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Abstract

In this paper, we will show dichotomy theorems for the computation
of polynomials corresponding to evaluation of graph homomorphisms in
Valiant’s model. We are given a fixed graph H and want to find all graphs,
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1 Introduction

Graph homomorphisms are studied because they give important generalizations
of many natural questions (k-coloring, acyclicity, binary CSP and many more
cf. [18]). One of the first results, given by Hell and Nešetřil [17], was on
the decision problem where they gave a dichotomy. The exact result was,
that deciding if there exists a homomorphism from some graph G to a fixed
undirected graph H is polynomial time computable if H is bipartite and NP-
complete otherwise. A different side of graph homomorphisms was looked at by
Chekuri and Rajaraman [4], Dalmau et al. [7], Freuder [13] and finally Grohe [15].
They studied the following: Given a graph in a restricted graph class G, decide
if G is homomorphic to a given graph H. Later, focus shifted onto the counting
versions of these two sides where we have to count the number of homomorphisms.
Dyer and Greenhill [11] modified the first problem for the counting case. Here
they have a fixed graph H and count all homomorphisms from a given graph G
to H. Dalmau and Jonsson [6] modified a version of the second problem. They
looked at the complexity of counting the homomorphisms from a fixed graph
G in some graph class G to an input graph H. The first problem was extended
by Bulatov and Grohe [1] to graphs with multiple edges. They also notice some
interesting connections to statistical physics and constraint satisfaction problems.
A good introduction to the history of graph homomorphism was written by
Grohe and Thurley [16] and research on these topics continues even today with
two noticeable papers being the works by Goldberg et al. [14] and by Cai et al.
[3].

However, the arithmetic circuit complexity is seldom studied. Here we want
to study the complexity of the following problem. Given a fixed graph H
and a graph class G what graphs G ∈ G are homomorphic to H. This can
be seen as a generalization to the first decision problem. The study of VNP
complete problems and the arithmetic world was started in the seminal paper by
Valiant [23]. In this world, we look at the complexity of representing a family
of polynomials using a family of arithmetic circuits. Recently, a dichotomy for
graph homomorphisms was shown by Rugy-Altherre [8]. Here a graph is encoded
by a product of edge variables and sets of graphs as sums over these products.
This is known as generating function and a detailed definition will be provided in
Section 2. However, his result was for the first side of the graph homomorphism
problem.

In this paper we look at a version of the original problem in the arithmetic
circuit world. We will encode all graphs G ∈ G for some graph class G where G
is homomorphic to a given graph H. While we could not get a general theorem
as for the different problem in [6], we show multiple hardness proofs for some
classes. We will look at cycles, cliques, trees, outerplanar graphs, planar graphs
and graphs of bounded genus (orientable, non-orientable and Euler genus).

Recently, homomorphism polynomials in a different form are even used for
giving natural characterizations of VP independent of the circuit definition [10].
Durand et al. showed that all homomorphisms from a balanced binary tree with
n leaves to a complete graph on n6 vertices on specific weights can encode every
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polynomial in VP. However, their polynomial differs from the one presented
here. They looked at a polynomial encoding all homomorphism from a given
graph G to a given graph H where they have weights on edges and vertices while
our polynomial encodes graphs. While these two problems are very different,
we can still see our results as showing that some straightforward candidates
originating from the decision problem do not give a characterization of VP.

Section 2 gives a formal introduction to our model, related hard problems
and states the problem precisely. We prove our dichotomies in Sections 3.1
to 3.6 where the constructions in Sections 3.4 to 3.6 build on each other. The
construction in Section 3.3 will use a slightly different model as the other sections.
We will give a brief introduction into concepts from graph genus in Section 3.6
but refer the reader to the textbook by Diestel [9].

2 Model and Definitions

Let us first give a brief introduction to the field of Valiant’s classes. For further
information the reader is referred to the textbook by Bürgisser [2]. In this
theory, we are given an arithmetic circuit (a directed acyclic connected graph)
with addition and multiplication gates over some field K. These gates are
either connected to other gates or inputs from the set K ∪X for some set of
indeterminates X. At the top we have exactly one output gate. An arithmetic
circuit computes a polynomial in K[X] at the output gate in the obvious way.

As Valiant’s model is non-uniform, a problem consists of families of polyno-
mials. A p-family is a sequence of polynomials (fn) over K[X] where the number
of variables is q(n) for some polynomially bounded function q(n) and the degree
is bounded by some polynomial in n. Additionally the family of polynomials
(fn) should be computed by a family of arithmetic circuits (Cn) where fn is
computed by Cn for all n. Valiant’s model focuses its study on p-families of
polynomials.

We define L(f) to be the number of gates for a minimal arithmetic circuit
computing a given polynomial f ∈ K[X]. VP is the class of all p-families of
polynomials where L(fn) is bounded polynomially in n. Let q(n), r(n), s(n) be
polynomially bounded functions. A p-family (fn) ∈ K[x1, . . . , xq(n)] is in VNP
if there exists a family (gn) ∈ K[x1, . . . , xr(n), y1, . . . , ys(n)] in VP such that

f(x1, . . . , xq(n)) =
∑

ε∈{0,1}s(n)

g(x1, . . . , xr(n), ε1, . . . , εs(n)).

The classes VP and VNP are considered algebraic analogues to P and NP or
more accurately #P. We can also define an algebraic version of AC0, mentioned
by Mahajan and Rao [19]. A p-family is in VAC0 if there exists a family of
arithmetic circuit of constant depth and polynomial size with unbounded fan-in
that computes the family of polynomials.

The notion of a reduction in Valiant’s model is given by p-projections. A
p-family (fn) is a p-projection of (gn), written as (fn) ≤p (gn), if there exists a
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polynomially bounded function q(n) such that for every n, f(x1, . . . , xr(n)) =
g(a1, . . . , aq(n)) for some ai ∈ K ∪{x1, . . . , xr(n)}. Once we have a reduction, we
get a notion of completeness in the usual way.

We will, however, use a different kind of reduction called a c-reduction. This
is similar to a Turing reduction in the Boolean world. We define Lg(f) as the
number of gates for computing f where the arithmetic circuits are enhanced with
an oracle gate for g. An oracle gate for the polynomial g ∈ K[x1, . . . , xn′ ] has as
output g(a1, . . . , an′) where a1, . . . , an′ are the inputs to this gate. This allows
us to evaluate g on a1, . . . , an′ in one step if we computed a1, . . . , an′ previously
in our circuit.

We say (fn) c-reduces to (gn), written (fn) ≤c (gn), if there exists a poly-
nomial p such that Lgp(n)(f) is bounded by some polynomial. This reduction,
however, is only useful for VNP and not for VAC0 and VP. In this paper we
will exclusively deal with c-reductions for our VNP completeness results.

2.1 Complete Problems

We continue with the basic framework of graph properties. In the following K
will be a field.

Definition 1 Let X be a set of indeterminates. Let E be a graph property, that is,
a class of graphs which contains with every graph also all of its isomorphic copies.
Let G = (V,E) be an edge weighted, undirected graph with a weight function
w : E → K ∪ X. We extend the weight function by w(E′) :=

∏
e∈E′ w(e) to

subsets E′ ⊆ E.
The generating function GF(G, E) of the property E is defined as

GF(G, E) :=
∑
E′⊆E

w(E′)

where the sum is over all subsets E′ such that the subgraph (V,E′) of G has
property E.

The reader should notice that the subgraph still contains all vertices and just
takes a subset of the edges.

In the following, let G be a graph and let X = {xe | e ∈ E}. We label
each edge e by the indeterminate xe. We conclude by stating some basic VNP-
complete problems. Proofs of these facts can be found in the textbook by
Bürgisser [2].

Theorem 1 ([2]) GF(Kn,UHCn) is VNP-complete where UHCn is the set of
all Hamiltonian cycles in Kn.

Theorem 2 ([2]) Let CL be the set of all cliques. Meaning, the set of all graphs,
where one connected component is a complete graph and each of the remaining
connected components consist of one vertex only. The family GF(Kn, CL) is
VNP-complete.
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Theorem 3 ([2]) LetM be the set of all graphs where all connected components
have exactly two vertices. The family GF(Kn,M) is VNP-complete.

This polynomial gives us all perfect matchings in a graph. It is well known that
the original VNP-complete problem, the permanent, is equal to GF(Kn,n,M)
for bipartite graphs which is a projection of GF(Kn2 ,M).

2.2 The problem and related definitions

We now formulate our problem. Let G,H be undirected graphs. We will generally
switch freely between having the variable indexed by either edges (xe) or vertices
(xi,j for i, j ∈ V ). We let xj correspond to the self-loop at vertex j.

A homomorphism from G = (V,E) to H = (V ′, E′) is a mapping f : V → V ′

such that for all edges {u, v} ∈ E there exist an edge {f(u), f(v)} ∈ E′. We can
define the corresponding generating function as follows.

Definition 2 Let HH be the property of all connected graphs homomorphic to a
fixed H. We denote by FH,n the generating function FH,n := GF(Kn,HH).

We can state now the first dichotomy theorem.

Theorem 4 ([8]) If H has a loop or no edges, FH,n is in VAC0 and otherwise
it is VNP-complete under c-reductions.

Instead of looking at all graphs, we want to look at a restricted version.
What happens if we do not want to find every graph homomorphic to a given H
but every cycle homomorphic to a given H? We state our problem in the next
definitions.

Definition 3 Let En be a graph property. Then FH,nEn is the generating function
for all graphs in En on n vertices homomorphic to a fixed graph H.

Definition 4 We define the following graph polynomials.

• FH,ncyclen
where cyclen is the property where one connected component is a

cycle and the others are single vertices in a graph of size n.

• FH,ncliquen
where cliquen is the property where one connected component is a

clique and the others are single vertices in a graph of size n.

• FH,ntreesn where treesn is the property where one connected component is a
tree and the others are single vertices in a graph of size n.

• FH,nouterplanarn
where outerplanarn is the property where one connected com-

ponent is a outerplanar graph and the others are single vertices in a graph
of size n.

• FH,nplanarn
where planarn is the property where one connected component is

a planar graph and the others are single vertices in a graph of size n.
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• FH,ngenus(k),n where genus(k),n is the property where one connected component

has orientable genus k and the others are single vertices in a graph of size
n.

We will use the notation Fcycle, Fclique, F tree, Fouterplanar, Fplanar and
Fgenus(k) as a shorthand.

Let us now introduce the degree of homogeneous components of a polynomial.

Definition 5 Let x̄ = xi1 , . . . , xil be a subset of variables and (fn) be a p-family
where fn ∈ K[x1, . . . , xr(n)] for a polynomially bounded function r(n). We can
write fn as

fn =
∑
ī

αī

r(n)∏
j=1

x
ij
j .

The homogeneous component of fn of degree k with variables x̄ is

HOMCx̄k(fn) =
∑
i1,...,i`

k=
∑l

j=1 ij

αi1,...,i`x
ii
i1
. . . xi`i` .

Notice, that in the last equation the αi1,...,i` ∈ K[X] where

X = {x1, . . . , xr(n)} \ {xi1 , . . . , xil}

are polynomials in the variables X.
Finally, we need a last lemma in our proofs. This lemma was stated explicit

by Rugy-Altherre [8] and can also be found in [2]. It will give us a way to extract
all polynomials of homogeneous degree k in some set of variables in c-reductions.

Lemma 1 Let (kn) be a sequence of integers (kn) and (fn) be a family of
polynomials over R. Then there exists a c-reduction from the homogeneous
component to the polynomial itself:

HOMCx̄kn(fn) ≤c (fn).

The circuit for the reduction has size in O(nδn) where δn is the degree of fn.

The reader should note that using this lemma will blow up our circuit polynomi-
ally in size and can hence be used only a constant number of times in succession.
However, we can use this lemma on subsets of vertices. We replace every vari-
able xi in the subset by xiy for a new variable y and take the homogeneous
components of y. We will use this technique to enforce edges to be taken. Notice
that enforcing n edges to be taken only increases the circuit size by a factor of
n. Additionally, we can set edge variables to zero to deny our polynomial using
these edges.
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We will in general ignore self-loops as if G has a self-loop it can only be
homomorphic to H if H has a self-loop but then all graphs are homomorphic to
H.

Next we will show one of the major hard problems we use to show complete-
ness.

Lemma 2 Let HP be the property where the single connected component is a
Hamiltonian path from the vertex denoted by one to the vertex denoted by n
where the Hamiltonian path does not form a cycle. Then GF(Kn,HP) is VNP
hard.

Proof: We will reduce this to Hamiltonian cycle on Kn. Let F be the polynomial

GF(Kn,HP). We will compute
∑

1<i<j<n HOMC
(1,i)
1 (HOMC

(n,j)
1 (F )). Now we

can replace every x{u,n} with x{u,1}. This gives us now all Hamiltonian cycles
in Kn−1. �

In general, we use the term hamiltonian paths to exclude cycles.

3 Dichotomies

We now assume all our circuits to be over the field of the real numbers R. The
reductions also work over C.

3.1 Cycles

As a first graph class we look at cycles. The proof for the dichotomy will be
relatively easy and gives us a nice example to get familiar with homomorphism
polynomials and hardness proofs. In general our proofs work the following way.
Given the polynomial of all graphs in some specific graph class homomorphic
to H we will extract only a sum of some specific monomials with the help of
homogeneous components. We can then evaluate some variables in this sum with
constants to get the sum over all monomials for Hamiltonian Cycles, Matchings
or Hamiltonian paths.

Our main dichotomy for cycles is the following theorem.

Theorem 5 If H has at least one edge or has a self-loop, then Fcycle is VNP-
complete under c-reductions. Else it is in VAC0.

The next simple fact shows us which cycles are homomorphic to a given
graph H. Let ev(n) be defined as n if n is even and n− 1 if n is odd.

Fact 1 Given H a graph with at least one edge, all cycles of length ev(n) are
homomorphic to H.

It is easy to see that by folding the graph in half we get one path which is trivially
homomorphic to an edge. Our hardness proof will only be able to handle cycles
of even length. Luckily this is enough to prove hardness.
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Lemma 3 Let UHCev(n),even be the graph property of all cycles of length ev(n).

Then GF(Kev(n),UHCev(n),even) is VNP-hard under c-reductions.

Proof: If n is even, we can immediately use the hardness of GF(Kn,UHCn) (cf.
Theorem 1).

If n is odd, we need to contract one edge to get the polynomial GF(Kn,UHCn).
We do this by evaluating GF(Kn+1,UHCev(n),even). Notice how Kn+1 now has
ev(n+ 1) = n+ 1 vertices. We contract an edge with the following argument.
We enforce, via taking the homogeneous component of degree one of xn+1,1, all
cycles to use xn+1,1. Additionally to this restriction, we will sum over all our
given cycles where x1,i and xj,n+1 are enforced to have degree one for i < j (cf.
the proof of Lemma 2). We then replace xi,n by xi,1 for all i and set xn+1,1 to
one. This gives us all cycles of length n.

To see this let us look at the following argument. Let the edge (n+ 1, 1) be
the edge we contract and let i, j be the points picked in the sum. If we connect
i, j with a path through every point we can complete this into a cycle only one
way. Notice, that every different choice of i, j will construct a different cycle if
we contract 1 and n+ 1.

This concludes our reduction to GF(Kn,UHCn). �

Later proofs will also use the contracting idea from the previous lemma. A
simple case distinction will give us the proof of the theorem.

Proof: [of Theorem 5]

If H has at least one edge, we know from Fact 1 that all even cycles are
homomorphic to H and by this represented in our polynomial. If we take the
homogeneous components of degree ev(n), we extract all even cycles of length
ev(n). This is VNP-hard via the previous Lemma (3).

If H has a self-loop, we can map all cycles to the one vertex in H. We can
then extract the Hamiltonian cycles of length n by using the homogeneous degree
of n as all cycles are homogeneous to a self-loop.

If H has no edge, our polynomial is the zero polynomial as we cannot map
any graph G containing an edge to H.

Using Valiant’s Criterion, we can prove membership of Fcycle in VNP (cf.[2]).
�

3.2 Cliques

Here, we will not use cycles in the hardness proof but work directly with the
clique polynomial defined by Bürgisser [2]. The complete proof is an easy exercise.
In contrast to the other results, computing Fclique is easy for most choices of H.

Remark 3.1 If H has a self-loop then Fclique is VNP-complete under c-reductions.
Otherwise Fclique is in VAC0.
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Figure 1

3.3 Trees

As the new characterization of VP had a specific tree structure we want to look
at the generalized problem, namely for arbitrary trees with arbitrary weights. In
previous sections our polynomial just contained the edges of the graph but for
this section we need a slightly different model. If a monomial in our polynomial
would select the edges E′ we also select the vertices {u, v | {u, v} ∈ E′} in
our monomial. Hence, our polynomial will be over the following variable set
X = {xe | e ∈ E} ∪ {xv | v ∈ V }. It will be clear later why we need this special
form.

Let E be a set of edges then V (E) = {u, v | {u, v} ∈ E}. We define the
polynomial

FH,nv-tree =
∑
E′⊆E

∏
v∈V (E′)

xv
∏

{u,v}∈E′

x{u,v}

where the sum is over all subsets of edges which are homomorphic to a given
H and where one connected component is a tree and the other connected
components are single vertices. We denote this polynomial by Fv-tree for short.

Theorem 6 If H contains an edge, then Fv-tree is VNP-complete under c-
reductions. Otherwise Fv-tree is in VAC0.

Proof: We use a reduction from trees to perfect matchings. It is obvious that a
tree is always homomorphic to one edge.

We want to compute a matching on a graph given by (V,E). We can
build a graph as in Figure 1a from a Kn by setting the weight of every edge
not given to zero. Hence every monomial in our homomorphism polynomial
which used edges not in the graph evaluates to zero. In detail, our graph has
vertices {v ∈ V } ∪ {ve | e ∈ E} ∪ {s}. We will denote by v{u,u′} the vertex
corresponding to the edge between u and u′ in this section. We add1 the

1Remember that we are actually removing polynomials not containing these edges but it is
easy to talk about our construction if we assume we build the graph.
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edges {v(u,v), u}, {v(u,v), v} and {s, ve} for every e ∈ E. Vertices of the form
{ve | e ∈ E} will be called edge-vertices in this proof. Now as the vertices used
are given by Fv-tree we can take the homogeneous components over vertices. We
take the homogeneous components of degree n/2 over vertices {ve | e ∈ E} and
of degree n of vertices v ∈ V . Our matching in the original graph is given by
the edges (s, ve).

Every matching in the original graph has obviously a tree in our graph. Left
to prove is the other direction. Given a tree in our graph, we know that only
n/2 edge-vertices are selected. As every vertex v ∈ V has to be connected by an
edge, edge-vertices have to go to pairwise different sets of v ∈ V . Hence we can
compute a perfect matching which is as hard as computing the permanent.

Valiant’s Criterion will again show the membership. �

We crucially need the fact that we get the adjacent vertices for free in our
homomorphism polynomials. The reader might think restricting the edges out
of s might suffice but this is not the case. Let us look at Figure 1b where we
removed the restriction that a specific number of vertices have to be selected.
The thick path then gives us a valid tree but an invalid matching. In this case
our monomial would be

xs,{u,v}x{u,v},vx{u,v},ux{u,v′},ux{u′,v},v′

if we ignore the variables xv for all v. We can see that replacing every edge
xa,b with the variable yaybxa,b for vertices a, b in our constructed graph and new
variables ya, yb can be used for extracting homogeneous components. However,
the monomial above has already degree 4 in the new y variables, namely yvyuyuyv′

is a factor of our monomial. Hence, this cannot be used to forbid the wrong
instances.

It is unclear how to forbid this general behaviour without using our mod-
ified generating function. Splitting the vertices into two parts does not help
but splitting a vertex into n many different vertices might. However, taking
homogeneous components then would give us exponentially sized circuits. If we
restrict the graph such that we would always select all edges outgoing from s we
would prevent this case but the reconstruction of a matching is non trivial.

3.4 Outerplanar Graphs

Next we will show a dichotomy for outerplanar graphs. Remember that an
outerplanar graph is defined by a graph that can be drawn on a plane such
that every vertex is on the unbounded face of the drawing. Alternatively, it
is outerplanar if it does not contain K4 or the complete bipartite graph K2,3

as a minor [9]. G′ is a minor of G when G′ can be constructed by deleting or
contracting edges in G. Here contracting an edge (u, v) adds the neighbourhood
of u to v and deletes v. Notice, that we also have the inverse operations, namely
adding and subdividing edges; any graph G constructed this way from G′ has
G′ as a minor.
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We start with the case of a triangle homomorphic to H. We will use the case
of triangles homomorphic to H as a simple stepping stone.

Lemma 4 If a triangle is homomorphic to H then Fouterplanar is VNP hard
under c-reductions.

Proof: We will enforce a construction as in Figure 2a to occur exclusively in
a polynomial p we compute with the help of homogeneous components from
Fouterplanar. For this, we pick an arbitrary vertex c and enforce all n outgoing
edges from this vertex via homogeneous components. We further enforce the
whole graph to have n+ n− 3 edges. We call the resulting polynomial p. The
graph given in Figure 2a is outerplanar as the outerplanar embedding (where
all vertices belong to the unbounded face) is given in the figure. Let us call
the set of graphs represented by the polynomial p now S. Remember that our
polynomial, given from extracting homogeneous components is a summation
over monomials where the monomials represent sets of edges and hence graphs.
We still need to proof that all graphs in S are isomorphic to Figure 2a.

We call the implied order of the graph, the order of the outer circle of vertices
starting from the star and ending at it again without any edges crossing. As
there are two such orderings let us fix an arbitrary one for every graph. We want
to look at graphs in S that do not have the implied order of the outer vertices.
These graphs are outerplanar by definition of Fouterplanar and not isomorphic to
the graph in Figure 2a. We will prove that this is impossible by contradiction.

Having not the implied order on the outer vertices gives us two cases. Either
there exists a vertex v 6= c which has degree greater or equal to 4 or there exists
at least a vertex v 6= c of degree less than 3 and all other vertices u 6= c have
degree at most 3.

Let us look at the first case. Let v be the first such vertex and let p(v) be
the predecessor of v in the partial order. Notice that by enforcing all n instead
of just n − 2 edges starting at the center, a predecessor p(v) 6= c has to exist.
Let u, u′ denote the other vertices adjacent to v different than p(v) and c. As
we enforced edges from c to every vertex, we can easily see the K2,3 with v, c
on the one side and u, u′, p(v) on the other side when we delete the edge {v, c}
(see Figure 2c). Hence the graph cannot be outerplanar and hence we have the
contradiction. This implies that every vertex except c and the two neighbouring
vertices have degree at most 3. Enforcing the overall number of edges gives us
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that every vertex has at least degree 3 and hence implies equality. Hence every
graph in S is isomorphic to the graph in Figure 2a as every vertex has a unique
predecessor and successor where the first predecessor is the vertex left of c and
the last successor the vertex right of c.

Now our homomorphism polynomial restricted to these edges sums over all
monomials corresponding to the graph in Figure 2a. The outer path gives us
almost all Hamiltonian paths. In fact, it gives us all permutation of n−2 vertices.
We need to remove the center of the star by evaluating the edges with one as
well as evaluate the other enforced edges with one. This polynomial is now
VNP hard by Lemma 2. Taking the homogeneous components as described only
increases the circuit by a factor of n. �

Theorem 7 If H has an edge then Fouterplanar is VNP-complete under c-
reductions and otherwise trivial.

We want to use a similar construction as in Lemma 4 but have the graph
constructed be homomorphic to a single edge so that the constructed graph can
be homomorphic to any H with a single edge.

Proof: For every vertex v, except c, we choose a buddy vertex v′. We enforce
the edge between every vertex and his buddy vertex and set the edge between a
buddy vertex and c to zero. Additionally, we set all edges from v to any other
non buddy vertex to zero and all edges from a buddy vertex to a different buddy
vertex to be zero. In essence this splits every vertex into a left and right part
(see Figure 2b). Similar to the proof of Lemma 4 we enforce edges from c to v
for every non buddy vertex and to take exactly n+ 2n− 3 edges. Let us call the
set of all graphs extracted with this construction from Fouterplanar S

′ and the
set of all graphs given from the restriction in Lemma 4 of Fouterplanar where we
assume a triangle is homomorphic to H, S

Let us now prove that there exists a bijection between S and S′. Take an
outerplanar graph G′ from S′. We can then contract the edges between every
vertex and its buddy vertex. This gives us a graph G in S. If the combined degree
of a vertex and its buddy vertex (disregarding the connecting edge between v
and v′) would be greater than 3 G′ would be not outerplanar. The reason for
this is again the contraction. As we can contract it to a graph with a vertex of
degree 4 of the form in S the proof of Lemma 4 would tell us that this graph
would be not outerplanar. As G is a minor of the graph in S′, G′ would not be
outerplanar. In essence, our graph with combined degree greater than 3 can be
constructed from a G by adding and subdividing edges which can be constructed
from K2,3 if G was not outerplanar.

For the other direction a similar proof holds. If we have given a graph as in
Figure 2a we can subdivide the edges as stated earlier and have a graph of the
form as in Figure 2b.

Now that we know that the sets of graphs S and S′ are in a bijective relation,
we need to transfer the hardness. This is easy as we can do the following variable
replacement. Let us look at the variable xu′,v corresponding to the edge (u′, v),
where u′ is the buddy vertex of u and v is a non buddy vertex. We can evaluate
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a
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Figure 3: Planar Gadget

this with xu,v. Similarly, for the edge (v′, u) we can evaluate xv′,u with xv,u.
Finally, we evaluate xv,v′ with 1. With this and the bijection between S and S′

we constructed the polynomial p as in Lemma 4 even if H is homomorphic to an
edge.

Taking the homogeneous components increases the circuit size by a factor of
n.

We know by [21] that checking if a graph is outerplanar is possible in linear
time. With this we can use Valiant’s Criterion to show the membership. �

3.5 Planar Graphs

Lemma 5 All planar graphs with n+ 2 + 2(n+ 2) edges and the edges required
as in Figure 3 are in a bijective relation to all Hamiltonian paths on a set of
vertices we can denote by v′1, . . . , v

′
n.

Proof: Let us again call the set of graphs represented by the polynomial Fplanar

where we restrict all graphs to have n+ 2 + 2(n+ 2) edges overall and the edges
as in Figure 3 S. Let us call the set of all graphs that are isomorphic to Figure 3
S′. We first want to show that these sets are the same.

Let G ∈ S with a given embedding in the plane similar to Figure 3. Left
to show is that we will always have an ordering of the vertices in the middle.
Then the graph in S′ would be in S′ and S = S′ as all graphs from S′ fulfill the
criteria for membership in S.

Let now such an ordering not be given, meaning there exists a unique left most
vertex v with two right successors u, u′ and a predecessor p(v). By construction
the predecessor always exists. We denote the top and bottom vertex by a and b
in our graph. We can now build a K3,3 minor in the following way. S1 = {v, a, b}
and S2 = {u, u′, p′}. As a and b are connected to every vertex we only need to
check that u is connected to u, u′ and p which is by assumption. This proves
that via edge deletion our graph would have a K3,3 minor if the vertices would
not give us a permutation. Hence S ⊆ S′.

It is now easy to see that every vertex has a unique predecessor and successor
and hence the graph gives a permutation of the vertices. By slightly adjusting
this to exclude the first and last two vertices and the vertices denoted by a and
b we get a path for these vertices. We call these vertices v′1, . . . , v

′
n. �
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Theorem 8 If H has an edge then Fplanar is VNP-complete under c-reductions.
Otherwise Fplanar is in VAC0.

Proof: We again get all paths by enforcing our polynomial to exclusively have
the graph from Figure 3 by taking appropriate homogeneous components and
setting variables to zero. By Lemma 5 this gives us all path which is VNP-hard
by Lemma 2.

However, this graph is not yet homomorphic to a single edge. To accomplish
this, we will use a graph of size 2n. We, as in the outerplanar case, enforce every
vertex, except a and b, to have a buddy vertex uv. Then we subdivide the edge
(a, v) and (b, v) for every original, meaning none buddy, vertex v with a new
vertex v′a, v′b respectively. This will give us for every part a square consisting of
the vertices a, v, v′a, uv and the square b, v, v′b, uv. We again set the edges from a
buddy vertex to another buddy vertex to zero.

Now it is easy to see that we can fold a to b which leaves us with a grid of
height one. A grid can be easily folded to one edge. The size of the circuit is
increased by a factor of at most 2n.

Left to show is the correctness. As in the outerplanar case, we will first show
that the sets of graphs for the graphs described here and in Lemma 5 are in a
bijective relation to each other. Given a graph from the construction in this
proof, we can contract edges between v and the buddy vertex v′ for every v.
Additionally, we contract the edges (v′a, a) and (v′b, b). This gives us a graph as
in the construction in Lemma 5. From a graph in Lemma 5, we can give the
construction as described in the first part of this proof. Hence the two sets of
graphs have a bijection between them.

Finally, we evaluate the edges (v′a, a), (v′b, b) and (v, v′) with one and as in
the outerplanar case the edges (u′, v) with xu,v and (v′, u) with xv,u. This gives
us then the correct polynomial.

As testing planarity is easy, we can use Valiant’s Criterion to show member-
ship. �

3.6 Genus k graphs

Graph embeddings are one of the major relaxations of planarity. For this we find
a surface of a specific type such that a graph can be embedded in this surface
without any crossing edges. If we want to increase the orientable genus of a
surface by one, we can glue a handle onto it which edges can use without crossing
other edges. To increase the non-orientable genus we can glue a crosscap to it.
We call a graph a orientable genus k graph if there exists a surface of orientable
genus k such that G can be embedded in this surface and k is minimal. Similarly,
if there exists a surface of non-orientable genus where we can embedd a graph,
we call this a non-orientable genus k graph. Notice, that a genus 0 graph is
planar, no matter if we look at orientable or unorientable genus. In the following,
if we talk about genus, the statement will hold for orientable and non-orientable
genus. While the topic of graph genus is vast, we will mostly use theorems as a
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blackbox and only reason about graphs of genus zero and one. For a detailed
coverage of the topic, the reader is referred to [9].

With the planar result in place we can use the simple proof strategy. Enforce
a genus k graph where we append the planar construction. If we now enforce
all our graphs in the homomorphism polynomial to be isomorphic to the genus
k graph which is appended to the planar gadget our genus bound will ensure
that our planar gadget gives us all Hamiltonian paths on the set of vertices. Of
course this holds only if the combined graph of the genus k graph and the planar
construction does not reduce the genus.

Lemma 6 The graph in Figure 4a has orientable genus one.

Proof: We can use the given embedding with one handle for the crossing in the
middle to show an upper bound of one.

We again construct a K3,3 with the sets S1 = {2, 1, 6′}, S2 = {3, 4, 7′} where
6′ is the vertex constructed from contracting the edge (5, 6) and 7′ from the
edge (7, 8). And hence the graph is not planar and has a lower bound for the
orientable genus of one. �

The next theorem shows how we can glue graphs together to increase the
orientable genus in a predictable way.

Definition 6 ([20]) G is a vertex amalgam of H1, H2 if G is obtained from
disjoint graphs H1 and H2 where we identify one vertex form H1 with one vertex
from H2.

With this we restate a theorem from Miller [20] to compute the orientable
genus of a given graph.

Theorem 9 ([20]) Let γ(G) be the orientable genus of a graph G. Let G be con-
structed from vertex amalgams of graphs G1, . . . , Gn. Then γ(G) =

∑n
i=1 γ(Gi).

This now gives us immediately the result that a graph constructed as in Figure 4b
with k gadgets has genus k.

Theorem 10 If H has an edge then Fgenus(k) is VNP-complete under c-reductions
for any k. Otherwise Fgenus(k) is in VAC0.
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Proof: With Theorem 9 and the construction in Figure 4 we are almost done.
We enforce a genus k graph to occur in our polynomial by enforcing k connected
blocks as in Figure 4 where one block is connected to a planar gadget. Addition-
ally, we enforce for our planar gadget the same edges as in Theorem 8. Hence
all graphs that are homomorphic to the planar gadget have to have genus zero
and hence are planar. We can then use the proof as in Lemma 5 to extract all
Hamiltonian paths.

The only thing left to do is to modify our graphs such that they are homo-
morphic to an edge without violating the properties. It is clear that we can fold
our genus one gadgets together. If we then subdivide the edge (1, 3) and (2, 4)
(which keeps our block property) we can first fold 7 to 5 and 3 to 1. Folding
then again 6 to 8 and 2 to 4 we get a square with two dangling edges. The
dangling edges can be folded onto the square and the square is homomorphic to
one edge. This construction increases the size of the circuit at most by a factor
of 14k + 2n. As testing for a fixed genus is in NP, we can use Valiant’s Criterion
to show membership. �

We can now look at the Euler genus. The Euler genus of a graph is defined as
the minimal number n such that G can be drawn on a surface with n crosscaps
or n/2 handles. A similar amalgam theorem exists for this type of genus. We
again have an additivity theorem.

Theorem 11 ([20]) Let γ′(G) be the Euler genus of a graph G. Let G be con-
structed from vertex amalgams of graphs G1, . . . , Gn. Then γ′(G) =

∑n
i=1 γ

′(Gi).

Figure 5: Non-orientable genus 1 graph

Lemma 7 The graph in Figure 5 has non-orientable genus one.

Proof: It is easy to see that this graph is not planar and hence has non-orientable
genus greater than zero. The graph is embeddable into a surface of non-orientable
genus 1 if we set the crosscap into the middle. �

Now we can combine this gadget with the edge amalgams to give the following
theorem.

Theorem 12 Let FH,nEuler-genus(k),n where Euler-genus(k),n is the property where

one connected component has Euler genus k and the others are single vertices
in a graph of size n. If H has an edge then FH,nEuler-genus(k),n is VNP-complete

under c-reductions for any k. Otherwise FH,nEuler-genus(k),n is in VAC0.
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Similarly, we can look at the non-orientable genus. However, there exists
no additivity theorem for the non-orientable genus like Theorem 9. However,
Mohar [22] showed that we can construct a graph with a fixed non-orientable
genus.

Theorem 13 Let K
(k)
n,m be the graph obtained from Kn,m by deleting an arbitrary

set of k edges. Then the non-orientable genus of K
(k)
n,m is given by

γ̂(K(k)
n,m) = max{d (m− 2)(n− 2)− k

2
e, 1}

unless n = k,m = k+ 1 or n = k+ 1,m = k and k even or n = m = k for every
k.

With this we can use a similar argument as in Theorem 10. We restrict our graphs
from the polynomial to have a non-orientable genus k graph as in Theorem 13
and restrict a planar gadget glued to it.

Theorem 14 Let FH,nγ̂(k),n where γ̂(k), n is the property where one connected

component has non-orientable genus k and the others are single vertices in a
graph of size n. If H has an edge then FH,nγ̂(k),n is VNP-complete under c-reductions

for any k. Otherwise FH,nγ̂(k),n is in VAC0.

4 Conclusion

We have shown many dichotomy results for different graph classes but some
classes are still open. We want to especially mention the case of our graph class
being the class of trees. It is known that we can use Kirchoff’s Theorem to find
all spanning trees of a given graph. This, however, does not include monomials
of total degree less than n− 1 which our polynomials include. It is unclear how
to decrease the size of the trees without disconnecting them into forests. From
the algebraic view, the knowledge ends here. In the counting view, where we
solve the task of counting all trees in a graph, a bit more is known. Goldberg
and Jerrum [14] showed that counting the number of subtrees that are distinct
up to isomorphism is #P-complete. This, combined with our dichotomy for trees
including the vertices, gives us a strong indication that the similar problem is
VNP-hard in the algebraic world.

A different expansion of these results would be the case of bounded treewidth.
As mentioned earlier, in the counting version the case of bounded treewidth is
indeed the most general form and completely characterizes the easy and hard
instances of counting graph homomorphisms. Additionally, recent advancements
showed that graph homomorphisms of a specific type characterize VP. Can
homomorphism from graph classes parameterized by treewidth, similar to the
counting case, be used for a complete characterization of VP and VNP? This,
however, seems unlikely as we believe that the case for trees is already hard even
if we do not allow vertex variables as in this paper. A result on the hardness
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for the graph class being trees would clarify this. As a side note, we should
mention the related result by Courcelle et al. [5]. They showed that for any
graph property E which is definable in monadic second-order logic GF(Gn, E) is
in VP if Gn is a family of graphs of bounded treewidth. However, in our case, we
assume Gn to be Kn and hence not have bounded treewidth. It seems unlikely
that we can transfer this algorithm as we cannot decompose Kn into a nice tree
decompositon and work on the bags given by it.

An interesting research direction would be the case of disconnected graph
properties. Rugy-Altherre looked at the property that any graph is homomor-
phic to a given graph H. This includes disconnected graphs with connected
components larger than one vertex. We instead only looked at restricted homo-
morphisms where one major connected component exists. It is unclear to the
author if our proofs could be adapted to this case.
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