. I) For every CA descriptor u,

sep(W) = (`+ d)(h(Aj)− h(Ai) + len(W)) + e ext(W) + const(W, d, ds) (2)

where:

len(W) = ν−h − ηh − σ1 − η0 + r ext(W) (3)
ext(W) = ηh + ηh−1 − ν−h − ν1−h − σ−h, and (4)

const(W, d, ds) = 2d(η−1 + η0 + ηh + ηh−1) + (d+ ds)(σ1 + σ0 + σ−h). (5)

The values len(W), ext(W), and const(W, d, ds) are the length, extra, and
constant factors of W, and W, d, and ds are omitted as usual. One of the
advantages of expressing sep as a polynomial with indeterminates ` and e and
coefficients len, ext and const is that, obviously, the factors depend only on
the structure of S and not on the weighing function sep. Thus, ext(W) is the
weight of W when the following edge weighing ext (the overloaded notation is
intentional) of S is considered:

ext(Ai → Aj) =

1 if Ai → Aj is an external hollow
−1 if Ai → Aj is an external nose or step
0 otherwise

We can compute len(W) and const(W, d, ds) in a similar fashion with the cor-
responding edge weighings len and constd,ds .

Recall that our goal is to find U∗ = U(c∗, `∗) for some appropriate values c∗
and `∗ for which we can assure that U∗ is a UCA model equivalent toM when
G(M) is UCA. By Theorem I.1, c∗ and `∗ must be such that sep(W) ≤ 0 for
every cycle W of S. In particular, sep must be non-positive for nose and hollow
cycles, which impose the lower and upper bounds described by (1), respectively.
The reason to consider only nose and hollow cycles is that they have the largest
sep-values when c∗ and `∗ are large enough (see Chapter I).

Lemma I.3 For any walk W of S there exists either a nose or hollow walk W ′
of S starting and ending at the same vertices as W such that len(W) ≤ len(W ′)
and ext(W) ≤ ext(W ′).

Our goal is not only to compute U∗, but to do it fast. The invocation to
Bellman-Ford is one of the bottlenecks in our algorithm to compute U(c, `). The
reason why Bellman-Ford is applied resides in the fact that S is not an acyclic
graph. The advantage of c∗ and `∗ is that we can remove all the cycles of S
without affecting the distances from A1. Thus, we can avoid Bellman-Ford and,
consequently, we decrease the time complexity to O(n). With this in mind, say
that an edge Ai → Aj of S is redundant when either

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#equation.3.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#equation.3.8
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#lemma.3

508 Soulignac Representations of UIG and UCA graphs. Algorithms

(red1) dlen(A1, Aj) > dlen(A1, Ai) + len(Ai → Aj), or

(red2) dlen(A1, Aj) = dlen(A1, Ai) + len(Ai → Aj) and
(dext ◦ dlen)(A1, Aj) > (dext ◦ dlen)(A1, Ai) + len(Ai → Aj).

Roughly speaking, Ai → Aj is redundant when it plays no role in the separation
between s(A1) = 0 and s(Aj) for large values of ` and not-so-large values of e.
(Recall that (dext ◦ dlen) is the ext-distance restricted only to those paths
with maximum len-distance.) The reduction of S(M) is the 3-digraph R(M)
obtained after removing all the redundant edges of S(M); as usual, we omit the
parameter M. Theorem I.2 includes Tucker’s characterization as equivalence
(i) ⇔ (ii).

Theorem I.2 LetM be a PCA model with arcs A1 < . . . < An, and r1, r2 ∈ N
be such that r = r1/r2. Then, the following statements are equivalent:

(i) M is equivalent to a UCA model.

(ii) r < R.

(iii) len(W) < 0 for every hollow cycle W of S.

(iv) either len(W) < 0 or len(W) = 0 and ext(W) < 0, for each cycle W of S.

(v) R is acyclic.

(vi) d∗sep(c∗,`∗)(B, A0, Ai) = dsep(c∗,`∗)(R, A1, Ai) for every 1 ≤ i ≤ n, where
c∗ = (`∗ + 1)(h+ r) + e, (`∗ + 1) = r2e

2, and e = 4n.

(vii) U(c∗, `∗) is an integer (c∗, `∗)-CA model equivalent toM for c∗ and `∗ as
in (vi).

We can already foresee the algorithmic consequences on Rep that Theo-
rem I.2 has when combined with Theorem I.1. For any input PCA model M,
we solve u-Rep for the UCA descriptor u = (c∗, `∗) implied by statement (vi).
As a byproduct, we either obtain a UCA model equivalent to M or a cycle of
S that can be used for negative certification. The algorithm costs O(n2) time,
plus the time and space required so as to compute r(M). In Section 4.3 we
show an O(n) time variant of this algorithm, taking advantage of the reduction
of S. However, we first discuss how r can be found.

4.2 The algorithm by Kaplan and Nussbaum
Translated to synthetic graphs, Tucker’s characterization (equivalence (i)⇔ (ii)
of Theorem I.2) states thatM is equivalent to no UCA model if only if S has
nose and hollow cycles WN and WH such that r(WN) ≥ R(WH). The original
proof by Tucker does not show how to obtain such cycles. More than thirty
years later, Durán et al. [4] described the first polynomial algorithm to compute
these cycles with a rather complex implementation. A few years later, Kaplan

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2

JGAA, 21(4) 491–525 (2017) 509

and Nussbaum [7] improved this algorithm to run in O(n) time while simplifying
the implementation. The purpose of this section is to translate the algorithm by
Kaplan and Nussbaum in terms of the synthetic graph. The proof of correctness
is simple, short, and rather intuitive, while the implementation is quite similar
to the one given by Kaplan and Nussbaum.

The main concept of this section is that of greedy cycles. For any nose (resp.
hollow) walk WN = B1, . . . , Bk of S, we say that Bi is greedy (in WN) when
either the edge Bi → Bi+1 of WN is a nose (resp. hollow) or no nose (resp.
hollow) of S starts at Bi. A nose (resp. hollow) cycle is greedy when all its
vertices are greedy. In other words, WN is greedy when noses (resp. hollows)
are preferred over steps. The main idea of Durán et al., which was somehow
implicit in [22], is to observe that S contains a greedy nose (resp. hollow) cycle
of highest (resp. lowest) ratio. Then, they compute the unique greedy nose
(resp. hollow) cycle starting at a vertex A, for every A ∈ V (S), and keep the
one with highest (resp. lowest) ratio. Note that each greedy nose (resp. hollow)
cycle B1, . . . , Bk is found k times, once for each starting vertex Bi. Kaplan and
Nussbaum, instead, compute each greedy nose (resp. hollow) cycle only once by
taking only one vertex as the starting point.

The next lemma has a new proof that S contains a greedy nose cycle of
highest ratio.

Lemma 2 (see also [4, 7, 22]) For any nose cycle WN of S there exists a
greedy nose cycle W ′N of S such that r(WN) ≤ r(W ′N).

Proof: The proof is trivial when WN is greedy. When WN is not greedy, we
can transform it into a greedy nose cycle by traversing WN from any vertex
while applying the following operation when a non-greedy vertex B1 is found,
until no more non-greedy vertices remain. Let B1 → B be the nose from B1

and W = B1, . . . , Bi be the shortest subpath of WN such that either Bi = B
or Bi−1 → Bi is a nose. The operation transforms WN into W ′N by replacing
W with W ′, where W ′ is the path formed by the nose B1 → B followed by
the step path from B to Bi. Thus, it suffices to prove that r(W) ≤ r(W ′).
Moreover, if we let r1 = ν−h − σ1 and r2 = ν1−h + ν−h + σ−h, then rj(W ′N) =
rj(WN) − rj(W) + rj(W ′) for j ∈ {1, 2}. So, as r = r1/r2 by definition, it is
enough to show that r1(W ′) ≥ r1(W) and r2(W ′) ≤ r2(W).

If B = Bi then W has at least one 1-step or (−h)-step, while W ′ = B1 →
B. Thus r1(W) ≤ 0 ≤ r1(W ′) and r2(W ′) ≤ r2(W), and the lemma follows.
Otherwise, if B 6∈ W, then B1, Bi−1, B,Bi appear in this order in S when its
steps are traversed from B1. It is not hard to see that ri(W) = ri(W ′) when
B1 → B and Bi−1 → Bi have equal jumps. This leaves us with only four
possible combinations for the heights of B1, Bi−1, Bi, and B when the jumps
differ, and in all such cases the lemma is true (see the table below).

510 Soulignac Representations of UIG and UCA graphs. Algorithms

h(B1) h(Bi−1) h(B) h(Bi) r1(W) r1(W ′) r2(W) r2(W ′)

h− 2 h− 1 h− 1 0 −1 −1 1 1
h− 1 h− 1 h 0 0 0 1 1
h− 1 h h or 0 0 0 0 1 1
h 0 0 1 0 0 1 1

�

The proof that S contains a greedy hollow cycle with lowest ratio is similar,
and we omit it as it is not required by our algorithm. Moreover, an analogous
proof is given in Lemma 4.

Lemma 3 (see [7] and Section I.5) For any hollow cycle WH of S there ex-
ists a greedy hollow cycle W ′H of S such that R(WH) ≥ R(W ′H).

The algorithm to compute a nose (resp. hollow) cycle with highest (resp.
lowest) ratio follows easily from Lemma 2 (resp. Lemma 3). Just note that if
an edge Ai → Aj belongs to a greedy nose (resp. hollow) cycle, then either
Ai → Aj is a nose (resp. hollow), or there are no noses (resp. hollow) from Ai in
S. Then, W is a greedy nose (resp. hollow) cycle of S if and only ifW is a cycle
of the digraph SN that is obtained by keeping only the noses (resp. hollows)
of S and the steps that go from vertices with no noses (resp. hollows). Since
all the vertices in SN have out-degree 1, we can obtain all the greedy cycles
in O(n) time. Then, by Lemmas 2 and 3, r and R can be computed in O(n)
time. Furthermore, if r ≥ R, then a nose and a hollow cycles WN and WH

with r(WN) = r and R(WH) = R are obtained as a byproduct. If required,
these cycles can be transformed into an (a, b)-independent and an (x, y)-circuit
of M in O(n) time, thus obtaining the same output as given by Kaplan and
Nussbaum (see Section I.5).

4.3 Efficient construction of UCA models

Durán et al. [4] ask if there exists an integer (c, `)-CA model equivalent to a PCA
model M such that c and ` are bounded by a polynomial in n. If affirmative,
they also inquire whether such a model can be found in O(n) time. Both
questions were affirmatively answered by Lin and Szwarcfiter [13], who showed
how to reduce the problem of finding a (c, `)-CA model to a circulation problem.
Their algorithm and its correctness have nothing to do with Theorem I.2 and it is
not easy to see how a forbidden subgraph can be obtained for certification (that
is, without invoking a second recognition algorithm, as the one by Kaplan and
Nussbaum). Kaplan and Nussbaum [7] ask for a unified certification algorithm.
We provide such an algorithm in this section.

Our algorithm is based on the equivalence (i) ⇔ (v) ⇔ (vi) of Theorem I.2.
That is, the algorithm just checks whether R(M) is acyclic. If affirmative,
then U∗ = U(c∗, `∗) is the positive witness by Theorem I.2, for c∗ and `∗ as
in statement (vi). Otherwise, a nose cycle with ratio r(M) combined with a

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2

JGAA, 21(4) 491–525 (2017) 511

cycle of R(M) form the negative witness. Of course, testing if R is acyclic and
finding a cycle in R both cost O(n) time. When R is acyclic, we can compute
dsep in O(n) time using R in order to build U∗. Hence, the difficulty of the
algorithm is in finding R.

By definition, R is obtained by removing the redundant edges of S; this can
be done in O(n) time once the redundant edges of S are found. In turn, recall
that an edge Ai → Aj is redundant if and only if

(red1) dlen(A1, Aj) > dlen(A1, Ai) + len(Ai → Aj), or

(red2) dlen(A1, Aj) = dlen(A1, Ai) + len(Ai → Aj) and
(dlen ◦ dext)(A1, Aj) > (dlen ◦ dext)(A1, Ai) + ext(Ai → Aj).

Thus, to locate the redundant edges we should find a path Wi from A1 to
Ai such that len(Wi) = dlen(A1, Ai) and ext(Wi) = (dlen ◦ dext)(A1, Ai) for
every 1 ≤ i ≤ n. By Lemma I.3, Wi is either a nose or hollow path. That is,
Wi ∈ {WN,i,WH,i}, where WN,i is a nose path such that

(gn1) len(WN,i) = max{len(W) | W is a nose path from A1 to Ai}, and

(gn2) ext(WN,i) = max

{
ext(W)

∣∣∣∣ W is a nose path from A1 to Ai
with len(W) = len(WN,i)

}
,

whileWH,i is defined analogously by replacing noses with hollows. The remain-
der of this section is devoted to the problems of finding WN,i and WH,i.

Say that a nose (resp. hollow) walk W = B1, . . . , Bk is greedy when there
exists Bi ∈ W such that Bj is greedy inW for every 1 ≤ j ≤ i, while the subwalk
Bi, . . . , Bk of W is a step walk. In other words, W is greedy when noses (resp.
hollows) are preferred until some point in which only steps follow. It turns out
that WN,i and WH,i are greedy paths. The proof of this fact is analogous to
those of Lemmas 2 and 3, yet we include it for the sake of completeness.

Lemma 4 For any nose (resp. hollow) walk WN of S there exists a greedy
nose (resp. hollow) walk W ′N of S joining the same vertices such that either
len(WN) < len(W ′N) or len(WN) = len(W ′N) and ext(WN) ≤ ext(W ′N).

Proof: The proof is by induction on |WN |−p and |WN |, where p is the position
of the first non-greedy vertex of WN . The base case in which p is greater than
the position of the last nose (resp. hollow) ofWN is trivial. Suppose, then, that
B1 is the first non-greedy vertex of WN and that B1 appears before the last
nose (resp. hollow) of WN . Let B1 → B the the nose (resp. hollow) from B1

and consider the following cases.

Case 1: WN is a nose walk. Let W = B1, . . . , Bi be the shortest subpath
of WN such that either Bi−1 → Bi is a nose or Bi = B, W ′ be the
path formed by the nose B1 → B followed by the step path from B to
Bi, and W ′N be the nose walk obtained from WN by replacing W by
W ′. Clearly, the position of the first non-greedy vertex of W ′N is greater
than p. Thus, by induction, it suffices to show that w(W ′) ≥ w(W) (for

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#lemma.3

512 Soulignac Representations of UIG and UCA graphs. Algorithms

w ∈ {len, ext}), because w(W ′N) = w(WN)− w(W) + w(W ′). If Bi = B,
then either W contains at least one 1-step or B1 → Bi is a (−h)-nose,
thus len(W ′) > len(W). Otherwise, B1, Bi−1, B,Bi appear in this order
in S when the steps are traversed from B1. As in Lemma 2, it is not hard
to see that w(W ′) = w(W) when B1 → B and Bi−1 → Bi have equal
jumps, while, as in Lemma 2, only four cases remain otherwise. All these
cases are examined in the tables below.

h

B1 Bi−1 B Bi

h− 1 h− 1 or h h 0
h− 2 h− 1 h− 1 0
h− 1 h 0 0
h 0 0 1

len

W W ′

−r −r
−1− r −1− r
−r −r
−r −r

ext

W W ′

−1 −1
−1 −1
−1 −1
−1 −1

Case 2: WN is a hollow walk. Let W = B1, . . . , Bi be the shortest subwalk of
WN such that Bi−1 → Bi is a hollow. If Bi = Bj for some 1 ≤ j < i, then
the subwalkWji = Bj , . . . , Bi ofW is a cycle with exactly one 1-step or 0-
hollow, thus len(Wji) < 0. So, the proof follows by induction on the hollow
walk W ′N = WN \ Wji because len(W ′N) = len(Wj) + len(Wji) and the
position of the first non-greedy hollow is at least p. If Bi 6∈ {B1, . . . , Bi−1},
then B,Bi, B1, Bi−1 appear in this order in a traversal of the steps of S
from B. Let W ′ be the hollow path formed by B1 → B followed by
the step path from B to Bi and observe that, as in Case 1, it suffices to
prove that w(W ′) = w(W) for w ∈ {len, ext}. Moreover, both equalities
hold when B1 → B and Bi−1 → Bi have equal jumps. The equalities
hold also when either B1 → B or Bi−1 → Bi is a 0-hollow. Indeed, if
B1 → B is a 0-hollow, then h(B) = h(Bi) = h(B1) and h(Bi−1) 6= h(B),
while if Bi−1 → Bi is a 0-hollow, then h(Bi) = h(B1) = h(Bi−1) and
h(B) 6= h(Bi−1). In both of these cases, len(W) = len(W ′) = −1 and
ext(W) = ext(W ′) = 0. Finally, when neither B1 → B nor Bi−1 → Bi
are 0-hollows and B1 → B and Bi−1 → Bi have different jumps, we are
left with only six cases, as in the tables below.

h

B1 Bi−1 B Bi

0 1 h or h− 1 0
0 0 h− 1 h
h 0 h− 1 h
h 0 h− 1 h− 1

h− 1 0 h− 2 h− 1

len

W W ′

−1 −1
−1 + r −1 + r
−1 −1
0 0
−1 −1

ext

W W ′

0 0
1 1
0 0
0 0
0 0

�

Recall that our problem is to find the len and ext values for the path WN,i

satisfying (gn1) and (gn2), for every 1 ≤ i ≤ n. We solve this problem in

JGAA, 21(4) 491–525 (2017) 513

two phases. Clearly, S has a unique greedy nose path N beginning at A1

that is maximal and ends with a nose. The first phase consist of traversing
N = B1, . . . , Bk while p(Bi) = (len(Ni), ext(Ni)) is computed and stored for
every subpath Ni = B1, . . . , Bi of N . In the second phase each step Ai−1 → Ai
of S is traversed while q(Ai) = (len(WN,i), ext(WN,i)) is computed and stored.
By Lemma 4, WN,i is a greedy nose path starting at A1, thus WN,i is equal
to a subpath of N plus a (possibly empty) step path. Consequently, there are
only two possibilities for the last edge of WN,i according to whether Ai ∈ N or
not. If Ai 6∈ N , then the last edge of WN,i must be the step Ai−1 → Ai, thus
q(Ai) = q(Ai−1) + (len(Ai−1 → Ai), ext(Ai−1 → Ai)). Otherwise, the last edge
could be the step Ai−1 → Ai or the nose Aj → Ai. In the latter case WN,i is
the subpath Ni of N . Thus, we can compute WN,i by simply comparing the
values p(Ai) and q(Ai−1) + (len(Ai−1 → Ai), ext(Ai−1 → Ai)). Note that both
traversals cost O(n) time. The problem of finding WH,i is analogous and it also
costs O(n) time.

Theorem 2 There is a unified certifying algorithm that solves Rep in O(n)
time.

4.4 Logspace construction of UCA models

Köbler et al. [10] ask whether it is possible to solve Rep in (deterministic)
logspace. In this section we provide an affirmative answer to this question by
showing that the algorithm of the previous section can be implemented to run
in logspace. Before doing so, we briefly discuss the logspace recognition of UCA
graphs, for the sake of completeness.

As proven by Tucker [22], two steps are enough to recognize if a given graph
G is UCA: first check that G is PCA, and then verify if any of its PCA models
admits an equivalent UCA model. Köbler et al. [10] show a logspace algorithm
for the recognition of PCA graphs that outputs a PCA model M when G is
PCA. We implement the algorithm by Kaplan and Nussbaum so that it runs in
logspace whenM is given. Let SN be the subgraph of S obtained by removing
all its hollows and all its steps that go from a vertex in which a nose starts.
All the vertices of SN have out-degree 1. So, the nose ratio of each cycle W
of SN can be obtained in logspace by traversing W from each of its vertices.
By Lemma 2, r is the maximum among such ratios. Then, taking into account
that SN can be easily computed in logspace from M, we conclude that r is
obtainable in logspace. An analogous algorithm can be used to compute the
hollow ratio R of M in logspace. By Theorem I.2, M is equivalent to a UCA
model if and only if r < R. The algorithm can output, also in logspace, the
nose and hollow cycles with ratios r and R, respectively. These cycles provide
a negative witness thatM is equivalent to no UCA models when r ≥ R.

The logspace representation algorithm can be divided in two phases. In the
first phase, R is built, while, in the second phase, the UCA model is obtained
from a topological sort of its vertices. Clearly, the problem of computing R can
be logspace reduced to querying which of the edges of S are redundant. By

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2

514 Soulignac Representations of UIG and UCA graphs. Algorithms

(red1) and (red2), the problem of testing if Ai → Aj is redundant is logspace
reduced to that of finding dlen(A1, Ai) and (dlen ◦ dext)(A1, Ai). As stated in
the previous section, this problem is reduced to that of computing len(WN,i),
ext(WN,i), len(WH,i), and ext(WH,i) where WN,i is the greedy nose path from
A1 to Ai defined by (gn1) and (gn2), while WH,i is defined analogously. By
Lemma 2, WN,i = Na,b for some a, b < n, where Na,b is the walk obtained
by first traversing a edges of the unique maximal greedy path N that begins
at A1, and then traversing b steps. So, by keeping the counters a and b, we
can compute the maximum among the values of len(Na,b) and ext(Na,b) for the
paths Na,b ending at Ai with a, b < n. Such a computation requires logspace,
thus R can be obtained in logspace.

Once R is built, we could compute U(c, `) by finding dsep(R, A1, Ai) for
every 1 ≤ i ≤ n. There is a major inconvenience with this approach: finding
the longest path between two vertices of an acyclic digraph is a complete problem
for the class of non-deterministic logspace problems. To deal with this issue we
could observe that R is not only an acyclic digraph but also one with a rather
particular structure.

Theorem 3 IfM is a PCA model, then S is a toroidal digraph.

Proof: As the theorem is implied by [15], we defer its proof to Section 5 (see
Corollary 1). �

Toroidal acyclic digraphs are much simpler than general acyclic digraphs.
Yet, up to this date, the best algorithms to compute their longest paths run in
unambiguous logspace [11]. For this reason, the UCA model computed in the
second phase is a variant of U(c∗, `∗). The key idea is to observe that the reach-
ability problem for toroidal digraphs that have a unique vertex with in-degree 0
can be solved in logspace [21]. That is, for Ai, Aj ∈ V (R), the reachability algo-
rithm in [21] outputs YES when there is a path from Ai to Aj in R. Then, we
can compute reach(Aj) = |{Ai ∈ V (R) | there is a path from Ai to Aj in R}|
in logspace for any given Aj ∈ V (R). The representation algorithm takes ad-
vantage of this fact by replacing const with the easier-to-find reach. That is,
the constructed UCA model Ureach is the (c∗, `∗)-CA model with arcs U1, . . . , Un
such that c∗ = (`∗ + 1)(h+ r) + e for e = 4n, `∗ + 1 = r2e

2, and

s(Uj) = (`+ 1)(h(Aj) + dlen(A1, Aj)) + e(dext ◦ dlen)(A1, Aj) + 2 reach(Aj)
(6)

for every 1 ≤ j ≤ n, where r = r1/r2 for r1, r2 ∈ N. Observe that, as in
Theorem I.2 (vi), c∗, `∗, and s(Uj) are integers. By the previous discussion,
Ureach is obtainable in logspace. The fact that Ureach is equivalent toM follows
from the next theorem.

Theorem 4 Let M be a PCA model. Then, R is acyclic if and only if Ureach
is an integer UCA model equivalent toM.

Proof: Suppose first that R is acyclic and let U1, . . . , Un be the arcs of Ureach
as in its definition. Then, it suffices to show that:

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2

JGAA, 21(4) 491–525 (2017) 515

(a) s(Uj) ≥ s(Ui) + `+ 1− cq for every nose Ui → Uj of S,

(b) s(Uj) ≥ s(Ui)− `+ 1 + cq for every hollow Ui → Uj of S, and

(c) s(Uj) ≥ s(Ui) + 1− cq for every step Ui → Uj .

where q ∈ {0, 1} equals 0 if and only if Ai → Aj is internal. Take any edge
Ai → Aj and, for the sake of notation, let:

• ∆x(i, j) = x(Aj)− x(Ai) for x ∈ {h, reach},

• ∆ len(i, j) = dlen(A1, Aj)− dlen(A1, Ai)− len(Ai → Aj), and

• ∆ ext(i, j) = (dext◦dlen)(A1, Aj)− (dext◦dlen)(A1, Ai)−ext(Ai → Aj).

By definition (6),

s(Uj) =(`+ 1)(h(Aj) + dlen(A1, Aj)) + e(dext ◦ dlen)(A1, Aj) + 2 reach(Aj)

=(`+ 1)(h(Ai) + ∆h(i, j) + dlen(A1, Ai) + len(Ai → Aj) + ∆len(i, j))+

e((dext ◦ dlen)(A1, Ai) + ext(Ai → Aj) + ∆ ext(i, j))+

2 reach(Ai) + 2∆ reach(i, j)

=s(Ui) + (`+ 1)(∆h(i, j) + len(Ai → Aj)) + e(ext(Ai → Aj)) + ε (i)

where ε = (`+ 1)∆ len(i, j) + e∆ ext(i, j) + 2∆ reach(i, j).
Note that ε ≥ 2. Indeed, if Ai → Aj is redundant, then either ∆ len(i, j) > 0

or ∆ len(i, j) = 0 and ∆ ext(i, j) > 0; thus ε ≥ 2 because len and ext are large
enough (see Chapter I, Theorem I.2 (v) ⇒ (vi)). If Ai → Aj is not redun-
dant, then Ai → Aj is an edge of R and ∆ reach(i, j) > 0, while ∆ len(i, j) =
∆ ext(i, j) = 0. Consequently, ε ≥ 2 regardless of whether Ai → Aj is redun-
dant or not. Then, (a)–(c) follow by inspection, considering the 10 possible
kinds of edges that are present in S. For the sake of completeness, the ta-
ble below sums up all these cases (where ∆ = ∆h(i, j), len = len(Ai → Aj),
ext = ext(Ai → Aj)); recall that c = h(`+ 1) + r(`+ 1) + e.

Type Ai → Aj q ∆ len ext (i)− ε
1-nose 0 1 0 0 s(Ui) + `+ 1
(1− h)-nose 1 −h+ 1 −r −1 s(Ui) + `+ 1− c
(−h)-nose 1 −h 1− r −1 s(Ui) + `+ 1− c
(−1)-hollow 0 −1 0 0 s(Ui)− `− 1
0-hollow 0 0 −1 0 s(Ui)− `− 1
(h− 1)-hollow 1 h− 1 r 1 s(Ui)− `− 1 + c
h-hollow 1 h r − 1 1 s(Ui)− `− 1 + c
0-step 0 0 0 0 0
1-step 0 1 −1 0 0
(−h)-step 1 −h −r −1 s(Ui)− c

The converse follows from Theorem I.2 (i) ⇒ (v). �

The main theorem of this section then follows.

Theorem 5 There is an algorithm that solves Rep in logspace.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.2

516 Soulignac Representations of UIG and UCA graphs. Algorithms

5 Minimal UIG models
In Section I.6 we define and study the minimal representation problem for UCA
graphs. Minimal UCA models are a natural generalization of minimal UIG
models as defined by Pirlot [16]. According to Pirlot, an (`, d, ds)-IG model
with arcs A1 < . . . < An is (∞, d, ds)-minimal when

(min-uig1) ` ≤ `′, and

(min-uig2) s(Ai) ≤ s(A′i) for every 1 ≤ i ≤ n,

for every equivalent (`′, d, ds)-IG model. Similarly, we say that a (c, `, d, ds)-CA
modelM is (d, ds)-minimal when

(min-uca1) ` ≤ `′, and

(min-uca2) c ≤ c′,

for every equivalent (c′, `′, d, ds)-CA model. Pirlot [16] proved that every UIG
model is equivalent to an (∞, d, ds)-minimal UIG model, for every d, ds ∈ Q.
The analogous fact that every UCA model is equivalent to a minimal UCA
model was proven in Chapter I.

Theorem I.5 Every UCA graph admits a (d, ds)-minimal UCA model for all
d, ds ∈ Q. Furthermore, if M is equivalent to a (c, ` + y, d, ds)- and a (c +
x, `, d, ds)-CA model for x, y ≥ 0, then M is also equivalent to a (c + a, ` +
b, d, ds)-CA model, for every 0 ≤ a ≤ x and 0 ≤ b ≤ y.

In the light of Theorem I.5, it makes sense to study the minimal UCA repre-
sentation (MinUCA) problem in whichM and d, ds ∈ Q≥0 are given as input
and a (d, ds)-minimal model equivalent toM must be found. Unfortunately, we
do not know how to solve MinUCA, even if we restrict the problem to d, ds ∈ N.
The major issue is that we cannot prove that a (d, ds)-minimal model is inte-
ger when d, ds ∈ N. The situation is quite different in the UIG case, as every
(∞, d, ds)-minimal model is integer when d, ds ∈ N (see [16] and Corollary I.1).
Is for this reason that we define (N, d, ds)-minimal models as those integer UCA
models that satisfy (min-uca1) and (min-uca2) for every integer (c′, `′, d, ds)-CA
model. The IntMinUCA problem is to compute a (N, d, ds)-minimal model
equivalent to a UCA modelM whenM and d, ds ∈ N are given as input.

Theorem I.6 IntMinUCA is can be solved in O((d + ds)n
4 log(n(d + ds)))

time, for every d, ds ∈ N.

We now consider the minimal UIG representation (MinUIG) problem in
which M and d, ds ∈ Q≥0 are given as input and an (∞, d, ds)-minimal UIG
model equivalent toM must be generated. As stated above, Pirlot [16] proved
that every UIG model M is equivalent to an (∞, d, ds)-minimal model M∗.
However, it was Mitas [15] who showed that such a model can be found in
linear time by transforming M into M∗. Unfortunately, her proof has a flaw

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.6
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#corollary.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.6

JGAA, 21(4) 491–525 (2017) 517

that invalidates the minimality arguments. ThoughM∗ is equivalent toM, it
need not be (∞, d, ds)-minimal. On the other hand, the algorithm implied by
Theorem I.6 can be implemented to run in O(n2 log n) time when applied toM.
We shall not prove this fact; instead, we concentrate our efforts on fixing Mitas’
algorithm. In the remainder of this section we briefly describe Mitas’ algorithm
and its counterexample, and propose the patch. The obtained algorithm runs in
O(n2) time and linear space, and works for every d, ds ∈ Q. Solving MinUIG
in linear time remains an open problem, as far as our knowledge extends.

Let M be a PIG model with arcs A1 < . . . < An. By definition, no arc of
M crosses 0, thus S has no external hollows. Similarly, external noses and steps
play no role in S when dealing with the (`, d, ds)-IG models equivalent to M,
as c = ∞. Therefore, we assume that S has only five types of edges, namely
1-noses, 0- and 1-steps, and 0- and (−1)-hollows. Mitas identifies two special
vertices of S for each height value. A leftmost vertex is a vertex Ai such that
either i = 1 or h(Ai) = h(Ai−1) + 1, while a rightmost vertex is a vertex Aj
such that either j = n or h(Aj+1) = h(Aj) + 1.

1

2

3 4

5

6

7

8 9 10

11

12

13

14 15 16

17

18

19

20 21

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0

(a) A 13-UIG model equivalent toM.

b1 b 2 b 3

b4 b 5 b 6 b 7 b 8

b9 b 10 b 11 b 12 b 13 b 14

b15 b 16 b 17 b 18 b 19

b20 b 21

(b) The canonical drawing of T (M); 0-steps are not shown for the sake of exposition.

Figure 4. Counterexample to (8): dsep(T , A1, A19)− dsep(T , A1, A15) = 14
(b), thus Mitas’ algorithm computes a 14-UIG model (for d = 1 and ds = 0).
However, the maximum cycle of S has length 13 and, consequently, a 13-UIG
model equivalent to M exists (a).

SupposeM is equivalent to an (`, d, ds)-IG model and let U = U(∞, `, d, ds)

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.6

518 Soulignac Representations of UIG and UCA graphs. Algorithms

be as in Section 3, but replacing B and A0 with S and A1, respectively. That
is, the arc Ui corresponding to Ai begins at s(Ui) = dsep(A1, Ai) for every
1 ≤ i ≤ n. For x ∈ {1, . . . , h}, let Ai and Aj be leftmost and rightmost vertices
with h(Ai) = h(Aj) = x, and Wx be a path from Ai to Aj . By definition of U ,
it follows that s(Uj)− s(Ui) ≥ sep(Wx). That is,

dsep(A1, Aj)− dsep(A1, Ai) ≥ sep(Wx). (7)

Mitas’ key idea is to take ` so that (7) holds with equality when sep(Wx) is
maximum (recall sep depends on `). The flaw, however, is that she discards
0-hollows and 1-steps before solving (7).

To make the above statement more precise, let T (M) be the digraph ob-
tained from S(M) by removing all the 0-hollows and 1-steps, and WTx be a
path from Ai to Aj in T (as usual we drop the parameter M from T). Mitas
claims [15, Theorem 5] that

dsep(T , A1, Aj)− dsep(T , A1, Ai) = sep(WTx). (8)

when sep(WTx) is maximum and ` is minimum. Figure 4 shows a counterexample
to this fact. The problem is that dsep(S, A1, Ai) is greater than dsep(T , A1, Ai)
when every maximum path from A1 to Ai contains the 0-hollow or 1-step ending
at Ai.

Equation (8) is fundamental for keeping the time and space complexity low.
The main observation is that T is acyclic whereas S is not.

Lemma 5 ([15]) Digraph T (M) is acyclic, for any UIG modelM.

Given that T is acyclic, we can compute the column that every arc of M
occupies in a pictorial description of T . The column of A1 is c(A1) = 0, while,
for every 1 < i ≤ n, the column of Ai is:

c(Ai) = max

 c(N) + ε
c(H) + 1
c(S) + 1

∣∣∣∣∣∣
N → Ai is a 1-nose
H → Ai is a 0-step
S → Ai is a −1-hollow

 (9)

for a small enough ε (say ε � 1/n); obviously, if Ai is not the end of a nose
(resp. hollow, step), then the corresponding value in the above equation is 0. It
is easy to see, by the existence of 0-steps, that c(Ii) ≤ c(Ik) ≤ c(Ij) when Ai and
Aj are the leftmost and rightmost with height x, for every Ai < Ak < Aj . In
Figure 4, each vertex A of S occupies the coordinate (c(A), h(A)) on the plane,
for some imperceptible ε, while each directed edge is a straight arrow. This
pictorial description, which we call the canonical drawing of T , was proposed
by Mitas and it is quite useful for simplifying some geometrical arguments. The
reason is that this drawing is a plane digraph; we include a proof of this fact as
it is not completely explicit in [15].

Theorem 6 (see [15, 18]) The canonical drawing of T is a plane digraph.

JGAA, 21(4) 491–525 (2017) 519

Proof: Suppose, to obtain a contradiction, that the canonical drawing of T is
not a plane graph. Then, there are two crossing straight lines that correspond
to the edges Ai → Aj and Ax → Ay with h(Ai) ≤ h(Ax). By definition, T
has only 1-noses, (−1)-hollows and 0-steps, while every vertex A is positioned
in (c(A), h(A)). Hence, it follows that Ai → Aj is a 1-nose, Ax → Ay is a (−1)-
hollow, and Ai < Ay < Ax < Aj . But this configuration is impossible because
it implies that t(Ai)s(Aj) and s(Ax)t(Ay) are consecutive, while t(Ai) < t(Ay)
and s(Ax) < s(Aj). �

Corollary 1 (Theorem 3) IfM is a PCA graph, then S is a toroidal digraph.

Proof: A torus can be obtained from a rectangle by first pasting its north and
south borders together, and then pasting the east end of the obtained cylinder
with its west end. Thus, it suffices to show how to draw S into a rectangle
allowing some edges to escape from the north (resp. east) into the south (resp.
west). Let T be obtained from S by removing all the external edges, plus 1-
steps and 0-hollows. To draw S, first copy the canonical drawing of T into the
rectangle. Then, draw all the 0-hollows and 1-steps so that they escape through
the east, all the h-hollows and (−h)-noses so as to run through the north, and
the (−h)-step and all the (h−1)-hollows and (1−h)-noses by going through the
north first and then through the east. It is not hard to see that such a drawing
is always possible. �

In the next lemma we take advantage of the canonical drawing to prove that
every cycle of S contains exactly one 0-hollow or 1-step. Pirlot also studies the
shape of the cycles of S [16], but without taking advantage of Mitas’ canonical
drawing. For the next lemma, recall that len(W) = −η0(W) − σ1(W) for any
cycle W.

Lemma 6 ([16, Proposition 2.11]) IfM is a PIG model, then len(W) = −1
for any cycle W of S.

Proof: Note that len = −η0 − σ1 (3), hence, by Lemma 5, len < 0. Suppose,
to obtain a contradiction, that len < −1. Then, W has a subpath W1,j =
B1, . . . , Bj with no 0-hollows nor 1-steps such that B0 → B1 and Bj → Bj+1

each is either a 0-hollow or a 1-step of W. Among all such possible paths,
take W so that h(B1) is maximum. Note that B0 6= Bj , thus W has another
path W−k,0 = B−k, . . . , B0 such that B−k is its unique leftmost vertex. By
the maximality of h(B1), it follows that h(B0) ≥ h(B1) − 1 ≥ h(B−k) while,
since h(Bj) ≤ h(Bj+1) ≤ h(B1) − 1 ≤ h(B0) and B0 6= Bj , it follows that
h(B0) > h(Bj).

Call Gr+ to the curve that results by traversingW1,j in the canonical drawing
of T . Note that Gr+ is indeed the graph of a continuous function on R → R
because c(Bi+1) > c(Bi) for every 1 ≤ i < j by (9). Similarly, the curve Gr−

that results by traversingW−k,0 in the canonical drawing of T is also the graph
of a continuous function. Since h(Bi+1) = h(Bi)±1 for every i ∈ {−k, . . . , j}\0,
it follows that Gr+ contains a vertex with height x for every h(Bj) ≤ x ≤ h(B1)

520 Soulignac Representations of UIG and UCA graphs. Algorithms

and Gr− contains a vertex with height x for every h(B−k) ≤ x ≤ h(B0). Then,
taking into account that B1 and B−k are leftmost vertices with h(B1) > h(B−k)
and Bj and B0 are rightmost vertices with h(B0) > h(Bj), we obtain that Gr+

and Gr− intersect. Hence, by Theorem 6, W1,j and W−k,0 have a nonempty
intersection, which implies that W is not a cycle. �

By Lemma 6 and (2), sep(W) = const(W, d, ds) − ` − 1 for every cycle W.
Then, by Theorem I.1 and Lemma 6, the minimum `∗ such thatM is equivalent
to an (`∗, d, ds)-IG model satisfies

`∗ + 1 = max{const(W, d, ds) | W is a cycle of S}

= max

{
const(W, d, ds)

∣∣∣∣ W is a path B1, . . . , Bj of T
for a 1-step or 0-hollow Bj → B1

}
= max{dconstd,ds(T , Ai, Aj) | Aj → Ai is either a 1-step or 0-hollow}.

Since T is acyclic, we can compute dconstd,ds(T , Ai, Aj) in O(n) time and space
for any given 1-step or 0-hollow Aj → Ai of S. Then, `∗ is obtained in O(hn)
time.

Once `∗ has been obtained, U = U(∞, `∗, d, ds) can be constructed in O(n2)
time and linear space as in Section 3. We claim that U is a (∞, d, ds)-minimal
model. Indeed, U satisfies (min-uig1) by the minimality of `∗. To see that
U satisfies (min-uig2), consider any path W of S from A1 to Aj . Note that
h(Aj) ≥ σ1 + η0 = − len because no leftmost vertex is traversed twice by W.
Therefore, by (2),

sep(∞,`,d,ds) = (`+ 1)(h(Aj) + len) + const

≥ (`∗ + 1)(h(Aj) + len) + const = sep(∞,`∗,d,ds)

for any ` ≥ `∗. Consequently, since s(Aj) ≥ dsep(∞,`,d,ds)(A1, Aj) in any
(`, d, ds)-UIG model equivalent to U , it follows that U satisfies (min-uig2) as
well. We conclude that O(n2) time and linear space suffices to solve MinUIG.

Theorem 7 MinUIG can be solved in O(n2) time and linear space, for any
d, ds ∈ Q.

In 2015, while this manuscript was under review, Durán et al. [3] presented
an O(n3) time algorithm to solve MinUCA when the input model is PIG and
d, ds ∈ {0, 1}. Even though we consider MinUCA as being a generalization of
MinUIG to UCA models, the fact is that MinUCA is simpler than MinUIG
when the input model is PIG. In other words, any solution to MinUIG on PIG
models is also a solution to MinUCA, but the converse is not true. Indeed,
(min-uig2) implies (min-uca2) but (min-uca2) does not imply (min-uig2). (In
formal terms, (d, ds)-minimal UIG models need not be (∞, d, ds)-minimal.) Al-
though Durán et al. acknowledge our algorithm to solve MinUIG (a preprint
of this manuscript is available since 2014), they state that the output model
U of our algorithm satisfies (min-uig1), but they omit to say that our algo-
rithm also ensures (min-uig2) on U . Moreover, they do not even mention that

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1

JGAA, 21(4) 491–525 (2017) 521

our algorithm guarantees (min-uca2). We remark that not only our algorithm
solves MinUCA on PIG models faster, it also solves the more general MinUIG
problem without requiring d and ds to be integer.

6 Powers of paths and cycles

Powers of paths and cycles are intimately related to UIG and UCA graphs,
respectively. For any graph G, its k-th power Gk is the graph obtained from G
by adding an edge between v and w whenever there is a path in of length at
most k joining them. In this section we write Pq and Cq to denote the path and
cycle graphs with q vertices, respectively. Lin et al. [12] noted that G is a UCA
(resp. UIG) graph if and only if G is an induced subgraph of Ckq (resp. P kq) for
some q, k (see also [5] for UIG graphs and [6] for UCA graphs).

Costa et al. [2] propose a specialized O(n2) time and space algorithm that,
given a PIG modelM, finds a UIG model U representing a power of a path P kq(k)
in such a way thatM is equivalent to some induced submodel U ′ of U and k, q(k)
are as small as possible. The reason for writing q(k) dependent on k is to be as
truthful to [2] as we can; they always write the number of vertices as a function
on the power. This is not important, though, as we know that q is independent
of k by Pirlot’s minimality Theorem [16]. Mitas’ algorithm could have been
applied to obtain k and q in O(n) time and space, under the assumption that it
is correct. Interestingly, Pirlot’s Theorem and Mitas’ algorithm predate [2] for
at least fifteen years. Moreover, [19, Section 9], which is referenced within [2],
mentions that Mitas’ algorithm could be adapted to work when the input is a
PIG model. The purpose of this section is to apply the minimization algorithms
to find powers of paths and cycles supergraphs.

Let Ckq (resp. Pkq) be the (2q, 2k+ 1)-CA (resp. (2k+ 1)-IG) model that has
an arc with beginning point 2i for every 0 ≤ i < q, and • = N (resp. • =∞). It
is not hard to see that Ckq (resp. Pkq) is a (•, 1, 0)- and (•, 1, 1)-minimal model
representing Ckq (resp. P kq). We say that a (c, `)-CA (resp. `-IG) modelM∗ is
•-completable when M∗ can be obtained by removing arcs from Ckq (resp. Pkq)
for some k, q ≥ 0. In such case, Ckq (resp. Pkq) is referred to as the •-completion
ofM∗, whileM∗ is said to be a (•, k, q)-extension ofM for every UCA (resp.
UIG) modelM equivalent toM∗. Note thatM∗ is •-completable if and only
if:

(ext1) ` is odd,

(ext2) c is even (resp. c =∞), and

(ext3) all its beginning points are even (thusM∗ is a (c, `, 1, 1)-CA model).

Under this new terminology, the result by Lin et al. [12] states that every
UCA (resp. UIG) modelM admits a (•, k, q)-extensionM∗ for some k, q ≥ 0.
In analogy to minimal models, we say thatM∗ is a minimal •-extension ofM
when q ≤ q′ and k ≤ k′ for every (•, k′, q′)-extension ofM. The minimal power

522 Soulignac Representations of UIG and UCA graphs. Algorithms

of a cycle (resp. path) problem (MinCk
q) consists of findingM∗ when the UCA

(resp. UIG) modelM is given as input. Note that any (∞, k, q)-extensionM∗
of M can be regarded as being a (N, k, q)-extension of M; just consider the
circumference ofM∗ is the even value t(An) + 1 (where An is the maximum arc
of M∗). Thus, MinCk

q is indeed a generalization of MinPkq . We now discuss
how to solve MinCk

q and MinPkq .
The fact that M admits a minimal N-extension follows by Theorems I.1

and I.5. Indeed, if `∗ is the minimum odd number such that M is equivalent
to a (c, `∗, 1, 1)-CA model, and c∗ is the minimum even number such that M
is equivalent to a (c∗, `, 1, 1)-CA model, thenM is equivalent to a (c∗, `∗, 1, 1)-
CA model by Theorem I.5. Furthermore, sepc∗,`∗,1,1(Ai → Aj) is even for
every edge Ai → Aj of S, by (sep 1)–(sep 4). Thus, all the beginning points of
M∗ = U(M, c∗, `∗, 1, 1) are even. Then,M∗ is N-completable by (ext1)–(ext3),
while it is equivalent to M by Theorem I.1. That is, M∗ is the minimal N-
extension ofM and, thus, the solution to MinCk

q . The values `∗ and c∗ can be
found O(n4 log n) time with an algorithm similar to the one in Section I.6. (We
remark that finding the (N, 1, 1)-minimal UCA model equivalent to M is not
enough to solve MinCk

q , as we must ensure that c is even and ` is odd; however,
adapting the algorithm in Section I.6 to this case is trivial.)

For the special case in which M is a UIG model, we observe that any
(∞, 1, 1)-minimal modelM∗ equivalent toM is a minimal ∞-extension ofM.
Just recall that the length `∗ of the arcs inM∗ is equal to const(W, 1, 1)−1 for
some path W of S(M∗). Since const(W, 1, 1) is even, it follows that `∗ is odd
and, thus, sep∞,`∗,1,1(Ai → Aj) is even for every edge Ai → Aj of S(M∗). By
(ext1)–(ext3), this implies that M∗ is an ∞-extension of M which, of course,
is minimal by (min-uig1) and (min-uig2). By Theorem 7, MinPkq is solvable in
O(n2) time and linear space.

7 Further remarks

Synthetic graphs proved to be an important tool for studying what the UIG
representations of PIG graphs look like. The generalization to PCA models is
direct; to represent the separation constraints that an equivalent UCA model
must satisfy, all we had to add to Pirlot’s original formulation was the variable
c representing the circumference of the circle. Generalizations of simple ideas
from PIG to PCA graphs are not always as easy to obtain. Unfortunately, Pir-
lot’s ideas were not exploited in the context of PCA graphs. In this Chapter
we proved that the synthetic graph is not only valuable from a theoretical per-
spective, but also from an algorithmic point of view. In this closing section we
provide some remarks and discuss some open problems related to this chapter.

In Section 5 we fixed Mitas’ algorithm to solve the minimization problem
for UIG models. Unfortunately, the running time of the patched algorithm is
O(n2). Two bottlenecks are responsible for this running time. On the one
hand, we have to compute the minimum length value `∗. On the other hand,
we have to apply the Bellman-Ford algorithm to compute the actual model.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.5
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.6
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.6

JGAA, 21(4) 491–525 (2017) 523

With respect to the space complexity, it is not hard to observe that `∗ can
be computed in unambiguous logspace. Indeed, all we have to do is to find
the distance between the leftmost and rightmost arcs for every height. As the
canonical drawing is a plane graph with O(1) vertices with 0 in-degree, this
problem requires unambiguous logspace [11]. Finding logspace algorithms to
compute `∗ and the minimal model remain as open problems.

As discussed in Chapter I, UCA graphs can admit an exponential num-
ber of non-equivalent UCA models, each of which is equivalent to a minimal
UCA model. We say, therefore, that a model M is minimum when it satisfies
(min-uca1) and (min-uca2) for every modelM′ such that G(M) is isomorphic
to G(M′). As observed in Section I.7, any minimal UIG model of G(M) is
minimum. Consequently, the ∞-completion Pkq ofM is such that q and k are
the minimum for which G(M) is an induced subgraph of P kq . Unfortunately,
we cannot assert that the N-completion Ckq of a UCA model M is such that q
and k are the minimum for which G(M) is an induced subgraph of Ckq . In fact,
as discussed in Section I.7, a UCA graph may admit minimal models whose
circumference and arc lengths differ. Thus, the problem of computing the min-
imum values q and k such that a UCA graph G is an induced subgraph of Ckq
remains open.

Acknowledgements
I want to thank the anonymous reviewers for the time they spent to help me
improve this long contribution. I’m particularly indebted to the reviewer who
read the original manuscript before it was split, as without his/her report the
paper would have never been considered for publication, and to the commu-
nicating editor, Sue Whitesides, whose help was essential for transforming the
first manuscript into a publishable work.

http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.7
http://jgaa.info/accepted/2017/Soulignac.I.2017.21.4.pdf#section.7

524 Soulignac Representations of UIG and UCA graphs. Algorithms

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

algorithms. MIT Press, Cambridge, MA, third edition, 2009.

[2] V. Costa, S. Dantas, D. Sankoff, and X. Xu. Gene clusters as intersections
of powers of paths. J. Braz. Comput. Soc., 18(2):129–136, 2012. doi:
10.1007/s13173-012-0064-8.

[3] G. Durán, F. Fernández Slezak, L. N. Grippo, F. de Souza Oliveira, and
J. L. Szwarcfiter. On unit interval graphs with integer endpoints. In
LAGOS’15—{VIII} Latin-American Algorithms, Graphs and Optimization
Symposium, volume 50 of Electron. Notes Discrete Math., pages 445–450.
Elsevier Sci. B. V., Amsterdam, 2015. doi:10.1016/j.endm.2015.07.074.

[4] G. Durán, A. Gravano, R. M. McConnell, J. Spinrad, and A. Tucker. Poly-
nomial time recognition of unit circular-arc graphs. J. Algorithms, 58(1):67–
78, 2006. doi:10.1016/j.jalgor.2004.08.003.

[5] N. J. Fine and R. Harrop. Uniformization of linear arrays. J. Symb. Logic,
22:130–140, 1957. doi:10.2307/2964174.

[6] M. C. Golumbic and P. L. Hammer. Stability in circular arc graphs. J.
Algorithms, 9(3):314–320, 1988. doi:10.1016/0196-6774(88)90023-5.

[7] H. Kaplan and Y. Nussbaum. Certifying algorithms for recognizing proper
circular-arc graphs and unit circular-arc graphs. Discrete Appl. Math.,
157(15):3216–3230, 2009. doi:10.1016/j.dam.2009.07.002.

[8] P. Klavík, J. Kratochvíl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and
T. Vyskočil. Extending partial representations of proper and unit interval
graphs. CoRR, abs/1207.6960v2, 2014. URL: http://arxiv.org/abs/
1207.6960v2.

[9] P. Klavík, J. Kratochvíl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell,
and T. Vyskočil. Extending partial representations of proper and unit
interval graphs. Algorithmica, 77(4):1071–1104, 2017. doi:10.1007/
s00453-016-0133-z.

[10] J. Köbler, S. Kuhnert, and O. Verbitsky. Solving the canonical representa-
tion and Star System Problems for proper circular-arc graphs in logspace.
J. Discrete Algorithms, 38–41:38–49, 2016. doi:10.1016/j.jda.2016.03.
001.

[11] N. Limaye, M. Mahajan, and P. Nimbhorkar. Longest paths in planar
DAGs in unambiguous log-space. Chic. J. Theoret. Comput. Sci., 2010(8),
2010. doi:10.4086/cjtcs.2010.008.

[12] M. C. Lin, D. Rautenbach, F. J. Soulignac, and J. L. Szwarcfiter. Powers
of cycles, powers of paths, and distance graphs. Discrete Appl. Math.,
159(7):621–627, 2011. doi:10.1016/j.dam.2010.03.012.

http://dx.doi.org/10.1007/s13173-012-0064-8
http://dx.doi.org/10.1007/s13173-012-0064-8
http://dx.doi.org/10.1016/j.endm.2015.07.074
http://dx.doi.org/10.1016/j.jalgor.2004.08.003
http://dx.doi.org/10.2307/2964174
http://dx.doi.org/10.1016/0196-6774(88)90023-5
http://dx.doi.org/10.1016/j.dam.2009.07.002
http://arxiv.org/abs/1207.6960v2
http://arxiv.org/abs/1207.6960v2
http://dx.doi.org/10.1007/s00453-016-0133-z
http://dx.doi.org/10.1007/s00453-016-0133-z
http://dx.doi.org/10.1016/j.jda.2016.03.001
http://dx.doi.org/10.1016/j.jda.2016.03.001
http://dx.doi.org/10.4086/cjtcs.2010.008
http://dx.doi.org/10.1016/j.dam.2010.03.012

JGAA, 21(4) 491–525 (2017) 525

[13] M. C. Lin and J. L. Szwarcfiter. Unit circular-arc graph representations
and feasible circulations. SIAM J. Discrete Math., 22(1):409–423, 2008.
doi:10.1137/060650805.

[14] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying al-
gorithms. Comput. Sci. Rev., 5(2):119–161, 2011. doi:10.1016/j.cosrev.
2010.09.009.

[15] J. Mitas. Minimal representation of semiorders with intervals of same
length. In Orders, algorithms, and applications (Lyon, 1994), volume 831
of Lecture Notes in Comput. Sci., pages 162–175. Springer, Berlin, 1994.
doi:10.1007/BFb0019433.

[16] M. Pirlot. Minimal representation of a semiorder. Theory and Decision,
28(2):109–141, 1990. doi:10.1007/BF00160932.

[17] M. Pirlot. Synthetic description of a semiorder. Discrete Appl. Math.,
31(3):299–308, 1991. doi:10.1016/0166-218X(91)90057-4.

[18] M. Pirlot and P. Vincke. Semiorders, volume 36 of Theory and Decision
Library. Series B: Mathematical and Statistical Methods. Kluwer Academic
Publishers Group, Dordrecht, 1997. Properties, representations, applica-
tions. doi:10.1007/978-94-015-8883-6.

[19] F. J. Soulignac. On proper and Helly circular-arc graphs. PhD the-
sis, Universidad de Buenos Aires, Mar. 2010. Accessed 11 October
2016. URL: http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_
4660_Soulignac.pdf.

[20] F. J. Soulignac. Bounded, minimal, and short representations of unit in-
terval and unit circular-arc graphs. Chapter I: theory. J. Graph Algorithms
Appl., 21(4):455–489, 2017. doi:10.7155/jgaa.00425.

[21] D. Stolee and N. V. Vinodchandran. Space-efficient algorithms for reach-
ability in surface-embedded graphs. In 2012 IEEE 27th Conference on
Computational Complexity—CCC 2012, pages 326–333. IEEE Computer
Soc., Los Alamitos, CA, 2012. doi:10.1109/CCC.2012.15.

[22] A. Tucker. Structure theorems for some circular-arc graphs. Discrete Math.,
7:167–195, 1974. doi:10.1016/S0012-365X(74)80027-0.

http://dx.doi.org/10.1137/060650805
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1007/BFb0019433
http://dx.doi.org/10.1007/BF00160932
http://dx.doi.org/10.1016/0166-218X(91)90057-4
http://dx.doi.org/10.1007/978-94-015-8883-6
http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4660_Soulignac.pdf
http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4660_Soulignac.pdf
http://dx.doi.org/10.7155/jgaa.00425
http://dx.doi.org/10.1109/CCC.2012.15
http://dx.doi.org/10.1016/S0012-365X(74)80027-0

	Introduction
	The algorithmic problems: contributions

	Preliminaries
	Restrictions on the input models
	What is linear time/space for PCA models?

	The bounded representation problems
	The unrestricted representation problem
	Efficient Tucker's characterization
	The algorithm by Kaplan and Nussbaum
	Efficient construction of UCA models
	Logspace construction of UCA models

	Minimal UIG models
	Powers of paths and cycles
	Further remarks

