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Abstract
In a fan-planar drawing of a graph there is no edge that crosses two

other independent edges. We study 2-layer fan-planar drawings, i.e., fan-
planar drawings such that the vertices are restricted to two distinct hori-
zontal layers and edges are straight-line segments that connect vertices of
different layers. We characterize 2-layer fan-planar drawable graphs and
describe a linear-time testing and embedding algorithm for biconnected
graphs. We also study the relationship between 2-layer fan-planar graphs
and 2-layer right-angle crossing graphs.

Submitted:
November 2015

Reviewed:
February 2016

Revised:
May 2016

Accepted:
June 2016

Final:
July 2016

Published:
January 2017

Article type:
Regular paper

Communicated by:
E. Di Giacomo and A. Lubiw

Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and

Networked DAta”, prot. 2012C4E3KT 001 and by the Australian Research Council through

Discovery Project grant DP140100077. Work by Jan Kratochv́ıl was supported by the grant

no. 14-14179S of the Czech Science Foundation GAČR. The research in this work initiated
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1 Introduction

In a 2-layer drawing of a graph, each vertex is drawn as a point on one of two
distinct horizontal layers and each edge is drawn as a straight-line segment that
connects vertices of different layers. Clearly, a graph admits such a drawing if
and only if it is bipartite. The study of 2-layer drawings has a long tradition
in Graph Drawing for two main reasons: (i) 2-layer drawings are a natural way
to visually convey bipartite graphs; (ii) algorithms that compute such drawings
represent a building block for the popular Sugiyama’s framework [32, 33], used
to draw graphs on multiple horizontal layers.

Since it is commonly accepted that edge crossings negatively affect the read-
ability of a diagram (see, e.g., [29, 30, 35]), the study of 2-layer drawings has
focused for a long time on the minimization of edge crossings. Eades et al.
proved that a connected bipartite graph admits a crossing-free 2-layer drawing
if and only if it is a caterpillar [16], i.e., a tree for which the removal of all
vertices of degree one produces a path. Eades and Whitesides proved that the
problem of minimizing edge crossings in a 2-layer drawing is NP-hard [17] and,
as a consequence, many papers focused on efficient heuristics or exact exponen-
tial techniques for computing 2-layer drawings with minimum number of edge
crossings; a limited list of these papers includes [15, 18, 23, 27, 34].

More recently, a growing attention has been devoted to the study of graph
drawings where edge crossings are allowed under some specific restrictions,
which still guarantee a good readability of the layout. In particular, motivated
by cognitive experiments of Huang et al. [22], several papers investigated right
angle crossing drawings (RAC drawings for short) [13], in which the edges can
cross only at right angles (see [14] for a survey on the subject). Di Giacomo et
al. characterized the class of bipartite graphs that admit a RAC drawing on two
layers, and described a linear-time testing and embedding algorithm for 2-layer
RAC drawable graphs [10]. Heuristics for computing the maximum 2-layer RAC
subgraph of a given graph are also described in the literature [11].

In this paper we concentrate only on 2-layer fan-planar drawings, i.e., 2-layer
drawings that are also fan-planar. In a fan-planar drawing an edge can only cross
edges having a common end-vertex, thus an edge cannot cross two independent
edges (see Figure 1). Fan-planar drawings were introduced by Kaufmann and
Ueckerdt [24], who showed that fan-planar graphs with n vertices have at most
5n−10 edges, which is a tight bound. Subsequent papers proved that recognizing
fan-planar graphs is NP-hard and studied restricted classes of fan-planar graphs
in terms of density and recognition algorithms [4, 6]. In particular, it is shown
that 2-layer fan-planar drawings have at most 2n − 4 edges, which is also a
tight bound [6]. From an application perspective, it has been observed that
fan-planar drawings may be used to create confluent drawings with few edge
crossings per edge [6]. Our contribution is as follows:

(i) We first study biconnected graphs (Section 3). We prove that a bicon-
nected graph is 2-layer fan-planar if and only if it is a spanning subgraph
of a snake graph (Section 3.1), which is a chain of complete bipartite



JGAA, 21(1) 81–102 (2017) 83

graphs K2,h (see Definition 1). We also describe a linear-time algorithm
that tests whether a biconnected graph admits a 2-layer fan-planar draw-
ing, and that computes such a drawing if it exists (Section 3.2).

(ii) We then give a characterization of the class of graphs that admit a 2-
layer fan-planar drawing (Section 4). We prove that a connected graph is
2-layer fan-planar if and only if it is a subgraph of a stegosaurus graph,
a further generalization of a snake (see Definition 2). Since every 2-layer
crossing-free drawing is also fan-planar, but not vice versa, caterpillars are
a proper subclass of stegosaurs.

(iii) We explore the relationship between 2-layer fan-planar and 2-layer RAC
drawable graphs (Section 5). We prove that, for biconnected graphs the
first class is properly included in the second one, while there is no inclusion
relationship for general graphs.

We conclude this introduction by observing that our results fall in a research
line often referred to as “beyond planarity”. The general framework of this
line is to relax the planarity constraint by allowing edge crossings, but still
forbidding those configurations that would affect the readability of the drawing
too much. Different types of forbidden edge-crossing configurations give rise to
different families of beyond planar graphs. RAC graphs and fan-planar graphs,
discussed above, are examples of these families. Other remarkable examples are
k-quasi planar graphs and k-planar graphs. For any integer k ≥ 3, the family
of k-quasi planar graphs is the set of graphs that have a drawing with no k
mutually crossing edges (see, e.g., [1, 2, 19]). For any positive integer k, the
family of k-planar graphs is the set of graphs that admit a drawing with at
most k crossings per edge [28]; in particular, 1-planar graphs have been widely
studied in the literature (see, e.g., [3, 5, 8, 12, 20, 21, 25, 26, 31]). Several
classical problems concerned with computing crossing-free drawings or drawings
that minimize the number of crossings, where vertices are constrained to be on
specific lines, point sets, or surfaces, can be reinterpreted in terms of beyond
planarity.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing and planarity [9].
Throughout the paper, a graph with a fixed planar (outerplanar) embedding is
also called a plane (outerplane) graph. Let G be a graph. For each vertex v of G,
the set of edges incident to v is called the fan of v. Each edge (u, v) of G belongs
to the fan of u and to the fan of v at the same time. Two edges that do not share
a vertex are called independent edges, and always belong to distinct fans. A fan-
planar drawing Γ of G is a drawing such that: (a) no edge is crossed by two
independent edges (the forbidden configuration of Figure 1(a)); (b) there are not
two adjacent edges (u, v), (u,w) that cross an edge e from different “sides” while
moving from u to v and from u to w (the forbidden configuration of Figure 1(b)).
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Figure 1: (a)-(b) Forbidden and (c)-(d) allowed configurations of fan-planar drawings.

Two allowed configurations of a fan-planar drawing are in Figures 1(c) and 1(d).
A fan-planar graph is a graph that admits a fan-planar drawing. Observe that
in a straight-line drawing, the forbidden case (b) cannot happen. By definition,
a fan-planar drawing does not contain 3 mutually crossing edges.

In a 2-layer drawing of a graph, each vertex is drawn as a point on one of two
distinct horizontal lines, called layers, and each edge is drawn as a straight-line
segment that connects vertices of different layers. A 2-layer fan-planar drawing
is a 2-layer drawing that is also fan-planar. A 2-layer fan-planar graph is a
graph that admits a 2-layer fan planar drawing. Clearly, every graph that has
a 2-layer drawing is bipartite. For a given 2-layer drawing of a bipartite graph
G = (V1, V2, E), denote by `i the horizontal line on which the vertices of Vi are
drawn (i = 1, 2). We always assume that `1 is above `2. Two 2-layer drawings
of G are equivalent if they have the same left-to-right order πi of the vertices
of Vi along `i (i = 1, 2). A 2-layer embedding is an equivalence class of 2-layer
drawings and it is described by a pair of linear orderings (i.e., permutations)
γ = (π1, π2) of the vertices in V1 and V2, respectively. Given any two vertices
u and v of Vi, we write u ≺ v if πi(u) < πi(v) (i = 1, 2). Also, the first (last)
vertex of π1 and the first (last) vertex of π2 are the leftmost vertices (rightmost
vertices) of γ. The edge connecting the leftmost (rightmost) vertices of γ (if it
exists) is called the leftmost edge (the rightmost edge) of γ. If Γ is a drawing
within class γ, we say that γ is the embedding of Γ. If Γ is a 2-layer fan-
planar drawing, we also say that γ is a 2-layer fan-planar embedding. Since any
geometric position of the vertices that respects the two linear orderings defined
by γ yields a 2-layer fan-planar drawing in linear time, we will concentrate on
embeddings in the following. We say that γ is maximal if for any two vertices u
and v that are not adjacent in G, the embedding obtained from γ by adding the
edge (u, v) is no longer 2-layer fan-planar. Similarly, a 2-layer fan-planar graph
is maximal, if it cannot be augmented by an edge without losing the property
of being 2-layer fan-planar.

3 Biconnected 2-Layer Fan-planar Graphs

Let G1 and G2 be two graphs. The operation of merging G1 and G2 by identi-
fying an edge e1 of G1 with an edge e2 of G2 (in one of the two possible ways)
is called an edge merging ; the resulting graph G is called a merger of G1 and
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Figure 2: (a) Edge merging of two graphs. (b) A snake.

G2 with respect to e1, e2. The end-vertices of the edge obtained by identifying
e1 with e2 are merged vertices of G. In Figure 2(a), the white vertices in the
merger graph are the merged vertices.

Definition 1 A snake is a graph recursively defined as follows:

(i) A complete bipartite graph K2,h (h ≥ 2) is a snake.

(ii) A merger of two snakes G1 and G2 with respect to edges e1 of G1 and e2
of G2, with the property that none of the end-vertices of ei is a merged
vertex of Gi (i = 1, 2), is a snake.

Intuitively, a snake is a bipartite planar graph consisting of a chain of com-
plete bipartite graphs K2,h (see Figure 2(b)). Note that we exclude the case
h = 1 in our definition of a snake as we require biconnectivity. An alternative
definition of a snake can be derived from the definition of ladder, i.e., a bipartite
outerplanar graph consisting of two paths of the same length 〈u1, u2, . . . , un

2
〉

and 〈v1, v2, . . . , vn
2
〉 plus the edges (ui, vi) (i = 1, 2, . . . , n2 ) (see also [10]); the

edges (u1, v1) and (un
2
, vn

2
) are called the extremal edges of the ladder. A snake

is a planar graph obtained from an outerplane ladder, by adding, inside each
internal face, an arbitrary number (possibly none) of paths of length two con-
necting a pair of non-adjacent vertices of the face.

3.1 Characterization

The characterization of the biconnected graphs that admit a 2-layer fan-planar
embedding is given by Theorem 3. The proof is based on the next two lemmas.

Lemma 1 Let G be a biconnected graph. If G admits a maximal 2-layer fan-
planar embedding γ then G is a snake.

Proof: Due to maximality, the leftmost and the rightmost edges of γ always
exist, and do not cross any other edge. Therefore, γ contains at least two
uncrossed edges. We prove the statement by induction on the number l ≥ 2 of
uncrossed edges in γ. Recall that, since G is biconnected, it has vertex-degree
at least two.
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Base case: l = 2. In this case, we prove that G is a K2,r for some r ≥ 2,
which implies that G is a snake. Note that G cannot be a K1,r, since it has
vertex-degree at least two. If G contains only four vertices, then G is a K2,2, as
desired, since there are exactly two uncrossed edges. Suppose now that G has
more than four vertices.

Claim 1.1 Let (u, v) and (w, x) be a pair of crossing edges in γ, such that
u ≺ w on `1 and x ≺ v on `2. Then the edges (u, x) and (w, v) exist.

Claim’s proof: We first prove that (w, v) exists. Denote by wv the segment
connecting w and v. We distinguish between two cases: (i) There is no edge
traversing wv; in this case, since w and v can be connected by an edge without
crossings, then (w, v) is the rightmost edge of γ, and thus it exists due to
maximality, as already observed. (ii) There is an edge e traversing wv; in this
case e must be either incident to u or to x, otherwise one between (u, v) and
(w, x) would cross two independent edges. Without loss of generality, assume
that e is incident to u and to another vertex z of G, where v ≺ z. Since v
has degree at least two, there exists another edge (y, v) such that y 6= u. If
y ≺ u, or w ≺ y, or u ≺ y ≺ w, then there would be always an edge crossed by
two independent edges in γ. It follows that y = w, i.e., (w, v) exists. With a
symmetric argument we can prove that (u, x) also exists. �

Claim 1.2 If G′ is a subgraph of G such that G′ is a K2,r′ (for some r′ > 2)
and G′ contains the leftmost and the rightmost edges of γ, then G is a K2,r (for
some r > r′).

Claim’s proof: Without loss of generality, assume that the r′ > 2 vertices of G′

belong to layer `2; denote by V ′ this subset of vertices; also, let u and w be the
two vertices of G′ that belong to `1, and assume that u ≺ w. We show that γ
contains only u and w on layer `1. Suppose by contradiction that another vertex
z exists on `1. Since by hypothesis u and w are the leftmost and the rightmost
vertices on `1, respectively, we have that u ≺ z ≺ w, and z must be adjacent to
a vertex v of `2 occurring between the leftmost and rightmost vertices of V ′ (v
can also coincide with one of these two vertices). It is immediate to verify that
(z, v) would cause two independent edges crossed by a third one, a contradiction.
Now, any other vertex on `2 must be connected to both u and w, as it has degree
at least two and u and w are the only two vertices on `1. �

We now continue the proof of the base case by using Claims 1.1 and 1.2 to
prove that G is a K2,r, for some r > 2. Consider the rightmost vertex w on `1
and the rightmost vertex v on `2 in γ. Due to maximality, edge (w, v) exists and
is uncrossed. Also, since w and v have degree at least two, they both have one
more incident edge, which we denote by (w, x) and (u, v). Since w and v are the
rightmost vertices, (w, x) and (u, v) cross each other, and thus, by Claim 1.1,
edge (u, x) exists. Let H be the K2,2 subgraph of G induced by u, v, x, and w.
Since we are assuming that G has more than four vertices, there exists a vertex
z other than the vertices of H. Without loss of generality, assume that z is on
layer `2.
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If (u, x) is the leftmost edge of γ, then x ≺ z ≺ v, and this implies that z can
be adjacent to u and w only, as otherwise (w, x), (u, v), and an edge incident to z
would form three mutually crossing edges. Also, since z has degree at least two,
z is adjacent to both u and w. Thus subgraph G′ of G induced by {u, v, w, x, z}
is a K2,3 containing the left- and rightmost edges of γ. By Claim 1.2, G is a
K2,r, with r > 2.

If (u, x) is not the leftmost edge of γ, then since l = 2, (u, x) is crossed in
γ, and, as observed in the proof of Claim 1.1, it is crossed by an edge having
either w or v as an end-vertex. Without loss of generality, suppose that (u, x)
crosses an edge (w, z). By applying Claim 1.1 to (u, x) and (w, z), edge (u, z)
exists. Hence, again, the subgraph G′ induced by the vertices of H plus z is a
K2,3 graph. If (u, z) is the leftmost edge of γ, then by Claim 1.2, G is a K2,r,
with r > 2. If (u, z) is not the leftmost edge, then again it is crossed by an
edge having either w or v as an end-vertex. However, since (u, x) is already
crossed by (w, z), (u, z) can only be crossed by edges having w as an end-vertex.
Denoted by (w, y) one of the edges that cross (u, z), we have that edge (u, y)
exists by Claim 1.1, and therefore the subgraph induced by the vertices of H
plus vertices z and y is a K2,4 that contains the rightmost edge of γ. By iterating
this argument, we eventually obtain a subgraph K2,r′ (r′ > 2) of G that contains
the rightmost and also the leftmost edge of γ, which by Claim 1.2 implies that
G is a K2,r, with r > 2.

Inductive case: l > 2. Assume by induction that the statement holds for l−1,
with l > 2. Consider an uncrossed edge (u, v) different from the leftmost and
the rightmost edge of γ. Let γ1 (resp., γ2) be the embedding induced by the
vertices to the left (resp., right) of (u, v) plus u and v. Clearly, γ1 and γ2 are
2-layer fan-planar. Let Gi be the subgraph of G consisting of the vertices and
edges of γi (i = 1, 2). Since (u, v) is uncrossed in γ, G1 and G2 are biconnected.
Also, each of the two γi contains a number li < l of uncrossed edges, and thus
Gi is a snake by induction hypothesis. Since G is a merger of G1 and G2 with
respect to (u, v), G is a snake. �

Lemma 2 Every n-vertex snake admits a 2-layer fan-planar embedding, which
can be computed in O(n) time.

Proof: Let G be a snake. We compute a 2-layer fan-planar embedding γ =
(π1, π2) of G. By definition, G is a chain of graphs G1, . . . , Gk, such that each
Gi is a complete bipartite graph K2,hi

, sharing a pair of merged vertices with
Gi+1 (i = 1, . . . , k − 1). We say that the vertices of G to be placed on layer `1
(`2) are white (black, respectively). Choose any ordering π1 of the white vertices
such that, for each i = 1, . . . , k − 1: (i) the white vertices of each Gi precede
all the white vertices of Gi+1; (ii) the last white vertex of Gi is one of the two
merged vertices shared with Gi+1 (which will be the first white vertex of Gi+1).
Analogously, do the same for the black vertices, obtaining π2. See Figure 3 for
an illustration.

It is immediate to see that γ is a 2-layer fan-planar embedding of G, where
the only uncrossed edges are those connecting pairs of merged vertices shared
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Figure 3: Illustration for the proof of Lemma 2. (a) A snake G; the vertices of each
partite set are ordered (i.e., numbered) according to the rules given in the proof. (b)
A 2-layer fan-planar drawing of G whose embedding reflects the vertex ordering; the
uncrossed edges are in bold.

by Gi and Gi+1 (i = 1, . . . , k − 1), and those two connecting the first and last
white and black vertices. Furthermore, γ can be computed in O(n) time. �

Theorem 3 A biconnected graph G is 2-layer fan-planar if and only if G is a
spanning subgraph of a snake.

Proof: Suppose first that G has a 2-layer fan-planar embedding γ. If γ is
maximal, then G is a snake by Lemma 1. Else, there is a maximal 2-layer fan-
planar embedding γ′ of a graph G′ such that: (i) G ⊂ G′, (ii) G′ has the same
vertex set of G, and (iii) the restriction of γ′ to G coincides with γ. Hence, by
Lemma 1, G is a spanning subgraph of a snake. Conversely, let G be a spanning
subgraph of a snake. Since any spanning subgraph of a 2-layer fan-planar graph
is also 2-layer fan-planar, G is 2-layer fan-planar by Lemma 2. �

3.2 Testing and Embedding Algorithm

We now describe an algorithm to test whether a given biconnected bipartite
graph G is 2-layer fan-planar. Since every biconnected 2-layer fan-planar graph
is a spanning subgraph of a snake (Theorem 3), the algorithm must check
whether G can be augmented to a snake by only adding a suitable set of edges.
In what follows we assume that the input graph G is not a simple (even) cycle,
as otherwise it is clearly 2-layer fan-planar.

We require some further definitions that will be used to describe the algo-
rithm and to prove its correctness. A chain P = 〈u, v1, v2, . . . , vk, v〉 of G is
a maximal path of G such that all its internal vertices vi have degree 2 in G
(i = 1, . . . , k). Contracting P is to transform G into a new graph G′ obtained
from G by replacing P with a single edge eP = (u, v) of weight w(eP ) = k.
Reversely, we can say that G is obtained from G′ by expanding eP (P is the
expansion of eP ). Note that G′ may have multiple edges that connect u and v.
If G is a plane graph, we assume that the contraction of P preserves the em-
bedding of G. See also Figure 4 for an illustration. The weighted contraction of
G is the edge-weighted multi-graph C(G) obtained from G by contracting every
maximal chain of G; all edges of C(G) that are also in G are assigned weight 0.
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(a) G
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(b) G′

Figure 4: The graph G in (a) is transformed into the new graph G′ in (b) by contracting
the paths P1 = {3, 2, 1, 7, 8, 9}, P2 = {3, 4, 5, 6}, P3 = {9, 10, 11}, and P4 = {6, 11, 12}.
Graph G can be obtained from G′ by expanding the edges e1 = (3, 9), e2 = (3, 6),
e3 = (9, 11), and e4 = (6, 12).
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Figure 5: Illustration for Lemma 4. (a) A plane snake G consisting of an outerplane
ladder (black vertices) with arbitrary paths of length two inside each internal face. (b)
A (plane) biconnected spanning subgraph G of G. (c) The (plane) weighted contraction
C(G); only edge weights greater than 0 are shown. (d) The plane multi-graph G∗ of
property (c) in the statement of Lemma 4.

Figure 5(c) shows the weighted contraction of the graph in Figure 5(b). Based
on weighted contractions, we can reinterpret the characterization of 2-layer fan-
planar graphs as follows (see Figure 5):

Lemma 4 Let G be a bipartite biconnected graph that is not a simple cycle. G
is a spanning subgraph of a snake if and only if its weighted contraction C(G)
has a planar embedding such that:

(a) All vertices of C(G) are on the external face.

(b) All edges eP of C(G) with w(eP ) ≥ 2 are on the external face.

(c) Let G∗ be the plane multi-graph obtained from C(G) by expanding all edges
eP of the external face. It is possible to add to G∗ internal edges of weight
0, such that the resulting graph H∗ is outerplane and the removal of the
internal edges of weight 1 from H∗ produces a ladder.
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Proof: Suppose first that C(G) has a planar embedding that verifies properties
(a), (b), and (c). We prove that G is a spanning subgraph of a snake. Consider
the multi-graphH∗ of property (c). By property (a) and (b), H∗ is an outerplane
multi-graph that does not have internal edges of weight greater than 1. The
expansion of each internal edge of weight 1 is a path of length 2. Therefore,
by property (c) and since G is bipartite, the graph G obtained from H∗ by
expanding each internal edge of weight 1 is an outerplane ladder plus a set of
paths of length two connecting non-adjacent vertices of internal faces of the
ladder. Therefore, by definition, G is a snake. Since G is super-graph of G with
the same vertex-set of G, then G is a spanning subgraph of a snake.

Suppose vice versa thatG is a spanning subgraph of a snakeG. By definition,
G can be planarly embedded so that it is an outerplane ladder such that inside
each internal face there is an arbitrary number (possibly none) of paths of
length two connecting a pair of non-adjacent vertices of the face. Since G is
spanning and biconnected, the only edges of G that are not in G are chords
of the outerplane ladder (the removal of any other type of edge, without the
removal of vertices, will produce either a cut-vertex or an isolated vertex in the
subgraph). Let C(G) be the (plane) weighted contraction of G. Each vertex
that is not on the external face in the planar embedding of G is a degree-two
vertex of a path P of length two; since P will be replaced by an edge eP in C(G)
such that w(eP ) = 1, it follows that properties (a) and (b) hold. Property (c)
immediately follows by observing that the outerplane graph H∗ can be obtained
by adding to G∗ the chords of G that do not belong to G. �

We now give a linear-time algorithm, called Bic2LFPTest, that tests whether
a bipartite biconnected graph G has a 2-layer fan-planar embedding, and that
constructs such an embedding in the positive case. The algorithm checks whether
C(G) admits a planar embedding with the properties (a), (b), and (c) of Lemma 4.
If such an embedding exists, a snake for which G is a spanning subgraph is ob-
tained by expanding the edges of weight 1 in the multi-graph H∗ of property (c);
a 2-layer fan-planar embedding of this snake (and hence of G) is obtained using
the construction in the proof of Lemma 2. Figure 6 shows an example of a
2-layer fan-planar embedding computed by algorithm Bic2LFPTest.

1 8

2 47

3 5

69

10

11

12

Figure 6: A 2-layer fan-planar drawing of the spanning subgraph of Figure 5(b).

Algorithm Bic2LFPTest (G)

Step 1. Compute the weighted contraction C(G) of G, and compute, if any,
an outerplanar embedding of C(G) (i.e., property (a) of Lemma 4). This can
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be done in linear time: temporarily add to C(G) a dummy vertex u and a
dummy edge (u, v) for every vertex v of C(G); then run a linear-time planarity
testing and embedding algorithm (e.g. [7]) on it. Note that, since C(G) is still
biconnected, the outerplanar embedding of C(G) is unique (if it exists), except
for the permutation of multi-edges. If C(G) is not outerplanar, the whole test is
negative and the algorithm stops, otherwise an outerplanar embedding is found
and the algorithm goes to the next step.

Step 2. Check whether the outerplanar embedding can be modified (if needed)
so that all edges with weight greater than 1 can be put on the external face
(property (b) of Lemma 4), keeping all vertices on the external face. This is
possible if and only if: (i) for every pair of consecutive vertices {u, v} on the
boundary of the external face there is at most one copy of edge e = (u, v) with
w(e) ≥ 2 (which can be then put on the external face), and (ii) there is no
chord with weight greater than 1. Both conditions (i) and (ii) can be checked
in linear time. If this check fails, then the whole test is negative, otherwise
the new outerplanar embedding with the heaviest edges on the external face is
computed and the algorithm goes to the next step.

Step 3. Expand the external edges with weight greater than 0 to get the multi-
graph G∗ in property (c) of Lemma 4; this can be done in linear time if we
suitably store the chain P associated with each edge eP when C(G) is computed
in Step 1. Then, check whether it is possible to add to G∗ a suitable set of inter-
nal edges (chords) connecting vertices of the external face such that the resulting
multi-graph H∗ is still outerplane and becomes a ladder if we subsequently re-
move the internal edges of weight 1 (property (c) of Lemma 4). This can be
done with the following procedure. If H∗ already contains a chord of weight 0,
then: (i) temporarily remove the edges with weight 1; (ii) verify whether the
resulting graph can be augmented with extra chords to an outerplane ladder,
using the linear-time algorithm described by Di Giacomo et al. [10]. We remark
that, if such an augmentation exists it is unique under the assumption that H∗

already contains a chord of weight 0; (iii) check whether the removed edges
with weight 1 can be reinserted inside the outerplane ladder without violating
planarity (which can be done in linear time by verifying that, for each removed
edge, its two end-vertices are in the same face of the outerplane ladder). If H∗

does not contain a chord with weight 0, then H∗ contains at least one chord
e = (u, v) with weight 1 (we assumed that G is not a simple cycle, hence H∗

contains at least one chord). In this case, consider the two vertices u1, u2 that
are adjacent to u on the boundary of the external face, and the two vertices
v1, v2 that are adjacent to v on the boundary of the external face (some of these
vertices may coincide). It can be seen that any edge augmentation of H∗ that
leads to an outerplane ladder with the edges of weight 1 inside its internal faces,
must include at least one chord e′ ∈ C = {(u, v1), (u, v2), (v, u1), (v, u2)} (in
particular, in the outerplane ladder either two edges of C are chords or one is a
chord and one is an extremal edge of the ladder). Hence, for each of these (at
most four) chords e′, try to add e′ to H∗ and then repeat the substeps (i)− (iii)
described above. If the augmentation fails for all possible choices of e′, the
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whole test is negative, otherwise it is positive and a snake that contains G as
a spanning subgraph is obtained. A 2-layer fan-planar embedding of this snake
coincides with that of G, and is computed using the construction of Lemma 2.

Theorem 5 Let G be a bipartite biconnected graph with n vertices. There exists
an O(n)-time algorithm that tests whether G is 2-layer fan-planar, and that
computes a 2-layer fan-planar embedding of G in the positive case.

4 Simply Connected 2-Layer Fan-Planar Graphs

We have proved that a biconnected graph is 2-layer fan-planar if and only if
it is a spanning subgraph of a snake. We now show that a (simply) connected
graph is 2-layer fan-planar if and only if it is a subgraph of a stegosaurus (see
Definition 2 hereunder). Clearly, a non-connected graph is 2-layer fan-planar if
and only if every connected component is a 2-layer fan-planar graph.

Recall that snakes are obtained by merging edges of a sequence of several
K2,h (h ≥ 2). We may denote the partite set with more than 2 vertices (if any)
the large side of a K2,h. Given a snake G, a vertex in G is mergeable if it is an
end-vertex of a mergeable edge and belongs to the large side of an original K2,h.
Note that a snake always has at most two mergeable vertices; by definition, a
K2,2 on either end of the snake prohibits a mergable vertex. The graph resulting
from merging two graphs G1 and G2 by identifying a mergeable vertex of G1

with a mergeable vertex of G2 is a vertex merger.

Definition 2 A stegosaurus is either a fan (a trivial stegosaurus) or a graph
recursively defined as follows (Figure 7(a)):

(i) A snake is a stegosaurus, whose mergeable vertices are the mergeable vertices
of the snake.

(ii) The vertex merger of two stegosaurs G1, G2 is a stegosaurus. Its mergeable
vertices are those (at most one per G1, G2) not used in this merging.

(iii) Let v be a mergeable vertex of a stegosaurus G1. Adding a new vertex v′

and an edge (v, v′) gives a stegosaurus with the same mergeable vertices
as G1.

Observation 1 Consider merging two snakes G1, G2 at vertices v1, v2. Assume
that v1 is an end-vertex of a mergeable edge but not from a large side; v2 may
be chosen as v1 or be a mergeable vertex. Then, the merged graph would be a
subgraph of a snake (Figure 7(b)). Thus, only vertices from the large side have
to be considered in Definition 2.

In the following, a block of a graph (i.e., a biconnected component) is called
trivial if it consists of a single edge. Let an edge e be a trivial block. If e has an
end-vertex of degree 1, e is a stump, otherwise, it is a bridge. Observe that, in
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Figure 7: (a) A stegosaurus composed of three snakes G1, G2, G3 that have been
merged at v2, v3 and several edges have been attached to v1, . . . , v4. (b) The result of
merging snakes G1, G2 using a non-mergeable vertex can be augmented into one snake
by adding the dashed edge.
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Figure 8: (a) A maximal 2-layer fan-planar drawing and (b) a different embedding to
which one may add the edge (x, y). (c) A 2-layer fan-planar drawing of the stegosaurus
from Figure 7(a).

contrast to the biconnected case, we have the situation that an embedding (or
drawing) of G is maximal 2-layer fan-planar (i.e., we cannot add an edge within
this embedding), but the graph is not maximal 2-layer fan-planar; it “simply”
requires a different 2-layer fan-planar embedding into which we can add another
edge. Figures 8(a) and 8(b) show an example. By definition and Theorem 3,
a biconnected graph is 2-layer fan-planar if and only if it is the subgraph of
a snake, and thus, of a stegosaurus. Also, a simply connected graph that is a
subgraph of a snake is 2-layer fan-planar. We will first show that stegosaurs are
2-layer fan-planar. Then, we will show that every 2-layer fan-planar graph is a
subgraph of a stegosaurus.

Lemma 6 Every stegosaurus has a 2-layer fan-planar embedding.

Proof: Figure 8(c) outlines the idea. We already know that snakes are 2-layer
fan-planar and how to draw them, and, by definition, that the non-trivial blocks
of a stegosaurus are snakes. Drawing a stegosaurus hence means drawing the
individual snakes simply next to each other. Moreover, we can draw additional
trivial blocks (arising from (iii) in the definition) at the left and right “ends”
of the stegosaurus, as well as at its cut vertices. �

Clearly a trivial stegosaurus is a maximal 2-layer fan-planar graph. Hence, in
the following, we only consider non-trivial stegosaurs. We start with proving
a property that holds for all 2-layer fan-planar drawings, not only for maximal
ones:
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Lemma 7 Let B be a non-trivial block of a 2-layer fan-planar graph G, and e
an independent edge, i.e., none of its end-vertices belongs to B. No edge of B
can be crossed by e in any 2-layer fan-planar embedding of G.

Proof: Assume there is an embedding where some edge b ∈ E[B] is crossed by
e. Since B is a non-trivial block, b is part of a cycle C ⊆ E[B] with |C| ≥ 4.
Hence, by the properties of 2-layer embeddings, e needs to cross another edge
c ∈ C as well. The edges b, c need to be adjacent, as otherwise we would
get pairwise crossings between three independent edges. Embedding a cycle,
in our case C, on two layers, requires a crossing of every edge except for two
non-adjacent edges. Hence either b or c will have a crossing with another (non-
adjacent and hence independent) edge of C and edge e, which is independent
w.r.t. B; a contradiction. �

From the above lemma, we obtain a simple but useful observation:

Corollary 8 In a 2-layer fan-planar embedding, two non-trivial blocks cannot
cross.

Hence we know that in a 2-layer fan-planar drawing, non-trivial blocks are
“nicely” placed next to each other from left to right without crossings between
them. We now show several properties of maximal 2-layer fan-planar graphs.
Clearly, a maximal 2-layer fan-planar graph will be connected.

Lemma 9 Let G be a maximal 2-layer fan-planar graph. There exists an em-
bedding γ of G in which no stump is crossed.

Proof: We need not to discuss trivial stegosaurs, as there the lemma is obvious.
Assume there are multiple stumps incident to the same vertex v, and let e be one
of them. If e is feasibly drawn, we can also draw all other these stumps directly
next to e (i.e., the stumps’ end-vertices form a contiguous vertex subsequence
on the respective layer). Hence, w.l.o.g., we can in the following assume that
every vertex is incident to at most one stump. Let γ be a 2-layer fan-planar
embedding with the least number of crossings between stumps.

Claim 9.1 Two stumps do not cross.

Claim’s proof: Assume to the contrary that there exist two stumps (v, w) and
(a, b) that cross, where b and w are the degree-one vertices. We distinguish two
cases based on the location of the cut vertices.

In the first case, the two cut vertices of the stumps are on the same layer
and w.l.o.g. v ≺ a and b ≺ w (cf. Figure 9(a)). Every vertex between b and
w must be adjacent to v and a, because otherwise there would exist a second
stump at v or a (recall that we assumed that every vertex is incident to at most
one stump) or a second independent crossing on (v, w) or (a, b). Hence, we may
just swap b and w, thereby, resolving one crossing between two stumps without
introducing another one. This contradicts the minimality of the embedding γ
w.r.t. to stump crossings.
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Figure 9: (a) Two crossing stumps that have their cut vertices on the same layer.
(b) An edge (v, a′) prevents the repositioning of b such that it precedes v. (c) A
symmetric situation when moving w directly to the left of a. (d) The situation when
we cannot move w nor b. There exist two stumps (v′, w′), (a′, b′) that create the two
crossings on (v′, a), (v, a′).

Now, assume the two cut vertices are on different layers. W.l.o.g. assume
that b and w are to the right of the cut vertices v and a, respectively, i.e., v ≺ b
and a ≺ w. Furthermore, we choose (v, w) and (b, a) such that they are the
two leftmost crossing stumps having their cut vertices on different layers and to
the left of the involved degree-one vertices. Notice that unlike in the first case,
there are no vertices between v and b, and a and w, because these can only be
adjacent to a and v, respectively. However, such a vertex implies then a second
stump at one of the two vertices, a contradiction.

We show that we can resolve the crossing between the two stumps by either
moving b directly to the left of v or w directly to the left of a. Assume that we
cannot move b such that it immediately precedes v (cf. Figure 9(b)), because
(b, a) would cross an edge (which has to be incident to v due to the absence of
vertices between v and the original position of b). Let this edge be (v, a′), and
(v, a′) is already crossed by some other edge independent of (b, a). Clearly, such a
scenario is possible and prevents us from moving b, but now we may try to move
w instead. By a symmetric argument, we may assume that in case we cannot
move w, there exists an edge (v′, a) that would cross (v, w) and is already crossed
by some other edge that is independent of (v, w) (cf. Figure 9(c)). Hence, if
we can neither move b nor w, both, (v, a′) and (v′, a), exist and they cross.
Furthermore, each of them is crossed a second time to prevent the movement of
w or b. These second crossings are both not allowed to be independent to the
crossing of (v, a′) and (v′, a), but the corresponding edges are neither incident to
v nor a, respectively. Hence, there exist two stumps (v′, w′) and (b′, a′) such that
v′ ≺ b′ ≺ v and a′ ≺ w′ ≺ a holds (cf. Figure 9(d)). However, this contradicts
our choice of (v, w) and (a, b), since (v′, w′) and (a′, b′) are two crossing stumps
of the same type being to the left of (v, w) and (a, b). Thus, we can move either
w or b and resolve the stump crossing (again without introducing a new one),
contradicting the crossing minimality of the embedding. We conclude that for
every maximal 2-layer fan-planar graph there exists an embedding in which no
two stumps cross. �
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Figure 10: (a) The case in which edge e crosses (a,w) while being incident to b, thus,
trapping a such that deg(a) = 1. (b) The other case in which e is incident to v and
f = (a′, b) is a stump. (c) An uncrossed bridge (x, y) whose adjacent edges do not
cross enabling the insertion of (x′′, y′′).

Next we use this property to show that a stump does not cross anything at all.

Claim 9.2 A stump does not cross a non-stump.

Claim’s proof: Again assume to the contrary that a stump (v, w) (with v being
the cut vertex) crosses an edge (a, b) that is not a stump. Furthermore, suppose
w.l.o.g. that v ≺ a and b ≺ w holds. We argue now that one can insert the edge
(a,w), contradicting the maximality of G. In order to prevent us from doing
so, there must exist two independent edges, say e and f , both independent of
(a,w), possibly crossing each other, and at least one of them crosses (a,w).

Assume that e crosses (a,w), then e also crosses either (v, w) or (a, b). Since
(v, w) and (a, b) are independent crossing edges, e must be incident to either v or
b. Let us consider the case in which e is incident to b (cf. Figure 10(a)). Since e
then crosses also (v, w), it follows that deg(a) = 1, because any additional edge
would create two independent crossings on either (v, w) or e. However, (a, b) is
not a stump, because then two stumps would cross. Thus, deg(a) ≥ 2 holds, a
contradiction.

We may conclude that if e or f crosses (a,w), then the corresponding edge
cannot be incident to b. Since we require e and f to be independent, they
cannot be both incident to v. Thus, e, f cannot both cross (a,w). If f does not
cross (a,w), it must cross e to prevent us from inserting (a,w). So, w.l.o.g., the
only configuration remaining is the one in which the two cross, e is incident to v,
crosses (a,w), and f is incident to b, but does not cross (a,w). Let f = (a′, b) be
such that v ≺ a′ ≺ a, i.e., the only possible place for a′ (cf. Figure 10(b)). With
the same argument we used for a, we may now claim that deg(a′) = 1 holds.
Then, f is a stump, crossing the stump (v, w), a contradiction to Claim 9.1 that
no two stumps cross. Hence there cannot exist e and f , and we thus may insert
(a,w), contradicting that G is maximal 2-layer fan-planar. �

This establishes the lemma and shows that the embedding γ with the minimum
number of stump crossings is one in which no stumps are crossed at all. �

Lemma 10 A maximal 2-layer fan-planar graph G does not contain bridges.
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Proof: We first show that in case there would exist bridges, we may embed
G such that none of them is crossed. This result is then used to show that
one may augment G and therefore to contradict its maximality. We choose the
embedding γ according to Lemma 9, i.e., no stump is crossed in γ.

Claim 10.1 No bridge is crossed in γ.

Claim’s proof: Assume that there exists a bridge (x, y) crossed by an edge (a, b)
in γ such that w.l.o.g. x ≺ a and b ≺ y holds. Since both edges are not stumps,
all four vertices have degree at least two. Note that, Claim 1.1 in the proof of
Lemma 1 only requires G to have vertex-degree at least two (which in the proof
of Lemma 1 is implied by biconnectivity). From such a claim it follows that the
edges (x, b), (a, y) exist, inducing a cycle that contains (x, y) which contradicts
that (x, y) is a bridge. �

Claim 10.2 Two edges adjacent to the same bridge do not cross in γ.

Claim’s proof: Assume that there exist two such crossing edges, say e, f , that
are adjacent to a bridge b. Clearly, they have no vertex in common, and none
of them is a stump or bridge (due to the choice of γ). Hence, e and f belong to
distinct non-trivial blocks, because b is a bridge, thus, contradicting Corollary 8.

�

Assume that there exists a bridge (x, y) in G. By the choice of γ, (x, y) is
uncrossed, and by Claim 10.2, w.l.o.g., all neighbors of x are located to the right
of y, whereas all neighbors of y are located to the left of x (cf. Figure 10(c)).
Therefore, we can add the edge (x′′, y′′) where x′′ (y′′) is the direct predecessor
of x (direct successor of y). While (x′′, y′′) crosses (x, y), there cannot exist
any other edge crossing this new edge. Hence, one may insert (x′′, y′′), thereby,
contradicting maximality of G. �

Corollary 11 Let G be a maximal 2-layer fan-planar graph. There exists an
embedding in which no two blocks cross. Any cut vertex is either contained in
two non-trivial blocks, or is a left- or rightmost vertex in this embedding.

Hence we have that a maximal 2-layer fan-planar graph allows a drawing
where non-trivial blocks are neither crossed by other non-trivial nor by trivial
blocks. Furthermore, in contrast to the non-biconnected case, if an embedding
of a biconnected graph G is maximal 2-layer fan-planar, then G is maximal
2-layer fan-planar. We can deduce:

Corollary 12 Let G be a maximal 2-layer fan-planar graph. Its non-trivial
blocks are maximal 2-layer fan-planar biconnected graphs, i.e., snakes.

Lemma 6 and Corollary 12 imply the following.

Theorem 13 A graph is 2-layer fan-planar if and only if it is a subgraph of a
stegosaurus.
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Figure 11: (a) The tree T3; it is 2-layer RAC but not 2-layer fan-planar. (b) A 2-layer
RAC embedding (not drawing) of T3 In both figures the path connecting u to v has
bold edges.

5 Relationship with 2-layer RAC drawings

In a RAC drawing of a graph an edge cannot cross two edges that share a
vertex, thus “fan-crossings” are in general not allowed in this drawing model.
Conversely, a RAC drawing may contain an edge that crosses other two inde-
pendent edges, differently from a fan-planar drawing. Hence, a drawing that is
RAC and fan-planar at the same time, is necessarily 1-planar, i.e., each edge
crosses at most once. Placing the vertices of a graph on two distinct horizontal
layers represents however a strong restriction in both models, which significantly
reduces their allowed configurations. Therefore, it is natural to ask for the re-
lationship between 2-layer fan-planarity and 2-layer RAC drawability. In this
section we study this problem.

Di Giacomo et al. proved that a 2-layer embedding γ is RAC (i.e., there
exists a 2-layer RAC drawing w.r.t. γ) if and only if γ has neither 3 mutually
crossing edges nor two adjacent edges crossed by a third one [10]. For example,
the embedding in Figure 11(b) is 2-layer RAC. They also showed that a bicon-
nected graph has a 2-layer RAC embedding if and only if it is a subgraph of a
ladder. Since a ladder is a special snake (but not vice versa), we deduce from
Theorem 3:

Corollary 14 The class of biconnected 2-layer RAC graphs is a proper subclass
of the class of biconnected 2-layer fan-planar graphs.

For general graphs, however, there is no inclusion relationship between those
two families. In particular, we exhibit infinitely many trees Tk (k ≥ 3) that are
2-layer RAC but not 2-layer fan-planar. Tk consists of two vertices u and v
connected by a path of length k ≥ 3, and such that each u and v have further
(disjoint) three paths of length k+1 attached to them. Figure 11(a) depicts T3.
Using the characterization of 2-layer RAC trees [10], one can verify that Tk has
a 2-layer RAC embedding, see Figure 11(b).

By Theorem 13, we can show that Tk is not 2-layer fan-planar by observing
that it cannot be a subgraph of a stegosaurus. Indeed, suppose that G is some
stegosaurus that contains Tk, and suppose that Γ is a planar drawing of G as
in Figure 7(a), where all vertices of degree greater than two lie on the external
face and are suitably placed on two distinct horizontal lines. Since u and v have
degree 4 in Tk, they are external vertices of Γ. Denote by Puv the path from u
to v in Γ that corresponds to the path from u to v in Tk. Consider the three
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paths of length k + 1 attached to u in Tk. Since they only share vertex u, and
also share only vertex u with Puv, one of them, call it Pu, is necessarily “routed
towards” v in Γ, while the other two can be routed away from v. Analogously,
one of the three paths of length k + 1 attached to v, call it Pv, must be routed
towards u in Γ, while the other two can be routed away from u. Since Puv has
length k, it is not difficult to verify that either Pu and Pv share a vertex or at
least one of them share a vertex with Puv; a contradiction. Thus, G cannot
exist.

6 Open Problems

The main open problem of our study is to provide, if any, an efficient 2-layer
fan-planarity testing algorithm for general (i.e., not necessarily biconnected)
graphs, which exploits Theorem 13. A possible approach could be as follows.
One could decompose the graph into its blocks, and, for each non-trivial block,
check whether it is a spanning subgraph of a snake (Theorem 3). However,
in the positive case, this is not sufficient to guarantee that the 2-layer fan-
planar drawings of the blocks can be correctly combined into a single 2-layer
fan-planar drawing. A further level of difficulty is to manage trivial blocks that
are connected together forming a tree.

Another interesting research line is designing algorithms that compute 2-
layer drawings that are “as fan-planar as possible”, i.e., whose number of forbid-
den configurations (two independent edges crossed by a third one) is minimized.

Finally, it would be interesting to study the complexity of the k-layer fan-
planarity testing problem, for k > 2, both in the setting where the layer of each
vertex is given as part of the input and in the setting in which it can be freely
decided by the algorithm.
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