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Abstract

We give here three simple linear time algorithms on planar graphs:
a 4-connexity test for maximal planar graphs, an algorithm enumerating
the triangles and a 3-connexity test. Although all these problems got
already linear-time solutions, the presented algorithms are both simple
and efficient. They are based on some new theoretical results.

Communicated by T. Nishizeki, R. Tamassia and D. Wagner:
submitted February 1999; revised April 2000.



Fraysseix, O. de Mendez, Connectivity of Planar Graphs, JGAA, 5(5) 93–105 (2001)94

1 Introduction

The study of graphs by means of special orientations is relatively recent. For
instance, bipolar orientations became a basic tool in many graph drawing prob-
lems. We give here an example of relations between orientation and topological
properties. Constrained orientations (i.e. orientations with bounded indegrees)
lead to new characterizations on connexity of planar undirected graphs. Al-
though usual 3-connexity testing of planar graphs are heavily related to pla-
narity testing algorithms (see [10][17] and PQ-tree algorithms), the algorithm
we present here assume that a graph is already embedded in the plane and a the
problem drastically reduces to the acyclicity testing of a particular orientation.
Concerning the 4-connexity testing of a maximal planar graph, the use of an
indegree bounded orientation was already used in [2] to enumerate triangles.
Here, the use of a specific orientation allows a further simplification of the al-
gorithm. The 4-connexity test itself also reduces to an acyclicity test. It should
be noticed that no special data structure is used for these algorithms as, in the
planar case, the acyclicity of an orientation may be efficiently tested using a
dual topological sort.

2 Preliminaries

In the following we consider plane graphs, that is planar graphs embedded in
the plane. Each connected component of the complement in the plane of the
vertex and edge sets is a face region of the graph. The external face region of
G is the unbounded one. A face is the clockwise walk of the boundary of a face
region. When considering an orientation of a graph, such walks also define a
dual orientation of the dual graph: the outgoing edges of a vertex f of the dual
are those traversed according to their orientation in a clockwise walk of the face
corresponding to f .

If G is a graph, V (G) and E(G) denote the vertex set and the edge set of
G, respectively. We denote GA the subgraph of G induced by a subset A of
vertices. We denote d−G(x) the indegree of the vertex x in the graph G.

Let X and X be two complementary subsets of the vertices of an oriented
graph. The cocycle ω(X) is the pair (ω+(X), ω−(X)) of the set ω+(X) of
edges oriented from X to X and the set ω−(X) of edges oriented from X to
X . A cocycle ω(X) is elementary if GX and GX are connected. Obviously, any
cocycle is the disjoint union of elementary cocycles. A cocycle ω(X) is a positive
cocircuit if ω−(X) is empty, that is if no edge is directed from X to X .

Lemma 2.1 Let X be a subset of V (G). Then ω(X) is a positive cocircuit if
and only if

|E(GX)| =
∑

x∈X

d−G(x)

2
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A cycle γ is an Eulerian partial subgraph (i.e. with even vertices only). A
cycle is elementary (or a polygon) if it is connected and 2-regular. A cycle γ is
a circuit if each of its vertices has in γ an indegree equal to its outdegree. An
elementary cycle γ defines a bipartition of the remaining vertices and edges of
the graph as internal and external elements.

Two consecutive edges in the clockwise order at a vertex define an angle
of the graph. The angle is lateral if one of the two edges is incoming and the
other is outgoing; otherwise, the angle is extremal. The angle graph A(G) of a
2-connected plane graph G is the incidence graph of the vertex and face sets of
G (the V-vertices and F-vertices of A(G)). The edges of A(G) correspond to
the angles of G and their number is twice the number of edges of G. The graph
A(G) is maximal bipartite planar. Any embedding of G canonically defines an
embedding of A(G), where the faces correspond to the edges of G.

A k-connected graph is a graph with at least k + 1 vertices, such that the
deletion of any subset of k − 1 vertices does not disconnect the graph. A sep-
arating cycle is an elementary cycle whose vertex set removal disconnects the
graph.

Lemma 2.2 Let X be a vertex subset of plane graph G. If GX is connected,
then X belongs to a same face region of GX .

Proof: Assume that two vertices u, v of X do not belong to a same face region
of GX . Then a path from u to v in GX intersects the boundary of the face
region and hence intersects X , which is a contradiction. 2

3 A 4-connexity test for maximal planar graphs

The algorithm is based on the following properties:

• A maximal planar graph is 4-connected if and only if it has no separating
triangles, i.e. if each of its triangles is a face[19],

• Any maximal planar graph has an orientation where all the vertices (ex-
cept the 3 external ones) have indegree 3 [3][14],

• In such an orientation, separating triangles corresponds to positive cocir-
cuits (see Lemma 3.4).

An early linear-time algorithm may be found in [11], a more recent one, based
on subgraph isomorphism detection, may also be found in [5].

Lemma 3.1 Let G be a 3-connected planar graph and {x, y, z} a cutset of G.
Then, G− {x, y, z} has 2 connected components.

Proof: The graph G−{x, y, z} has at least 2 connected components, as {x, y, z}
is a cutset. Assume G − {x, y, z} has 3 connected components H1, H2, H3 and
let a1, a2, a3 be vertices of H1, H2, H3, respectively. As G is 3-connected, for
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any i 6= j in {1, 2, 3}, there exist three internally disjoint paths linking ai and
aj [18] and these paths respectively include x, y and z. Hence, there exists in G
3 internally paths linking a1 (resp. a2, a3) to x, y, z and whose internal vertices
belong to H1 (resp. H2, H3). Thus,a1, a2, a3, x, y, z and these nine paths form
a subdivision of K3,3, which contradicts the planarity of G. 2

Lemma 3.2 A triangle of a maximal planar graph is a separating triangle if
and only if it is not a face.

Proof: If a triangle is not a face, it separates its interior and exterior vertices.
Conversely, assume a face {x, y, z} is a separating triangle. A vertex may be
added in this face, adjacent to x, y, z, while preserving the planarity. Then,
G− {x, y, z} has at least 3 components, what contradicts Lemma 3.1. 2

Lemma 3.3 (see [19]) A maximal planar graph G is 4-connected if and only
if its has no separating triangle, i.e. a cutset which is the vertex set of a triangle.

2

Lemma 3.4 Let G be a maximal planar graph (with at least 5 vertices), which
is oriented in such a way that all its vertices have indegree 3, except the 3 vertices
of the external face which have indegree 1.

Then, G is 4-connected if and only if it has only one positive cocircuit,
namely the one defined by the vertex-set of its external face.

Proof: Let V0 be the vertex set of the external face. Let us prove that the
graph G has a cocircuit different from ω(V0) if and only if G has a triangle
which is not a face (this is equivalent to the G not being 4-connected, according
to Lemma 3.3 and Lemma 3.2):

Algorithm 1 A 4-connexity test for a maximal planar graph G

Require: G is a maximal planar graph
Ensure: IsFourConnected=true if and only if G is 4-connected
1: if G has less than 6 vertices then
2: IsFourConnected← false
3: else
4: G′ ← G
5: r1, r2, r3 ← the vertices of some face of G′

6: Orient G′ in such a way that every vertex has indegree 3 (except r1, r2, r3

which have indegree 1)
7: Remove the vertices r1, r2, r3

8: Compute the oriented dual H of G′

9: if the orientation of H is acyclic then
10: IsFourConnected← true
11: else
12: IsFourConnected← false
13: end if
14: end if
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• Let ω(X) be an elementary positive cocircuit. The sum of the indegrees of
the vertices of X is at least 3|X |−6, since only 3 vertices have indegree 1.
Hence, according to Lemma 2.1, GX has at least 3|X | − 6 edges and then
has exactly 3|X | − 6 edges, is maximal planar and contains the vertices of
the external face. Thus, according to Lemma 2.2, X belongs to a bounded
face region of GX and then is internal to some triangle of G. Thus, either
X is the vertex set of the external face of G (i.e. V0) or G has a triangle
which is not a face.

• Let T be a triangle of G which is not a bounded face and let X be the set
of the vertices internal to T . As GX is maximal planar and contains r1, r2

and r3, according to Lemma 2.1, the cocycle ω(X) is a cocircuit. Hence,
ω(V0) is a cocircuit and any triangle which is not a face defines a cocircuit
(different from ω(V0)).

2

Theorem 3.5 Algorithm 1 tests in linear time whether a maximal planar graph
is 4-connected or not.

Proof: First notice that no 4-connected maximal planar graph has less than
6 vertices. Hence, the preliminary test at line 1: is valid and we may restrict
ourselves to the case where G has at least 6 vertices.

The copy of the graph G into a graph G′ may be performed in linear time.
The orientation of G′ performed at line 6: may be computed in linear time
[3, 14].

Then, G is 4-connected if and only if G′ has only one positive cocircuit,
namely the one defined by {r1, r2, r3}. After the deletion of r1, r2, r3 at line 7:,
we get that the graph G is 4-connected if and only if G′ has no cocircuit, that
is, if and only if its oriented dual H (which is computed in linear time at line 8:)
has no circuit. This test (line 9:) can be done in linear time using a topological
sort. 2

4 Enumerations of the triangles of a planar graph

Linear time algorithms enumerating the triangles of planar graphs may be found
in [1] (using tree decompositions) or in [2] (using indegree bounded orientations).

The algorithm we present here has been optimized using Schnyder’s decom-
positions, the definition of which we shall recall here:

Definition 4.1 (Schnyder, [14]) Let G be a maximal planar graph and {r1, r2, r3}
one of its faces. A Schnyder decomposition relative to {r1, r2, r3} is a tricol-
oration of the edges of G, each color 1 ≤ i ≤ 3 forming a directed tree Yi rooted
at ri such that there exists three total orders <1, <2, <3 on the vertex set of G
satisfying:

• If the arc (u, v) belongs to Yi then (u <j v) ⇐⇒ (j 6= i),
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• If {x, y} is an edge of G, then

∀u 6∈ {x, y}, ∃1 ≤ i ≤ 3, u >i x and u >i y

Definition 4.2 Let G be a planar graph on n ≤ 3 vertices and let r1, r2, r3 be
3 vertices of G.

A parent triplet (π1, π2, π3) relative to {r1, r2, r3} is a triplet of functions
from V (G) to V (G) ∪ {0}, such that there exists a triangulation H of G and
a Schnyder decomposition of H relative to {r1, r2, r3} which satisfies: πi(v)
is either the parent of the vertex v if these vertices are adjacent in G, or 0
(otherwise).

Algorithm 2 Computation of a parent triplet
Require: G is a planar graph with at least 4 vertices
Ensure: π1, π2, π3 are Schnyder parent functions for G relative to r1, r2, r3

1: H ← G
2: Triangulate H and mark the added edges
3: r1, r2, r3 ← the vertices of some face of H
4: Compute a Schnyder orientation of H as parent functions π1, π2, π3 (ex-

tended with πi(0) = 0)
5: π1(r2)← r1

6: π2(r3)← r2

7: π3(r1)← r3

8: for all marked edge e = {u, v} do
9: for all i ∈ {1, 2, 3} do

10: if u = πi(v) then
11: πi(v)← 0
12: else if v = πi(u) then
13: πi(v)← 0
14: end if
15: end for
16: end for

Theorem 4.1 A parent triplet of a planar graph G may be computed in linear
time using algorithm 2.

Proof: A triangulation is easily performed in linear time. A Schnyder decom-
position may also be computed in linear time [15], using the packing algorithm
described in [3]. The modification we perform on the functions π is obviously
linear. 2

Lemma 4.2 When reversing the orientation of the edges of color i, the graph
becomes acyclic.
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Proof: According to the definition, if there exists a directed path from x to y
in the obtained orientation, then x <i y. Thus, the orientation is acyclic. 2

Lemma 4.3 A triangle of G is a circuit if and only if it is 3-colored; otherwise,
it is 2-colored

Proof: The proof of the lemma will be a consequence of Lemma 4.2:
If a triangle is 2-colored, it does not become a circuit when reversing the

orientation of the edges of the third color. Hence, it is not a circuit.
If a triangle is 3-colored, it does not become a circuit when reversing the

orientation of any of its edges. Hence, it is a circuit. 2

Theorem 4.4 Algorithm 3 enumerates the triangles of a planar graph in linear
time.

Proof: Associate to each triangle of G either the sink of the triangle if it is
acyclic, or the head of the edge colored 1 if it is a circuit. This way, to each
triangle is associated exactly one vertex. The algorithm is then an obvious
application of Lemma 4.3. 2

Lemma 4.5 Let (a, b, c, d) be a C4. Then, it is not possible that (a, b) and (c, d)
shall be both arcs of the same tree Yi.

Proof: Assume such a C4 exists.
Considering the edge {b, c} and according to the definition of a Schnyder

decomposition, there exists j such that a >j b and a >j c. As (a, b) belongs to
Yi, j shall only be equal to i. Hence, a >i c.

Algorithm 3 Enumeration of the triangles of a planar graph
Require: G is a planar graph with at least 4 vertices
Ensure: NumberOfTriangles is the number of triangles of G
1: Compute the Schnyder parent functions π1, π2, π3 of G
2: NumberOfTriangles← 0
3: for all vertex v do
4: for all (i, j) ∈ {1, 2, 3}2, i 6= j do
5: if (πi(v) 6= 0) and (πj(v) 6= 0) and (πi(πj(v)) = πi(v)) then
6: NumberOfTriangles← NumberOfTriangles + 1
7: end if
8: end for
9: if (π1(v) 6= 0) and (π2(π1(v)) 6= 0) and (π3(π2(π1(v))) = v) then

10: NumberOfTriangles← NumberOfTriangles + 1
11: end if
12: if (π1(v) 6= 0) and (π3(π1(v)) 6= 0) and (π2(π3(π1(v))) = v) then
13: NumberOfTriangles← NumberOfTriangles + 1
14: end if
15: end for



Fraysseix, O. de Mendez, Connectivity of Planar Graphs, JGAA, 5(5) 93–105 (2001)100

Similarly, considering the edge {a, d} and the vertex c, we get c >i a and
are led to a contradiction. 2

Theorem 4.6 Algorithm 4 enumerates in linear time the triangles of a planar
graph.

Proof: Algorithm 4 is a reorganized version of Algorithm 3 taking into account
some exclusiveness in the cases. The only non-trivial exclusiveness used is that
we cannot have simultaneously: πi(πj(v)) = πi(v) and πk(πj(πi(v))) = v (where
none of the values taken by the π functions are 0). Otherwise, we would have a
C4: (πj(v), v, πj(πi(v)), πi(v)) with arcs (πj(v), v) and (πj(πi(v)), πi(v)) colored
j, which contradicts Lemma 4.5. 2

Remark 4.7 Algorithm 4 obviously gives the upper bound of 3n − 8 (1 in the
bloc starting at line 12:, and n−3 times 3 in the loop at line 17:) for the number
of triangles of a planar graph having at least 4 vertices.

Remark 4.8 This algorithm may be modified to enumerate the separating tri-
angles of 3-connected planar graphs, by enumerating the triangles which are not
faces.

Algorithm 4 Optimized enumeration of the triangles of a planar graph
Require: G is a planar graph with at least 4 vertices
Ensure: NumberOfTriangles is the number of triangles of G
1: Compute the Schnyder parent functions π1, π2, π3 of G and the roots

r1, r2, r3

2: if π1(r2) 6= 0) and π2(r3) 6= 0 and π3(r1) 6= 0 then
3: NumberOfTriangles← 1
4: else
5: NumberOfTriangles← 0
6: end if
7: for all vertex v different from r1, r2, r3 do
8: p1 ← π1(v), p2 ← π2(v), p3 ← π3(v)
9: if p1 6= 0 then

10: if (p2 6= 0) and (π2(p1) = p2) or (π1(p2) = p1) or (π3(π2(p1)) = v)
then

11: NumberOfTriangles← NumberOfTriangles + 1
12: end if
13: if (p3 6= 0) and (π3(p1) = p3) or (π1(p3) = p1) or (π2(π3(p1)) = v)

then
14: NumberOfTriangles← NumberOfTriangles + 1
15: end if
16: end if
17: if (p3 6= 0) and (π3(p2) = p3) or (p2 6= 0) and (π2(p3) = p2) then
18: NumberOfTriangles← NumberOfTriangles + 1
19: end if
20: end for
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5 A 3-connexity Test for Planar Graphs

The algorithm is based on the following properties we shall prove later:

• A 2-connected planar graph is 3-connected if and only if each of the C4 of
its angle-graph is a face,

• Any planar quadrangulation has an orientation where all the vertices have
indegree 2, except the 4 external ones, which have indegree 1.

• In such an orientation, the C4 which are not faces correspond to positive
cocircuits.

Algorithm 5 3-connexity test for a 2-connected planar graph G

Require: G is a 2-connected planar graph
Ensure: x=true if and only if G is 3-connected
1: if G has less than 4 vertices then
2: x← false
3: else
4: H ← A(G)
5: b1, w1, b2, w2 ← the vertices of some face of H
6: H is oriented in such a way that every vertex (except b1, b2) has 2 incoming

edges
7: Remove the vertices b1, w1, b2, w2

8: D ← oriented dual of H
9: if D is connected and its orientation is acyclic then

10: x← true
11: else {D has a directed circuit}
12: x← false
13: end if
14: end if

Definition 5.1 A 2-articulated subgraph of a 2-connected graph G is a con-
nected proper induced subgraph H with at least 3 vertices, which may be dis-
connected from the remaining of the graph by the deletion of two vertices, the
articulation pair of H.

Lemma 5.1 Let G be a 2-connected planar graph. Then G is 3-connected if
and only if each C4 of A(G) is a face.

Proof: Let γ be a C4 of A(G) which is not a face and let u, v be its V -vertices.
As γ is not a face, there exists at least one vertex of A(G) inside and outside
γ. If the only vertices of A(G) inside (resp. outside) γ where F-vertices, the
faces inside (resp. outside) γ would correspond to multiple edges of G. Hence,
A(G) has at least one V-vertex internal to γ and one V-vertex external to γ.
The subgraph H of G induced by the vertices corresponding to u, v and the
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V-vertices of A(G) inside γ meets then the requirement of the definition of a
2-articulated subgraph. Thus, G is not 3-connected.

Conversely, if G is not 3-connected, it has a 2-articulated subgraph H with
articulation pair u, v. Let f1 and f2 be two faces of G adjacent to u and v, such
that f1 does not include the edge {u, v} (if this edge exists). Then, f1, u, f2, v
is not a face of A(G) as it does not correspond to an edge of G. 2

Remark 5.2 There will be no linear-time algorithm to enumerate the C4 of
3-connected planar graphs, as this number may be quadratic (any double-wheel
will do), although it is possible to “implicitly” enumerate them in linear time
[1][4].

Lemma 5.3 Let G be a 2-connected planar graph with at least 4 vertices and
let A(G) its angle graph, oriented in such a way that each of its vertices have
indegree 2, except the vertices of the external faces which have indegree 1.

Then, the graph G is 3-connected if and only if A(G) has only one positive
cocircuit, namely the one defined by the vertex-set of its external face.

Proof: Let V0 be the vertex set of the external face. Let us prove that the graph
G has a cocircuit different from ω(V0) if and only if A(G) has a C4 which is not
a face (this is equivalent to the 3-connexity of G, according to Lemma 5.1):

• Let ω(X) be an elementary positive cocircuit. The sum of the indegrees of
the vertices of X is at least 2|X |−4, since only 4 vertices have indegree 1.
Hence, according to Lemma 2.1, GX has at least 2|X | − 4 edges and then
has exactly 2|X | − 4 edges, is a planar quadrangulation and contains the
vertices of the external face. Thus, according to Lemma 2.2, X belongs to
a bounded face region of GX and then is internal to some C4 of G. Thus,
X is the vertex set of the external face (i.e. V0) or G has a C4 which is
not a face.

• Let C be a C4 of G which is not a bounded face and let X be the set
of the vertices internal to C. As GX is a planar quadrangulation and
contains the vertices of the external face, according to Lemma 2.1, the
cocycle ω(X) is a cocircuit. Hence, ω(V0) is a cocircuit and any C4 which
is not a face defines a cocircuit (different from ω(V0)).

2

Definition 5.2 An e-bipolar orientation is an acyclic orientation with exactly
one source s and one sink t linked by the edge e. Such an orientation may be
computed in linear time [16, 8, 9].

Lemma 5.4 Let G be a 2-connected plane graph and let e0 be an edge of G.
Let {r1, r2, r3, r4} be the face of A(G) corresponding to e0, where r1 and r3 are
V-vertices.
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Algorithm 6 Optimized 3-connexity test for a 2-connected planar graph G

Require: G is a 2-connected planar graph
Ensure: x=true if and only if G is 3-connected
1: if G has less than 4 vertices then
2: x← false
3: else
4: e0 ← some edge of G
5: S ← ∅ (empty stack)
6: Compute a minimal e0-bipolar orientation of G [8]
7: for all edge e of G do
8: d[e]← number of invertible angles at e
9: if d[e] = 0 then

10: Push e in the stack S
11: Mark all the angles incident to e
12: end if
13: end for
14: while S is not empty do
15: Pop e from the stack S
16: for all the neighbor edges e′ of e do
17: Decrement d[e′]
18: if d[e′] = 0 then
19: Push e′ in the stack S
20: Mark all the angles incident to e′

21: end if
22: end for
23: end while
24: Mark all the angles incident to an edge adjacent to e0

25: Mark all the angles incident to an edge is a same face than e0

26: if all the angles are marked then
27: x← true
28: else
29: x← false
30: end if
31: end if

Any orientation of G defines an orientation of A(G): an edge of A(G) is
directed from its incident V-vertex to its incident F-vertex if the corresponding
angle of G is extremal.

If G is e0-bipolarly oriented, then the induced orientation of A(G) is such
that every vertex has indegree 2, except r1 and r3 which are sources.

Proof: The poles have no lateral angles, any other vertex has at least two
lateral angles and each face has at least two extremal angles. As A(G) has
2|E(G)| = 2|F (G)|+2(|V (G)|−2) edges, the V-vertices different from the poles
and the F-vertices have two incoming edges. 2
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Theorem 5.5 Algorithm 5 tests in linear time whether a 2-connected planar
graph is 3-connected or not.

Proof: A bipolar orientation of G will induce, according to Lemma 5.4, an
orientation of A(G) such that all the vertices of A(G) (except the V-vertices
incident to e0) have indegree 2. Then, the validity of Algorithm 5 follows from
Lemma 5.3. 2

Remark 5.6 Using a particular e0-bipolar orientation [8], we can ensure that
all the circuits of the angle-graph are clockwise (the external face corresponding
to e0). Then, as the vertices and edges of the dual of the angle-graph are nothing
but the edges and the angles of the original graph, Algorithm 5 may be trans-
lated on the original graph itself. Using the property of the particular e0-bipolar
orientation, we obtain (optimized) Algorithm 6.
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