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Drawing Outer 1-planar Graphs with Few Slopes

Emilio Di Giacomo Giuseppe Liotta Fabrizio Montecchiani

Dip. di Ingegneria, Università degli Studi di Perugia

Abstract

A graph is outer 1-planar if it admits a drawing where each vertex is
on the outer face and each edge is crossed by at most another edge. Outer
1-planar graphs are a superclass of the outerplanar graphs and a subclass
of the planar partial 3-trees. We show that an outer 1-planar graph G of
bounded degree ∆ admits an outer 1-planar straight-line drawing that uses
O(∆) different slopes, which generalizes a previous result by Knauer et al.
about the outerplanar slope number of outerplanar graphs [18]. We also
show that O(∆2) slopes suffice to construct a crossing-free straight-line
drawing of G; the best known upper bound on the planar slope number of
planar partial 3-trees of bounded degree ∆ is O(∆5) as proved by Jeĺınek
et al. [16].
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1 Introduction

The slope number of a graph G is defined as the minimum number of distinct
edge slopes required to construct a straight-line drawing of G. Minimizing the
number of slopes used in a straight-line graph drawing is a desirable aesthetic
requirement and an interesting theoretical problem which has received consid-
erable attention since its first definition by Wade and Chu [26]. Let ∆ be the
maximum degree of a graph G and let m be the number of edges of G, then the
slope number of G is at least

⌈
∆
2

⌉
and at most m.

For non-planar graphs, there exist graphs with ∆ ≥ 5 whose slope number
is unbounded with respect to ∆ [4, 22], while the slope number of graphs with
∆ = 4 is unknown, and the slope number of graphs with ∆ = 3 is four [21].

Concerning planar graphs, the planar slope number of a planar graph G
is defined as the minimum number of distinct slopes required by any planar
straight-line drawing of G (see, e.g., [11]). Keszegh, Pach, and Pálvölgyi [17]
prove that O(2O(∆)) is an upper bound and that 3∆−6 is a lower bound for the
planar graphs of bounded degree ∆. The gap between upper and lower bound
has been reduced for special families of planar graphs with bounded degree.
Knauer, Micek, and Walczak [18] prove that an outerplanar graph of bounded
degree ∆ ≥ 4 admits an outerplanar straight-line drawing that uses at most
∆− 1 distinct edge slopes, and this bound is tight. Moreover, the slope number
of planar partial 3-trees of bounded degree ∆ is O(∆5), as shown by Jeĺınek et
al. [16], while all partial 2-trees of bounded degree ∆ have O(∆) slope number,
which is a result by Lenhart et al. [20]. Di Giacomo et al. [9] show that planar
graphs with at least five vertices and bounded degree ∆ ≤ 3 have planar slope
number four, which is worst case optimal.

The research in this paper is motivated by the following observations. The
fact that the best known upper bound on the planar slope number is O(∆5) for
planar partial 3-trees, while it is O(∆) for partial 2-trees, suggests to further
investigate the planar slope number of those planar graphs whose treewidth is
at most three. Also, the fact that non-planar drawings may require a number of
slopes that is unbounded in ∆ while the planar slope number of planar graphs is
bounded in ∆, suggests to study how many slopes may be needed to construct
straight-line drawings that are “nearly-planar” in some sense, i.e., where only
some types of edge crossings are allowed.

We study outer 1-planar graphs, which are graphs that admit drawings where
each edge is crossed at most once and each vertex is on the boundary of the
outer face. This family of graphs has recently received remarkable attention
in the general research framework of “graph drawing beyond planarity” (see,
e.g., [2, 6, 14]). In particular, in 2013, Auer et al. [2], and independently Hong
et al. [14], presented a linear-time algorithm to test outer 1-planarity. Both
algorithms produce an outer 1-planar embedding of the graph if it exists. Also,
outer 1-planar graphs are known to be planar graphs and they have treewidth
at most three [2].

Given an outer 1-planar graph G, we define the outer 1-planar slope number
of G as the minimum number of distinct slopes required by any outer 1-planar
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Figure 1: (a) An outer 1-planar drawing Γ of an outer 1-planar graph G. (b) Illustra-
tion of the faces defined in the embedding E(G) of G.

straight-line drawing of G. We prove the following results.

1. We study planar straight-line drawings of outer 1-planar graphs of bounded
degree ∆ and show an O(∆2) upper bound for the planar slope number.
Hence, for this special family of planar partial 3-trees, we are able to
reduce the general O(∆5) upper bound [16].

2. We show that the outer 1-planar slope number of outer 1-planar graphs
with maximum degree ∆ is at most 6∆+12. This result goes in the direc-
tion of studying how many slopes may be needed to construct straight-line
drawings that are “nearly-planar”. Moreover, since outerplanar drawings
are a special case of the outer 1-planar drawings, this result generalizes
the above mentioned upper bound on the (outer)planar slope number of
outerplanar graphs [18].

Our results are constructive and give rise to linear-time drawing algorithms
in the real RAM model of computation. Also, it may be worth recalling that
the study of 1-planar graphs, i.e., those graphs that can be drawn with at most
one crossing per edge, has recently received a lot of interest (see, e.g., [1, 3, 5,
6, 10, 12, 13, 15, 19, 23, 25]).

In Section 2 we give preliminary definitions and basic properties of outer 1-
planar graphs. The planar slope number of outer 1-planar graphs is investigated
in Section 3, while their outer 1-planar slope number is studied in Section 4.
Section 5 lists some open problems.

2 Preliminaries and Basic Definitions

Basic Definitions. A graph G is simple if contains neither loops nor multiple
edges. Also, G is undirected if its edges are not oriented. In this paper we only
consider simple, undirected graphs. A drawing Γ of a graph G = (V,E) is a
mapping of the vertices in V to points of the plane, and of the edges in E to
Jordan arcs connecting their corresponding endpoints but not passing through
any other vertex. We only consider simple drawings, i.e., drawings such that
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two arcs representing two edges have at most one point in common, and this
point is either a common endpoint or a common interior point where the two
arcs properly cross each other. Γ is a straight-line drawing if every edge is
mapped to a straight-line segment. Γ is a planar drawing if no edge is crossed;
it is a 1-planar drawing if each edge is crossed at most once. A planar graph is
a graph that admits a planar drawing; a 1-planar graph is a graph that admits
a 1-planar drawing.

A planar drawing of a graph subdivides the plane into topologically con-
nected regions, called faces. The unbounded region is called the outer face. A
planar embedding E(G) of a planar graph G is an equivalence class of planar
drawings that define the same set of faces. A planar embedding is described
by the circular list of the edges around each vertex together with the choice of
the outer face. The concept of planar embeddings can be extended to 1-planar
drawings as follows. Given a 1-planar drawing Γ we can planarize it by replacing
each crossing with a dummy vertex. Let Γ∗ be the resulting planarized draw-
ing, then the (curves representing the) edges of Γ∗ are called edge fragments of
G. Note that an edge fragment corresponds either to a portion of a real edge
connecting a vertex to a crossing, or to a real edge connecting two vertices. In
the latter case the fragment is said to be trivial. The planarized drawing Γ∗

subdivides the plane into topologically connected regions, called faces. A 1-
planar embedding E(G) of a 1-planar graph G is an equivalence class of 1-planar
drawings whose planarized versions define the same set of faces. An outerplanar
drawing is a planar drawing with all vertices on the outer face. An outerplanar
graph is a graph admitting an outerplanar drawing. An outer 1-planar drawing
is a 1-planar drawing with all vertices on the outer face. An outer 1-planar
graph is a graph admitting an outer 1-planar drawing. An outer 1-plane graph
G is an outer 1-planar graph with a given outer 1-planar embedding E(G). See
also Figure 1 for an example.

The slope s of a line ` is the angle that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with `. The slope of a segment
representing an edge in a straight-line drawing is the slope of the supporting
line containing the segment. Given a family of graphs G and a drawing type D
(for example planar drawings or outer 1-planar drawings), a set of slopes S is
universal for 〈G,D〉, if every graph G in G admits a drawing Γ that respects the
drawing type D and that only uses slopes in S. In Section 3 we will define a
universal set of slopes for planar straight-line drawings of outer 1-planar graphs
with maximum degree ∆. Similarly, in Section 4 we will define a universal set
of slopes for outer 1-planar straight-line drawings of outer 1-planar graphs with
maximum degree ∆.

SPQR-tree Decomposition. Let G be a biconnected graph, then a separation
pair is a pair of vertices whose removal disconnects G. A split pair is either
a separation pair or a pair of adjacent vertices. A split component of a split
pair {u, v} is either an edge (u, v) or a maximal subgraph Guv ⊂ G such that
{u, v} is not a split pair of Guv. Vertices {u, v} are the poles of Guv. The
SPQR-tree T of G with respect to an edge e is a rooted tree that describes
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Figure 2: (a) A planar graph G; (b) The SPQR-tree T of G. For each node that is not
a Q-node the skeleton is depicted in the gray balloons; for Q-nodes the corresponding
edge is indicated.
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a recursive decomposition of G induced by its split pairs. In what follows, we
use the term nodes for the vertices of T , to distinguish them from the vertices
of G. The nodes of T are of four types S,P ,Q, or R. Each node µ of T has
an associated biconnected multigraph called the skeleton of µ, and denoted as
σ(µ). The skeleton of µ contains a marked edge, called the reference edge. At
each step, given the current split component G∗, its split pair {s, t}, and a node
ν in T , the node µ of the tree corresponding to G∗ is introduced and attached
to its parent vertex ν, while the decomposition possibly recurses on some split
component of G∗. At the beginning of the decomposition the parent of µ is a
Q-node corresponding to the edge e = (u, v), G∗ = G \ e, and {s, t} = {u, v}.
In the recursive step, one of the following cases applies. See also Figure 2.

• Base case: G∗ consists of a single edge between s and t. Then, µ is a
Q-node whose skeleton is G∗ itself plus the reference edge (s, t).

• Parallel case: The split pair {s, t} has split components G1, G2, . . . , Gk
(k ≥ 2). Then, µ is a P -node whose skeleton is composed of k+ 1 parallel
edges between s and t, one for each split component Gi, plus the reference
edge (s, t). The decomposition recurses on each Gi with µ as parent node.

• Series case: G∗ is not biconnected, and therefore it has at least one cut
vertex (a vertex whose removal disconnects G∗). Then, µ is an S-node
whose skeleton is defined as follows. Let v1, v2, . . . , vk−1, where k ≥ 2, be
the cut vertices of G∗. The skeleton of µ is a path e1, e2, . . . , ek, where ei =
(vi−1, vi), v0 = s and vk = t, plus the reference edge (s, t) which makes
the path a cycle. The decomposition recurses on the split components
corresponding to each e1, e2, . . . , ek with µ as parent node.

• Rigid case: None of the other cases is applicable. A split pair {s′, t′} is
maximal with respect to {s, t}, if for every other split pair {s∗, t∗}, there
is a split component that includes the vertices s′, t′, s, t. Let {s1, t1},
{s2, t2}, . . . , {sk, tk} be the maximal split pairs of G∗ with respect to
{s, t} (k ≥ 1), and, for i = 1, 2, . . . , k, let Gi be the union of all the split
components of {si, ti}. Then µ is an R-node whose skeleton is obtained
from G∗ by replacing each component Gi with an edge between si and ti,
plus the reference edge (s, t). The decomposition recurses on each Gi with
µ as parent node.

SPQR-trees of a graph G with respect to different edges are the same if
considered as unrooted trees. So computing an SPQR-tree with respect to a
different edge is equivalent to choose a different root for T .

Let µ be a node of T and consider its skeleton σ(µ). Let e1, e2, . . . , ek
(k ≥ 1) be the edges of σ(µ) different from the reference edge (sµ, tµ). Denote
by νi (1 ≤ i ≤ k) the child of µ corresponding to the edge ei. The frame of µ
is the graph obtained from σ(µ) by removing the reference edge (sµ, tµ). The
pertinent graph of µ, denoted by Gµ, is a subgraph of G defined recursively as
follows. If µ is a Q-node, then Gµ coincides with the frame of µ, i.e., it is a
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Figure 3: Skeleton σ(µ) of an R-node µ. The dashed edge is the reference edge, while
the two bold edges are the two edges of G associated with two children of µ that are
Q-nodes. (a) An outer 1-planar embedding of σ(µ); (b) a planar embedding of σ(µ).

single edge between the poles of µ. If µ is an internal node, then Gµ is obtained
from its frame by replacing each edge ei with the pertinent graph Gνi of νi (for
i = 1, 2, . . . , k).

Structural Properties of Outer 1-planar Graphs. The structural proper-
ties of outer 1-planar graphs have been studied in [2, 14]. Here we list a few of
them that will be useful in Sections 3 and 4.

Let G be a biconnected outer 1-planar graph and let T be its SPQR-tree
rooted at an arbitrary Q-node. Then the next property derives from Lemma 5
in [14] and defines the structure of the skeleton of the R-nodes of T (see also
Figure 3).

Property 1 Let µ be an R-node of T . Then:

(i) The skeleton σ(µ) is isomorphic to K4.

(ii) Two children of µ are Q-nodes such that they do not share any pole.

We now give a structural property on the children of a P -node. Its proof is
based on the following fact proved in [14]: Given a pair of vertices u and v in an
outer 1-planar graph G, there can be at most five edge-disjoint paths connecting
u and v; also, if the number of paths is five, one of them is a single edge.

Property 2 There exists at most one P -node in T with more than one R-node
as a child. Also, if such a P -node exists, it is the child of the root of T and it
has exactly two children.

Proof: Assume ξ is a P -node of T having two R-nodes among the set of its
children. We first prove that ξ does not have any further child besides these
two R-nodes, and then show that the parent of ξ is the root of T .

Let µ1 and µ2 be two R-nodes whose parent is ξ and let sξ and tξ be the
poles of ξ. By Property 1 σ(µ1) is isomorphic to K4; hence, the pertinent graph
Gµ1

contains two edge-disjoint paths connecting sξ and tξ and so does Gµ2
.

Note that each such path has at least two edges. Since the maximum number of
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edge-disjoint paths between the same pair of vertices in any outer 1-planar graph
is at most five [14], and since the subgraph of G represented by the reference
edge (sξ, tξ) contains at least one more edge-disjoint path connecting sξ and tξ,
it follows that ξ cannot have a third child. Indeed, a third child would imply
the existence of a sixth path between the two poles. Furthermore, as recalled
above, one of the five paths must be an edge. It follows that the parent of ξ is
a Q-node. Since the root of T is the only Q-node with a child, then the parent
of ξ is the root of T . �

3 The Planar Slope Number

In this section we describe an algorithm, called BP-Drawer, that computes a
planar drawing of a biconnected outer 1-planar graph G with maximum degree
∆, using at most 4∆2 − 4∆ slopes. This result is then extended to simply
connected graphs with a number of slopes equal to 4∆2 + 12∆ + 8.

A Universal Set of Slopes. We start by defining a universal set of slopes that
are used by algorithm BP-Drawer to draw in a planar way every biconnected
outer 1-planar graph with maximum degree ∆. Let θ = π

4∆ and observe that
0 < θ ≤ π

12 when ∆ ≥ 3. Then denote by green slopes the set of slopes defined
as gi = (i − 1)θ, for i = 1, 2, . . . , 4∆. For each green slope gi, we define ∆ − 1

yellow slopes as yi,j = gi + arctan
(

tan(g4∆) tan(g3)
tan(gj)

)
with j = 3∆, . . . , 4∆ − 2.

The reason for this choice will be clarified in the proof of Lemma 4. The union
of the green and yellow slopes defines the universal set of slopes T∆. We observe
that gi < yi,j < gi+1, for each 1 ≤ i < 4∆ and 3∆ ≤ j ≤ 4∆ − 2. That
is, tan(g4∆) = − tan(g2) = − tan(θ) (see Figure 4(a)). Also, for each j =
3∆, . . . , 4∆ − 2, tan(gj) is negative and larger in absolute value than tan(g3)
(which is positive). It follows that the argument of the arctangent is positive
and strictly smaller than tan(θ); since the arctangent function is monotonically
increasing in the range (−π2 , π2 ), the term added to gi is strictly smaller than θ,
i.e, yi,j < gi+1. On the other hand, the argument of the arctangent is greater
than 0 for every j = 3∆, . . . , 4∆− 2 and thus gi < yi,j .

Algorithm Overview. Algorithm BP-Drawer takes as input a biconnected
outer 1-planar graph G with maximum degree ∆ and returns a planar straight-
line drawing Γ of G that uses only slopes in T∆. Figure 5 shows a drawing
computed by algorithm BP-Drawer. It first constructs the SPQR-tree T
rooted at a Q-node ρ, and then draws G by visiting T bottom-up. At each step
a node µ of T different from the child of the root is processed and a drawing
Γµ of its pertinent graph Gµ is computed. If µ is a Q-node, then its pertinent
graph is an edge (sµ, tµ) and is drawn as a horizontal segment of unit length.
If µ is not a Q-node (i.e., is not a leaf), Γµ is computed by properly combining
the already computed drawings of the pertinent graphs of the children of µ. Let
sµ and tµ be the poles of µ. We denote by ∆(sµ) and ∆(tµ) the degree of sµ
and tµ in Gµ, respectively. Then for each drawing Γµ the algorithm maintains
the following three invariants.
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Figure 4: (a) Illustration of the green slopes. (b) Illustration of Invariant Ic

Figure 5: A planar drawing computed by algorithm BP-Drawer. The maximum
degree of the input graph is ∆ = 4.

Ia. Γµ is planar.

Ib. Γµ uses only slopes in T∆.

Ic. Γµ is contained in a triangle τµ such that sµ and tµ are placed at the
corners of its base. Also, βµ ≤ (∆(sµ)− 1)θ and γµ ≤ (∆(tµ)− 1)θ, where
βµ and γµ are the internal angles of τµ at sµ and tµ, respectively (see
Figure 4(b)).

The root ρ of T and its unique child ξ are handled in a special way. If µ is
a Q-node, Gµ is an edge and its drawing is a horizontal segment that satis-
fies Invariants Ia, Ib, and Ic. About Invariant Ic, the triangle τµ is, in this
case, a degenerate triangle whose height is 0. If µ is not a Q-node, Γµ is
computed by combining the drawings Γη1 ,Γη2 , . . . ,Γηk of the pertinent graphs
Gη1

, Gη2
, . . . , Gηk of the children η1, η2, . . . , ηk of µ. To this aim, if necessary,

the drawings Γη1
,Γη2

, . . . ,Γηk are manipulated by applying the following oper-
ations.

• The triangle τηj (1 ≤ j ≤ k) can be arbitrarily scaled without modifying
the slopes used in Γηj . Observe that if ηj is a Q-node, then τηj is a
segment, and the scaling operation only changes its length.

• The triangle τηj (1 ≤ j ≤ k) can be rotated by an angle c·θ, with c integer.
The resulting drawing maintains invariant Ib. In fact, each green slope
gi, for i = 1, 2, . . . , 4∆, used in τηj will be transformed into another green
slope gi+c = (i− 1 + c)θ = gi + c · θ, where i+ c is considered modulo 4∆.
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Figure 6: Illustration of an R∗-node: (a) Transformation of the SPQR-tree; (b) Merg-
ing Gµ and Gη into Gφ.

Similarly, any yellow slope yi,j will be transformed into another yellow
slope yi+c,j .

• Finally, although the children of µ may share one or both the poles, we
consider each pertinent graph to have its own copy of its poles. Then,
given two drawings Γηi to Γηj (with 1 ≤ i < j ≤ k) that share either
two poles (this is always true when µ is a P -node) or one pole (this may
happen when µ is either an S- or R-node), we say that we attach Γηi
to Γηj meaning that we make the points representing the shared poles to
coincide.

Before describing how BP-Drawer works in details, we need to distinguish
between R-nodes whose poles are adjacent in G and R-nodes whose poles are
not adjacent in G. For this reason we introduce R∗-nodes. Let µ be an R-node;
then if the poles sµ and tµ of µ are adjacent in G, the parent ν of µ is a P -node
that has (at least) another child η that is a Q-node (the edge associated with η
is (sµ, tµ)). We replace µ with a new node ϕ, that, for the sake of description, is
called an R∗-node and we make η a child of ϕ. Also, the children of µ become
children of ϕ. If µ and η were the only two children of ν, then ϕ also replaces
ν. The pertinent graph of ϕ is Gϕ = Gµ ∪ Gη, and the reference edge of ϕ is
(sµ, tµ). See also Figure 6.

The Drawing Algorithm. Algorithm BP-Drawer first computes the SPQR-
tree T of G. Then, R∗-nodes are created if any. In the next lemmas we show
how BP-Drawer computes a drawing Γµ of the pertinent graph Gµ of a node
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Figure 7: Illustration of Lemma 1. (a) The pertinent graph Gµ of an S-node µ. (b) The
planar drawing of Gµ.

µ of T , depending on the type of µ. Recall that ξ is the (only) child of the root
ρ of T and that the leaves of T are Q-nodes by definition.

Lemma 1 Let µ be an S-node different from ξ. Then Gµ admits a straight-line
drawing Γµ that respects Invariants Ia, Ib, and Ic.

Proof: Let η1, η2, . . . , ηk be the k ≥ 2 children of µ in T . In order to construct
Γµ, the drawings Γη1 , Γη2 , . . . , Γηk of the pertinent graphs of η1, η2, . . . , ηk
are combined as follows, see also Figure 7. If k > 2, then, in order to satisfy
Invariant Ib, we need that the height of τηi is less than the minimum between
the height of τη1

and the height of τηk . To this aim, BP-Drawer scales down
Γηi , for i = 2, . . . , k − 1, if necessary. Then, Γη1

,Γη2
, . . . ,Γηk are attached to

each other so that the bases of the triangles τη1 , τη2 , . . . , τηk are all contained in
the same horizontal straight line, and such that all the vertices of Gµ are above
or on the horizontal segment sµtµ. Invariant Ia holds by construction because
we combined the drawings in such a way that they do not intersect each other
(except at common vertices). Invariant Ib holds since the slopes of Γηi , for
i = 1, . . . , k, have not been changed. Invariant Ic holds because it holds for Γη1

and Γηk and all triangles τηi (for i = 1, . . . , k) have a height smaller than that
of τη1 and τηk (due to the scaling). �

In order to prove the next lemma, we introduce an additional operation,
denoted by bend(Γµ, β

∗
µ, γ
∗
µ), that takes as input the drawing Γµ of an S-node µ

(computed as shown in the proof of Lemma 1) together with two angles β∗µ and
γ∗µ, and transforms Γµ as follows. Let η1, η2, . . . , ηk, be the k ≥ 2 children of µ
in T and consider the drawings Γη1 , Γη2 , . . . , Γηk , of their pertinent graphs. Γµ
is first rotated so that the segment sµtµ is contained in the line with slope β∗µ
that passes through sµ. Next, the subdrawing Γηk of Γµ is rotated so that the
segment sηktηk is contained in the line with slope π − γ∗µ that passes through
tηk = tµ. Finally, if necessary, Γηk is scaled, so that sµ and tµ are horizontally
aligned. See also Figure 8 for an illustration.

Lemma 2 Let µ be a P -node different from ξ. Then Gµ admits a straight-line
drawing Γµ that respects Invariants Ia, Ib, and Ic.
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Γη1 Γηk

β∗
µ

γ∗µ

Γη1

Γηk

β∗
µ

Γη1
Γηk

tη1

Figure 8: Illustration of the bend(Γµ, β
∗
µ, γ

∗
µ) operation.

Proof: By Property 2, since µ is different from ξ, µ has at most one R-node
among its children. Moreover, by the definition of the SPQR-tree, it cannot
have a P -node as a child. Thus, the children of µ are all S-nodes, except for
at most one child, which can be an R-node, a Q-node or an R∗-node. Denote
by η1, η2, . . . , ηk, the k ≥ 2 children of µ, and let η1 be the child of µ that is
not an S-node, if it exists. Then in any case, η2, η3, . . . , ηk are all S-nodes.
We apply the following operations: bend(Γηi , β

∗
ηi , γ

∗
ηi), for i = 2, 3, . . . , k, where

the angles β∗ηi , γ
∗
ηi are computed as follows. For i = 2 we have β∗η2

= βη1
+ θ,

γ∗η2
= γη1

+ θ, while for i = 3, 4, . . . , k we have β∗ηi = β∗ηi−1
+ βηi−1

+ θ, γ∗ηi =
γ∗ηi−1

+ γηi−1
+ θ. Then we attach Γη1

, Γη2
, . . . , Γηk to each other (scaling some

of them if necessary). See also Figure 9 for an illustration.

sµ tµ

Gη2

Gη3

Gη1

(a)

τµ

Γη2

Γη3

Γη1
sµ tµ

θ θ

(b)

Figure 9: Illustration of Lemma 2. (a) The pertinent graph Gµ of an P -node µ.
(b) The planar drawing of Gµ.

Invariants Ia and Ib hold by construction, since we combined the drawings in
such a way that they do not intersect each other (except at common vertices) and
are rotated by angles that are integer multiples of θ. Consider now Invariant Ic.
By construction, Γµ is contained in a triangle τµ such that sµ and tµ are placed
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sµ=sη1=sη4
tµ=tη3=tη5Gη2

Gη5

Gη4
tη4=sη2=sη3

tη1=tη2=sη5

Gη1

Gη3

(a)

sµ

∆(tη3)θ

tµ

Γη1

Γη3

Γη2

τµ

θ

sη5

sη3
(b)

Figure 10: Illustration of Lemma 3. (a) The pertinent graph Gµ of an R-node µ.
(b) The planar drawing of Gµ.

at the corners of its base. Also, we have that ∆(sµ) =
∑k
i=1 ∆(sηi) and ∆(tµ) =∑k

i=1 ∆(tηi). By construction, βµ =
∑k
i=1 βηi +(k−1)θ ≤∑k

i=1(∆(sηi)−1)θ+

(k − 1)θ = ∆(sµ)θ − kθ + (k − 1)θ = (∆(sµ)− 1)θ. Similarly, γµ =
∑k
i=1 γηi +

(k−1)θ ≤∑k
i=1(∆(tηi)−1)θ+(k−1)θ = ∆(tµ)θ−kθ+(k−1)θ = (∆(tµ)−1)θ.

Hence, Invariant Ic holds. �

Lemma 3 Let µ be an R-node different from ξ. Then Gµ admits a straight-line
drawing Γµ that respects Invariants Ia, Ib, and Ic.

Proof: By Property 1, the skeleton σ(µ) of µ is isomorphic to K4 and at least
two children of µ are Q-nodes. Also, the two edges corresponding to these
Q-nodes do not share an end vertex and each one of them is incident to a
distinct pole of µ. Let η1, η2, η3, η4, and η5 be the children of µ; then we assume
that η4 and η5 are two Q-nodes that do not share a pole. Also, we assume
sµ = sη1

= sη4
, tµ = tη3

= tη5
, tη1

= tη2
= sη5

, and tη4
= sη2

= sη3
. See also

Figure 10(a) for an illustration.
We construct a drawing of Gµ as follows, see also Figure 10(b). We draw

the edge associated with η5 as a segment whose slope is the green slope (4∆−
∆(tη3))θ and whose length is such that sη5 is vertically aligned with sη3 . We
rotate Γη2

so that the segment sη2
tη2

uses the green slope g2∆+1 = π
2 . We then

attach Γη2
, Γη3

, and Γη5
to each other (scaling some of them if necessary). We

draw the edge corresponding to η4 with the horizontal slope g1, and stretch
it so that sη4 = sµ belongs to the line with slope g2 passing through sη5 .
We rotate Γη1 so that the segment sη1tη1 uses the green slope g2. We then
attach Γη1

, Γη5
, and Γη4

(scaling some of them if necessary). Invariant Ib
holds because Γη1

, Γη2
, Γη3

, Γη4
, and Γη5

are rotated by angles that are integer
multiples of θ. Invariant Ia holds because the drawings are combined so that
they do not intersect each other except at common endpoints. To see this fact,
we show that Γη2 is completely contained inside the triangle τ defined by the
three vertices sµ, sη3 , and sη5 (except for the segment sη3sη5 that Γη2 shares
with τ). The angle inside τ at sη3

is π
2 , while the angle inside τ at sη5

is
at least π

4 (because the angle inside τ at sµ is θ < π
4 ). On the other hand,

βη2
≤ (∆(sη2

)− 1)θ ≤ (∆− 3)θ < π
4 , and γη2

≤ (∆(tη2
)− 1)θ ≤ (∆− 3)θ < π

4 .
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sµ=sη1=sη4
tµ=tη3=tη5Gη2

Gη5

Gη4

tη4=sη2=sη3

tη1=tη2=sη5

Gη1

Gη3

Gη6

(a)

sµ

∆(tη3)θ

tµ
Γη3

Γη2

τµ

2θ
θ

Γη1

sη5

sη3

(b)

Figure 11: Illustration of Lemma 4. (a) The pertinent graph Gµ of an R∗-node µ.
(b) The planar drawing of Gµ.

Thus, the triangle τη2
is completely inside τ except for the vertical side shared by

the two triangles. This implies that Γη2
does not intersect Γη1

and Γη3
(except at

common endpoints). Concerning Invariant Ic, we have that ∆(sµ) = ∆(sη1
)+1,

and ∆(tµ) = ∆(tη3
)+1. Moreover, βµ = βη1

+θ ≤ (∆(sη1
)−1)θ+θ = ∆(sη1

)θ =
(∆(sµ)−1)θ. Finally, γµ = γη3+θ ≤ (∆(tη3)−1)θ+θ = ∆(tη3)θ = (∆(tµ)−1)θ.�

Lemma 4 Let µ be an R∗-node different from ξ. Then Gµ admits a straight-
line drawing Γµ that respects Invariants Ia, Ib, and Ic.

Proof: Since µ is an R∗-node, it is obtained by merging an R-node µ′ and
a Q-node representing the edge (sµ′ , tµ′). Following the same notation used in
Lemma 3, let η1, η2, η3, η4, and η5 be the children of µ′, as in Figure 11(a). Also,
µ has a sixth child η6 that is a Q-node corresponding to the edge (sµ, tµ). We
construct a drawing of Gµ in a similar way as in the proof of Lemma 3 (see
Figure 11(b)). The main difference is that we need to rotate Γη3

and Γη4
. In

the R-node case, the horizontal line through sµ and tµ contained the segments
sη3tη3 and sη4tη4 , while in the present case it has to host the edge (sµ, tµ).
As a consequence Γη3 and Γη4 have to be rotated. We rotate Γη3 so that the
segment sη3tη3 uses the green slope g4∆. Then, we draw the edge associated
with η5 as a segment whose slope is the green slope gj , with j = (4∆−∆(tη3

)),
and whose length is such that sη5

is vertically aligned with sη3
. In the same

way as for R-nodes, we rotate Γη2
so that the segment sη2

tη2
uses the green

slope g2∆+1 = π
2 . We then attach Γη2 , Γη3 , and Γη5 (scaling some of them if

necessary). We draw the edge corresponding to η6 with the horizontal slope
g1, and stretch it so that sη6

= sµ belongs to the line with slope g3 passing
through sη5

. We now rotate Γη1
so that the segment sη1

tη1
uses the green slope

g3 (unlike in the R-node case where we used the slope g2) and attach it to Γη5

and Γη6
. Finally, the edge corresponding to η4 is drawn as the segment sµsη3

.
Invariant Ia holds because the drawings Γη1 , Γη2 , Γη3 , Γη4 , Γη5 , and Γη6 do not
intersect each other except at common endpoints. To see this fact, we show that
Γη2

is completely contained inside the triangle τ defined by the three vertices
sµ, sη3

, and sη5
(except for the segment sη3

sη5
that Γη2

shares with τ). The
angle inside τ at sη3

is π
2 + φ, where φ is the slope of the edge corresponding
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sµ tµ

sη5

sη3

δx2 δx1

g3
φ gj

g4∆ = θ

Figure 12: Illustration for the proof of Lemma 4.

to η4. The angle inside τ at sµ is equal to 2θ − φ. Then, the angle inside τ
at sη5 is π − π

2 − φ − 2θ + φ = π
2 − 2θ, which is at least π

4 because 2θ < π
4 .

Since βη2 <
π
4 and γη2 <

π
4 , the triangle τη2 is completely inside τ except for

the vertical side shared by the two triangles. This implies that Γη2
does not

intersect Γη1
and Γη3

(except at common endpoints). Concerning Invariant Ib,
we observe that Γη1

, Γη2
, Γη3

, and Γη5
are rotated by an angle that is a multiple

of θ and therefore Ib holds by construction for each of them. We now show that
the slope φ of the edge corresponding to η4 is in fact either a green slope or a
yellow one (see Figure 12). Let δx1 be the horizontal distance between sη3 and
tµ and let δx2 be the horizontal distance between sµ and sη3

. Then, by applying
some trigonometry we have:

−δx1 tan(g4∆) = δx2 tan(φ)

and:

−δx1 tan(gj) = δx2 tan(g3)

where gj is the slope of the segment representing the edge corresponding to η5

(and therefore j = 4∆−∆(tη3
)). From the two previous equations we obtain:

tan(φ) =
tan(g4∆) tan(g3)

tan(gj)

Note that 1 ≤ ∆(tη3
) ≤ ∆ and therefore 3∆ ≤ j ≤ 4∆ − 1. If j = 4∆ − 1,

then tan(g3) = − tan(gj) and tan(φ) = − tan(g4∆) = tan(g2), hence φ = g2,

i.e., φ is a green slope. Otherwise φ = arctan
(

tan(g4∆) tan(g3)
tan(gj)

)
and therefore φ

is the yellow slope y1,j (recall that g1 = 0). Concerning Invariant Ic, we have
that ∆(sµ) = ∆(sη1

) + 2 and ∆(tµ) = ∆(tη3
) + 2. Moreover, βµ = βη1

+ 2θ ≤
(∆(sη1

)−1)θ+2θ = (∆(sµ)−1)θ. Finally, γµ = γη3
+2θ ≤ (∆(tη3

)−1)θ+2θ =
(∆(tµ)− 1)θ. �

In the next lemma we process the root of T and its child. Since after that
there are no other nodes to be processed, Invariant Ic is not needed anymore.

Lemma 5 Let ρ be the root of T and let ξ be its unique child. Then G = Gρ∪Gξ
admits a straight-line drawing Γ that respects Invariants Ia and Ib.
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s

Γρ∪η1

t

Γρ∪η2

Figure 13: Illustration for the proof of Lemma 5.

Proof: Denote by (s, t) the edge associated with ρ. Observe that s = sξ and
t = tξ. If ξ is an R-node, then G = Gρ ∪Gξ corresponds to the pertinent graph
of an R∗-node, thus the drawing Γµ of Gµ can be computed with the same
technique described in the proof of Lemma 4 for R∗-nodes. Thus, invariants Ia
and Ib hold. If ξ is an S-node, we first compute a drawing of Gξ according to
the technique of Lemma 1, then the operation bend(Γξ, θ, θ) is performed and
finally the edge (s, t) is added by using the horizontal green slope g1. Also in
this case invariants Ia and Ib hold. If ξ is a P -node, we need to distinguish
between two cases. Either ξ has two R-nodes as children or not. If ξ has at most
one child that is an R-node, then G = Gρ ∪ Gξ can be drawn with the same
technique described in the proof of Lemma 2, for which invariants Ia and Ib
hold. If instead ξ has exactly two R-nodes as children, denote these two children
as η1 and η2. Observe that Gρ ∪Gη1 corresponds to the pertinent graph of an
R∗-node, thus it can be drawn with the same technique described in the proof
of Lemma 4 for R∗-nodes. Similarly for Gρ ∪ Gη2

. The two drawings can be
attached by flipping (and possibly scaling) one of them as in Figure 13. Also in
this case invariants Ia and Ib hold. �

Lemma 6 Let G be a biconnected outer 1-planar graph with n vertices and with
maximum degree ∆. Then G admits a planar straight-line drawing with at most
4∆2 − 4∆ slopes. Also, this drawing can be computed in O(n) time in the real
RAM model of computation.

Proof: By Lemmas 1, 2, 3, 4, and 5, G has a planar straight-line drawing with
at most 4∆2 − 4∆ slopes. Concerning the time complexity, we recall that the
SPQR-tree T of G can be computed in O(n) time [7], and the R∗-nodes can be
created (if any) in O(n) time, as T has O(n) nodes.

In order to achieve linear time complexity, we implement the drawing com-
putation phase of BP-Drawer so that it works in two phases. In the first
phase we perform a bottom-up visit of T and for each node µ, we compute a
drawing of the frame of µ for S-nodes, R-nodes, and R∗-nodes or we combine
the drawings of the frames of the children of µ for P -nodes. At the end of
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v1
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v3

v4

v5

v6

v7

v8
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(a)
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v3

v4

v5

v6

v7

v8

v9

v10
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(b)

Figure 14: Illustration of the technique to biconnect a connected outer 1-plane graph.
The numbering of the vertices corresponds to a possible order obtained walking clock-
wise along the border of the outer face. In (a) a connected outer 1-plane graph G is
shown. In (b) the bold edges are those that have been inserted to make G biconnected.

this phase, each node of T is associated with a drawing of its frame (for S-
nodes, R-nodes, and R∗-nodes) or with a drawing of the union of the frames
of its children (for P -nodes). Let n∗µ be the number of vertices in the drawing
associated with each node µ. This drawing can be computed in O(n∗µ) time.
The total number of vertices and edges of all the skeletons of T is O(n) [7].
Thus,

∑
µ∈T O(n∗µ) = O(n) and the first phase can be executed in O(n) time.

In the second phase we perform a top-down visit of T and compute the final
coordinates of each vertex of G, thus combining all the drawings computed in
the first phase. Once the coordinates of the vertices of the drawing associated
with µ have been fixed, we can fix the coordinates of the vertices of the draw-
ings associated with its children (or its grand-children in the case of P -nodes).
Again, since

∑
µ∈T O(n∗µ) = O(n), the time complexity of this phase is O(n).

We remark that in the real RAM model of computation we can store arbitrary
real numbers and we can compute rational functions over reals at unit cost (see,
e.g., [24]). �

Extension to Connected Graphs. We now describe how to handle simply
connected graphs, i.e., graphs that are connected but not biconnected. It is
known that a simply connected, outerplane graph (with a given outerplanar
embedding) can be modified into a biconnected outerplane graph by adding
edges [8]. This technique can be directly applied also to outer 1-plane graphs.
More specifically, let G be a simply connected outer 1-planar graph. Compute
an outer 1-planar embedding of G and consider the circular order of the vertices
of G obtained by walking clockwise along the border of the outer face of G
(starting from an arbitrary vertex). Observe that a vertex may be visited more
than once (if it is a cut vertex), however we consider it in the ordering only
the first time that we visit it. Then for each pair of consecutive vertices u
and v in this order, such that u and v are not connected by an edge, we add
the edge (u, v). At the end of this process the resulting graph is still outer
1-planar, as the only edges that we added are between vertices that appear
consecutively along the boundary of the outer face, and it is biconnected, as
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there exists a Hamiltonian cycle that passes through all the vertices. Moreover,
let ∆ be the maximum degree of the connected graph, then the maximum degree
of the resulting biconnected graph is at most ∆ + 2, since each vertex has one
predecessor and one successor in the visit, and thus no more than two edges
can be added to each vertex. Figure 14 shows an illustration of this technique.
By applying BP-Drawer to the resulting biconnected graph and removing the
inserted edges we obtain the following result.

Theorem 1 Let G be an outer 1-planar graph with n vertices and with max-
imum degree ∆. Then G admits a planar straight-line drawing with at most
4∆2 + 12∆ + 8 slopes. Also, this drawing can be computed in O(n) time in the
real RAM model of computation.

4 The Outer 1-planar Slope Number

In this section we present a second algorithm, called BO1P-Drawer, that takes
as input a biconnected outer 1-planar graph G with maximum degree ∆, and
returns an outer 1-planar straight-line drawing Γ of G with at most 6∆ slopes.
This result is then extended to simply connected graphs with a number of slopes
equal to 6∆ + 12.
Properties of Outer 1-planar Embeddings. We now refine the properties
introduced in Section 2 and introduce new properties that hold in the fixed
outer 1-planar embedding setting and that follow from the results in [14].

We consider a biconnected outer 1-plane graph G (i.e., an embedded graph)
and its SPQR-tree T . Let µ be a node of T , let Gµ be its pertinent graph and
let sµ, tµ be its poles. Then the augmented pertinent graph G+

µ = Gµ∪(sµ, tµ) of
µ is the graph obtained by adding the reference edge (sµ, tµ) of µ to Gµ. Notice
that Gµ and G+

µ = Gµ ∪ (sµ, tµ) are outer 1-plane graphs with the embeddings
inherited from the embedding of G. We denote by ρ the root of T , and by ξ its
(only) child.

The next property derives from Lemma 5 in [14], see also Figure 16(a). By
Property 1 the skeleton of an R-node µ is isomorphic to K4. The following
property describes the crossings in an outer 1-planar embedding of σ(µ).

Property 3 Let µ be an R-node of T . Then, in any outer 1-planar embedding
the skeleton σ(µ) has one crossing between two edges associated with two children
of µ that are Q-nodes.

In order to handle P -nodes, we now define a special kind of S-nodes, similarly
as done in [14].

Definition 1 Let µ be an S-node of T . Let η be the unique child of µ having
sµ as a pole, and let η′ be the unique child of µ having tµ as a pole. Then node
µ has a tail at sµ (tµ), if η (η′) is a Q-node.

A schematic representation of an S-node with a tail at sµ is depicted in
Figure 15. The next property derives from Lemma 6 in [14], see also Fig-
ures 16(b)-16(d).
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sµ tµ

Figure 15: An example of an S-node with a tail at sµ.

sµ tµ

(a)

tµsµ

(b) Case (i)

tµsµ

(c) Case (ii)

tµsµ

(d) Case (iii)

Figure 16: Illustration of Properties 3 and 4. (a) The pertinent graph of an R-node
µ. (b)-(d)The pertinent graph of a P -node µ whose reference edges (dashed) is not
crossed in G+

µ .

Property 4 Let µ be a P -node of T such that the reference edge (sµ, tµ) is not
crossed in G+

µ and belongs to the outer face of G+
µ , then one of the following

cases holds:

(i) µ has two children one of which is a Q-node and the other one is either
an R-node or an S-node.

(ii) µ has two children and none of them is a Q-node. Both are S-nodes, one
of them has a tail at sµ, and the other one has a tail at tµ. Also, the two
edges associated with these two tails cross each other in G.

(iii) µ has three children and one of them is a Q-node. For the remaining two
children case (ii) applies.

Thus, if µ is a P -node of T such that the edge (sµ, tµ) is not crossed and belongs
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sµ

tµ

(a) Case k = 2

sµ

tµ

(b) Case k = 3 (i)

sµ

tµ

(c) Case k = 3 (ii)

sµ

tµ

(d) Case k = 4

Figure 17: Illustration of Property 5. The pertinent graph of a P -node µ whose
reference edges (dashed) is crossed in G+

µ .

to the outer face of G+
µ then it can have at most three children as described in

Property 4. On the other hand, if the reference edge (sµ, tµ) is crossed in G+
µ ,

then µ can have up to four children and the following property applies [14], see
also Figures 17(a)-17(d) for an illustration.

Property 5 Let µ be a P -node of T such that the reference edge (sµ, tµ) is
crossed in G+

µ . Then µ has 2 ≤ k ≤ 4 children and one of them is an S-node
with a tail at sµ or at tµ. If k = 2, the other child is either a Q-/S-/ or an
R-node. If k = 3, then for the remaining children either case (i) or case (ii)
of Property 4 holds. If k = 4, then for the remaining children Property 4 (iii)
holds.

If µ is a P -node of T such that the edge (sµ, tµ) is crossed in G+
µ , as described

in Property 5, then it has an S-node with a tail at sµ or at tµ as a child. In the
first case, we call µ a P -node with a tail at sµ, in the second case we call µ a
P -node with a tail at tµ. Moreover, since the graph is outer 1-plane, the edge
of Gµ associated with the tail at sµ (tµ) crosses another edge, represented by
a Q-node ψ in T , having tµ (sµ) as an end vertex. This implies that in fact,
µ and ψ are two children of an S-node ν in T [14] (see also Figure 18). This
observation will be used later and in the next property, that is derived from
Lemma 7 in [14].

Property 6 Let µ be an S-node of T . Let η1, η2, . . . , ηk be the k children of µ
in T , such that tηi−1

= sηi , for i = 2, . . . , k. Then for each 1 ≤ i ≤ k, one of
the following cases applies:
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sµ tµ

tηi

sηi

Figure 18: Illustration of Property 6. The pertinent graph of an S-node µ with a child
ηi that is a P -node with a tail at sηi .

(i) ηi is either a Q-node, an R-node or a P -node such that the reference edge
(sηi , tηi) is not crossed in G+

ηi .

(ii) ηi is a P -node with a tail at sηi and ηi+1 (i < k) is a Q-node.

(iii) ηi is a P -node with a tail at tηi and ηi−1 (i > 1) is a Q-node.

A Universal Set of Slopes. We define a universal set of slopes used by
algorithm BO1P-Drawer to compute an outer 1-planar drawing of every bi-
connected outer 1-planar graph G with maximum degree ∆. Let α = π

2∆ and
observe that 0 < α ≤ π

6 when ∆ ≥ 3. Denote by blue slopes the set of slopes
defined as bi = (i− 1)α, for i = 1, 2, . . . , 2∆. For each of the 2∆ blue slopes, we
also define two red slopes as r−i = bi − ε and r+

i = bi + ε, for i = 1, 2, . . . , 2∆.
The value of ε can be any number such that:

0 < ε < ε̂ = α− arctan

(
tan (α)

1 + 2 tan (3/2α) tan (α/2)− 2 tan (α) tan (α/2)

)
The reason of this choice will be clarified in the proof of Lemma 10. We now

show that ε̂ is a positive value that depends only on ∆. The tangent function
is monotonically increasing in the range (−π2 , π2 ), thus tan (3/2α) > tan (α)
(0 < 2α ≤ π

3 ). This implies that the denominator of the argument of the
arctangent function is strictly larger than 1, and the overall argument is strictly
less than tan (α). Since the arctangent function is monotonically increasing, the
term subtracted from α on the right-hand side of the equation is strictly smaller
than α and therefore ε̂ is greater than zero. The union of the blue and red
slopes defines the universal set of slopes S∆ of size 6∆.

Algorithm Overview. Algorithm BO1P-Drawer works in a similar way
as BP-Drawer. It takes as input a biconnected outer 1-planar graph G with
maximum degree ∆ and returns an outer 1-planar straight-line drawing Γ of G
that uses only slopes in S∆. Figure 19 shows a drawing computed by algorithm
BO1P-Drawer. The algorithm first constructs an outer 1-planar embedding
of G, together with the SPQR-tree T of G rooted at a Q-node ρ, whose (only)
child is denoted as ξ. Then BO1P-Drawer draws G by visiting T bottom-up,
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handling ρ and ξ together as a special case. At each step a node µ of T different
from ξ is processed and a drawing Γµ of its pertinent graph Gµ is computed.
If µ is a Q-node, then its pertinent graph is an edge (sµ, tµ) and is drawn as
a horizontal segment of unit length. If µ is not a Q-node (i.e., is not a leaf),
Γµ is computed by properly combining the already computed drawings of the
pertinent graphs of the children of µ. Let sµ and tµ be the poles of µ. Then for
each drawing Γµ the algorithm maintains the following three invariants.

I1. Γµ is outer 1-planar.

I2. Γµ uses only slopes in S∆.

I3. Γµ is contained in a triangle τµ such that sµ and tµ are placed at the
corners of its base. Also, βµ < (∆(sµ) + 1/2)α and γµ < (∆(tµ) + 1/2)α,
where βµ and γµ are the internal angles of τµ at sµ and tµ, respectively.

Observe that Invariant I3 is well defined. In fact, for a node µ of T different
from ξ, we have that ∆(sµ) ≤ ∆ − 1 and ∆(tµ) ≤ ∆ − 1, which implies βµ <
(∆− 1/2)α = π/2− α/2 and γµ < (∆− 1/2) = π/2− α/2.

The root ρ of T and its unique child ξ are handled in a special way. The
drawing Γµ of Gµ is computed by combining the drawings Γη1

,Γη2
, . . . ,Γηk of

the pertinent graphs Gη1
, Gη2

, . . . , Gηk of the children η1, η2, . . . , ηk of µ. To
this aim, if necessary, the drawings Γη1

,Γη2
, . . . ,Γηk are manipulated similarly

as described for algorithm BP-Drawer. More specifically, each drawing Γηj
(1 ≤ j ≤ k) can be arbitrarily scaled, or it can be rotated by an angle c · α,
with c integer. Note that invariant I2 is maintained if a drawing is rotated by
an angle c · α. In fact, each blue slope bi, for i = 1, 2, . . . , 2∆, used in τηj will
be transformed into another blue slope bi+c = bi + c · α = (i − 1 + c)α, where
i + c is considered modulo 2∆. Similarly, any red slope will be transformed
into another red slope. Similarly, due to the symmetric choice of the slopes, a
horizontal flip of the drawing does not affect invariant I2. Also, two drawings
Γηi and Γηj (1 ≤ i < j ≤ k) that share either two poles or one pole can be
attached.

Before describing how BO1P-Drawer works in more details, we need to
distinguish between P -nodes for which Property 4 holds, and P -nodes for which
Property 5 holds instead. Recall that Property 4 applies if the reference edge of
the node is not crossed in the augmented pertinent graph, whereas Property 5
applies if the reference edge is crossed. Let ϕ be a P -node for which Property 5
applies, then ϕ has a tail at sϕ or at tϕ. We also know that ϕ is one of the

Figure 19: An outer 1-planar drawing computed by algorithm BO1P-Drawer. The
input graph is the same as shown in Figure 5.
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Figure 20: Illustration of an S∗-node: (a) Transformation of the SPQR-tree; (b) Merg-
ing Gµ and Gη into Gφ.

children of an S-node, say ν, and it shares a pole with a Q-node, denoted as
ψ (also a child of ν). We replace ϕ with a new node µ, that, for the sake of
description, is called an S∗-node and we make ψ a child of µ. Also, the children
of ϕ become children of µ. If ϕ and ψ were the only two children of ν, then we
also replace ν with µ. The pertinent graph of µ is Gµ = Gϕ ∪ Gψ, while the
reference edge of µ is (sϕ, tψ), if ϕ has a tail at sϕ, or (sψ, tϕ), if ϕ has a tail at
tµ. See also Figure 20. By means of this transformation we can consider only
P -nodes that have their reference edge uncrossed in their augmented pertinent
graphs, i.e., for which Property 4 holds. Similarly we can handle just S-nodes
whose children are S∗-/R-nodes or P -nodes for which Property 4 holds.

Embedding and SPQR-tree Computation. Algorithm BO1P-Drawer
first computes an outer 1-planar embedding of G. Then, algorithm BO1P-
Drawer computes the SPQR-tree T of G, and roots it at a Q-node ρ (whose
only child is denoted as ξ) such that the edge associated with it is not crossed
and belongs to the boundary of the outer face of G. Finally, algorithm BO1P-
Drawer creates the S∗-nodes, if necessary. We now show that the described
choice of the root is always possible and then give a property that describes the
implication of this choice.

Lemma 7 There exists an edge e of G, such that e is not crossed and it belongs
to the outer face of G.

Proof: Suppose by contradiction that all the edges of the outer face of G are
crossed, i.e., the outer face of G is composed of a set of edge fragments such that
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none of them is trivial. Then, replace each crossing in G with a dummy vertex,
and denote the planarized resulting graph by G∗. Each dummy vertex has
degree four and all its four neighbors are real vertices placed on the boundary
of the outer face. It follows that, walking around the boundary of the outer
face of G∗, there are no two consecutive dummy vertices. Also, there are no
two consecutive real vertices, as otherwise the edge fragment connecting these
two real vertices would be a trivial fragment that corresponds to an uncrossed
edge. Thus, walking around the boundary of the outer face of G∗ we find an
alternating sequence of real and dummy vertices. Consider now the subgraph
induced by the vertices (both real and dummy) that belong to the boundary
of the outer face of G∗, minus the chords (i.e., edges that do not belong to the
outer face) between real vertices. Denote this subgraph of G∗ as G′, and observe
it is outerplanar, since it is a subgraph of a planar graph and all its vertices
are on the outer face. In what follows we distinguish two cases depending on
whether G′ is biconnected or not.

Suppose first that G′ is biconnected. Denote by n′ and m′ the number of
vertices and the number of edges of G′, respectively. Note that n′ is an even
integer because real and dummy vertices alternate along the boundary of the
outer face. We now count the number of edges of G′. Since each edge in G′ has
exactly one dummy end-vertex, then m′ is equal to the sum of the degree of the
dummy vertices. Since we have n′

2 dummy vertices in G′, each having degree

4, we have m′ = 4 · n′2 = 2n′. Denote by F ′ the set of faces of G′. By Euler’s
formula we have that |F ′| = m′ − n′ + 2 = n′ + 2. Also, denote by deg(f),
the degree of a face f ∈ F ′, i.e., the number of edges that belong to face f .
The outer face has degree n′, while all the internal faces have degree at least 4.
Indeed, a triangular face would imply a chord between two real vertices (which
would correspond to an uncrossed edge on the outer face of G) or between two
dummy vertices (which does not exist by construction). Thus, we have that
2m′ =

∑
f∈F ′ deg(f) ≥ n′ + 4(n′ + 2 − 1), which implies that 2m′ ≥ 5n′ + 4.

Since m′ = 2n′, we obtain 4n′ ≥ 5n′ + 4, i.e., n′ ≤ −4, contradicting n′ > 0.

Suppose now that G′ contains one or more cut vertices. Since G is bicon-
nected, every cut vertex of G′ is a dummy vertex and it is shared by exactly two
components (because every dummy vertex has degree four). Also, there exists
at least one component C in G′ containing exactly one cut vertex. Similar to
the biconnected case, denote by n′C and m′C the number of vertices and the
number of edges of C, respectively. Also in this case, n′C is an even integer and
m′C is equal to the sum of the degree in C of the dummy vertices. The number

of dummy vertices in C is
n′C
2 , each having degree 4 except for the cut vertex

(that has degree 2). Thus m′C = 4 · (n
′
C

2 − 1) + 2 = 2n′C − 2. Denote by F ′C the
set of faces of C ′. By Euler’s formula we have that |F ′C | = m′C − n′C + 2 = n′C .
The outer face has degree n′C , while all the internal faces have degree at least
4. Thus, we have that 2m′C =

∑
f∈F ′C deg(f) ≥ n′C + 4(n′C − 1), which implies

that 2m′C ≥ 5n′C − 4. Since m′C = 2n′C − 2, we obtain 4n′C − 4 ≥ 5n′C − 4, i.e.,
n′C ≤ 0, contradicting n′C > 0. �
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Choosing the root of T as a non-crossed edge on the outer face, implies the
following property.

Property 7 If T is rooted at a Q-node associated with an edge e that is on the
outer face and is not crossed, then for every P -node µ of T either the reference
edge of µ is crossed or it belongs to the outer face of G+

µ .

Proof: We show that if the reference edge of µ is not crossed, it belongs to the
outer face of G+

µ . If µ coincides with the child ξ of the root, then this is trivially
true by the choice of the root. Consider a P -node µ that is not the child of
the root and whose reference edge (sµ, tµ) is not crossed. The reference edge
represents a subgraph of G containing at least one vertex distinct from sµ and
tµ (otherwise the subgraph would correspond to a Q-node in T and it would
be the root of T ); all the vertices of this subgraph are on the outer face of G
in the given outer 1-planar embedding. It follows that (sµ, tµ) must be on the
external face of G+

µ . �

A consequence of Property 7 is that for every P -node of T either Property 4
or Property 5 holds. Also, if the P -node is the child of the root ξ, only case
(ii) of Property 4 holds (otherwise there would be a multiple edge between the
poles of ξ).
The Drawing Algorithm. In the next lemmas we show how BO1P-Drawer
computes a drawing Γµ of the pertinent graph Gµ of a node µ, depending on
the type of µ. Recall that ξ is the (only) child of the root ρ of T and that the
leaves of T are Q-nodes by definition.

Lemma 8 Let µ be an S-node different from ξ. Then Gµ admits a straight-line
drawing Γµ that respects Invariants I1, I2, and I3.

Proof: Let η1, η2, . . . , ηk be the k ≥ 2 children of µ in T . In order to construct
Γµ, the drawings Γη1 , Γη2 , . . . , Γηk of the pertinent graphs of η1, η2, . . . , ηk
are combined as follows, see also Figure 7. If k > 2, then, in order to satisfy
Invariant I2, we need that the height of τηi is less than the minimum between
the height of τη1

and the height of τηk . To this aim, BO1P-Drawer scales
down Γηi , for i = 2, . . . , k− 1, if necessary. Then, Γη1

,Γη2
, . . . ,Γηk are attached

to each other so that the bases of the triangles τη1 , τη2 , . . . , τηk are all contained
in the same horizontal straight line, and such that all the vertices of Gµ are
above the horizontal segment sµtµ. Invariant I1 holds by construction because
we combined the drawings in such a way that they do not intersect each other
(except at common vertices). Invariant I2 holds since the slopes of Γηi , for
i = 1, . . . , k, have not been changed. Invariant I3 holds because it holds for Γη1

and Γηk and all triangles τηi (for i = 1, . . . , k) have a height smaller than that
of τη1 and τηk (due to the scaling). �

In order to prove the next lemma, we observe that the operation bend(Γµ, β
∗
µ,

γ∗µ), which is defined in Section 3, can be applied also to the drawings of S-nodes
computed as shown in the proof of Lemma 8.
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Gψ1 Gψk

sµ tµ

(a)

Γψ1 Γψk

τµ

α α
sµ tµ

(b)

Figure 21: Illustration of Lemma 9. (a) The pertinent graph Gµ of an P -node µ with
two children that are a Q-node and an S-node. (b) The outer 1-planar drawing of Gµ.

Lemma 9 Let µ be a P -node different from ξ. Then Gµ admits a straight-line
drawing Γµ that respects Invariants I1, I2, and I3.

Proof: Recall that, thanks to the definition of the S∗-nodes, here we need to
handle only P -nodes whose reference edges are not crossed in their augmented
pertinent graphs. By Property 4, one of the following cases applies: (i) µ has
two children one of which is a Q-node and the other one is either an R-node or
an S-node. (ii) µ has two children and none of them is a Q-node. Then both
are S-nodes, one of them has a tail at sµ and the other one has a tail at tµ.
Also, the two edges associated with these two tails cross each other in G. (iii) µ
has three children and one of them is a Q-node. For the remaining two children
case (ii) applies.

If we are in case (i), denote by η the child of µ which is not a Q-node.
Suppose first that η is an S∗-node or an R-node. As it will be shown in the
proofs of Lemmas 10 and 11, in these cases the horizontal blue slope b1 is
not used in Γη. Thus, the edge (sµ, tµ) can be safely drawn using b1 without
modifying Γη, and all invariants hold. Suppose now that η is an S-node and
see also Figure 21. We apply the following operation bend(Γη, α, α). Then we
draw the edge (sµ, tµ) using the horizontal blue slope b1. Invariants I1 and
I2 hold by construction. Also, Γµ is contained in a triangle τµ such that sµ
and tµ are placed at the corners of its base. Moreover, we have that ∆(sµ) =
∆(sη) + 1 = ∆(sψ1) + 1, where ψ1 is the child of η such that sη = sψ1 . Also,
βµ = βψ1

+ α < (∆(sψ1
) + 1/2)α + α = (∆(sψ1

) + 3/2)α = (∆(sµ) + 1/2)α.
Similarly, ∆(tµ) = ∆(tη) + 1 = ∆(tψk

) + 1, where ψk is the child of η such that
tη = tψk

. Also, γµ = γψk
+ α < (∆(tψk

) + 1/2)α + α = (∆(tψk
) + 3/2)α =

(∆(tµ) + 1/2)α. Hence, Invariant I3 holds.
If we are in case (ii), denote by η1 the child of µ that is an S-node with

a tail at tµ, and as η2 the child of µ that is an S-node with a tail at sµ. See
Figure 22 for an illustration. Recall that sη1

= sη2
= sµ and tη1

= tη2
= tµ.

We modify the drawing Γη1
as follows. We first rotate Γη1

so that the segment
sη1

tη1
uses the blue slope b2. Then we redraw the tail of η1 using the red slope

r+
2∆ = b2∆ + ε and so that sη1

and tη1
are horizontally aligned. Similarly, we

modify the drawing Γη2
. We rotate Γη2

so that the segment sη2
tη2

uses the blue
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Figure 22: Illustration of Lemma 9. (a) The pertinent graph Gµ of an P -node µ with
two children that are S-nodes. (b) The outer 1-planar drawing of Gµ.
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Figure 23: Illustration of Lemma 10. (a) The pertinent graph Gµ of an S∗-node µ.
(b) The outer 1-planar drawing of Gµ.

slope b2∆ and redraw the tail of η2 using the red slope r−2 = b2 − ε and so that
sη2

and tη2
are horizontally aligned. Finally, we attach Γη1

and Γη2
(scaling one

of them if necessary). Invariants I1 and I2 hold by construction. Also, Γµ is
contained in a triangle τµ such that sµ and tµ are placed at the corners of its
base. Moreover, we have that ∆(sµ) = ∆(sη1

)+1, and βµ = βη1
+α < (∆(sη1

)+
1/2)α+ α = (∆(sη1

) + 3/2)α = (∆(sµ) + 1/2)α. Similarly, ∆(tµ) = ∆(tη2
) + 1,

and γµ = γη2
+ α < (∆(tη2

) + 1/2)α + α = (∆(tη2
) + 3/2)α = (∆(tµ) + 1)α.

Hence, Invariant I3 holds.
If we are in case (iii), we can use the same construction as in case (ii). Note

that the edge (sµ, tµ) can be safely drawn using the horizontal blue slope b1.
All invariants hold also in this case. �

Lemma 10 Let µ be an S∗-node different from ξ. Then Gµ admits a straight-
line drawing Γµ that respects Invariants I1, I2, and I3.

Proof: Denote by η the child of µ that is an S-node with a tail at either
sµ or tµ. Suppose that η has a tail at tµ (the case when the tail is at sµ is
symmetric) and see Figure 23 for an illustration. Denote by ψ the child of µ
that is a Q-node having tψ = sη and sψ = sµ as poles. Finally denote by
η1, η2, . . . , ηk the remaining children of µ. Recall that sη1

= · · · = sηk = sη
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Figure 24: Illustration for the proof of Invariant I3 for S∗-nodes (Lemma 10).

and that tη1 = · · · = tηk = tη. Denote by Ĝ the subgraph of Gµ obtained
by the parallel composition of η1, η2, . . . , ηk, and denote by ŝ and t̂ its poles,
coinciding with sη1

= · · · = sηk = sη and tη1
= · · · = tηk = tη, respectively. We

first compute a drawing Γ̂ of Ĝ; if k = 1, Γ̂ coincides with Γη1 , otherwise it is
obtained by combining the drawings Γη1 ,Γη2 , . . . ,Γηk with the same technique
described for P -nodes in the proof of Lemma 9 (recall that indeed they were
children of a P -node before the creation of the S∗-node). In both cases we
rotate Γ̂ so that the base of its bounding triangle uses the blue slope b2∆. Then
we attach Γη to Γ̂ (after Γη has been horizontally flipped). Also, we scale Γη so
that its tail can be redrawn by using the red slope r+

2∆ and such that tη = tµ
coincides with t̂. Finally, we redraw the edge associated with ψ, starting from
the point representing tψ = sη, using the red slope r−2 and stretching it enough
that sψ = sµ and tµ are horizontally aligned. See also Figure 23(b) for an
illustration. Invariants I1 and I2 hold by construction. Consider now Invariant
I3; by construction Γµ is contained in a triangle τµ such that sµ and tµ are

placed at the corners of its base. The drawing Γ̂ satisfies Invariant I3 either
by Lemma 9 (if k > 1) or because it coincides with Γη1

. More precisely, Γ̂
is contained in a triangle τ̂ such that ŝ and t̂ are the corner of its base, with
β̂ < (∆(ŝ)+1/2)α and γ̂ < (∆(t̂)+1/2)α (with obvious meaning of the symbols).
The angle γµ at tµ is equal to γ̂+α and therefore γµ < (∆(t̂)+1/2)α+α. Since
∆(tµ) = ∆(t̂) + 1, we obtain, γµ < (∆(tµ) + 1/2)α.

We now look at βµ. For the sake of description, we denote by Γη the drawing
of Gη minus the tail of η (i.e., minus an edge), and as τη the surrounding triangle
of Γη. We now prove that the line ` passing through sµ with slope 3/2α does
not cross the drawing of Γη, i.e., Γη is placed in the half-plane H defined by `
and containing the segment sµtµ. See Figure 24 for an illustration. Denote by
δx the horizontal distance between the point where sµ is drawn and the leftmost
corner of τη. Also, denote as hη the height of τη. To prove that our condition
is satisfied it is sufficient to show that:

tan (3/2α)δx > tan (α)δx+ hη (1)

Let wη be the length of the base of τη. Then the worst case, i.e., the case when
hη is maximized, is realized if the degree of sη and tη is ∆− 1 (it cannot be ∆
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because of the edges (sη, tµ) and (sµ, tη)). In such a case we have that the angle
of τη at sη (at tη) is strictly less than (∆− 1 + 1/2)α = π/2− α/2. We have

hη <
wη
2

1

tan (α/2)
(2)

Moreover:

tan(α)δx = tan(α− ε)(δx+ wη)

from which we obtain:

wη =
tan (α)δx− tan (α− ε)δx

tan (α− ε)
Substituting wη in (2), and hη in (1) we have:

tan (3/2α) > tan (α) +
tan (α)− tan (α− ε)

2 tan (α− ε) tan (α/2)

and with some rearrangements we get:

tan (α− ε) > tan (α)

2 tan (3/2α) tan (α/2)− 2 tan (α) tan (α/2) + 1

Now, since the tangent function is strictly increasing in (−π2 , π2 ), we have:

ε < ε̂ = α− arctan

(
tan (α)

2 tan (3/2α) tan (α/2)− 2 tan (α) tan (α/2) + 1

)
Since the value of ε has been chosen strictly smaller than ε̂ the inequality holds.
Hence, βµ < 3/2α = (∆(sµ) + 1/2)α (since ∆(sµ) = 1). This completes the
proof that Invariant I3 holds. �

Lemma 11 Let µ be an R-node different from ξ. Then Gµ admits a straight-
line drawing Γµ that respects Invariants I1, I2, and I3.

Proof: Recall that, by Property 3, (i) the skeleton σ(µ) is isomorphic to K4

and it has one crossing; (ii) two children of µ are Q-nodes whose associated
edges cross each other in Gµ. Hence, denote by η1, η2, η3 the three children of
µ whose associated edges of σ(µ) lie on the boundary of the outer face of σ(µ)
with sµ = sη1 , tη1 = sη2 , tη2 = sη3 , and tη3 = tµ. Also, denote by η4 and η5 the
two children of µ that are Q-nodes whose associated edges cross each other in
Gµ, and so that the poles of η4 coincide with tη1

and tη3
, while the poles of η5

coincide with tη2
and sη1

. See Figure 25(a) for an illustration. We rotate Γη1
in

such a way that the segment sη1tη1 uses the blue slope b2. Similarly, we rotate
Γη3 in such a way that the segment sη3tη3 uses the blue slope b2∆. Furthermore,
we scale one of the two drawings so that tη1

and sη3
are horizontally aligned.

Moreover, we redraw the edge associated with η4 by using the red slope r+
2∆

and we redraw the edge associated with η5 by using the red slope r−2 . Observe
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Figure 25: Illustration of Lemma 11. (a) The pertinent graph Gµ of an R-node µ.
(b) The outer 1-planar drawing of Gµ.

that, attaching Γη4 and Γη5 to Γη1 and Γη3 , the length of the segment tη1sη3

is determined, because sη1 = sη5 and tη3 = tη4 . Thus, we attach Γη2 so that
sη2

coincides with tη1
and that tη2

coincides with sη3
. See Figure 25(b) for an

illustration.
Invariant I1 and I2 are respected by construction. Concerning Invariant I3,

again by construction Γµ is contained in a triangle τµ such that sµ and tµ are
placed at the corners of its base. Moreover, βµ = βη1 + α and γµ = γη3 + α.
Since ∆(sµ) = ∆(η1) + 1 and ∆(tµ) = ∆(η3) + 1, Invariant I3 holds. �

In the next lemma we process the root of T and its child. Since after that
there are no other nodes to be processed, Invariant I3 can be ignored.

Lemma 12 Let ρ be the root of T and let ξ be its unique child. Then G =
Gρ ∪Gξ admits a straight-line drawing Γ that respects Invariants I1 and I2.

Proof: Denote by (s, t) the edge associated with ρ. Observe that s = sξ and
t = tξ. Recall that (s, t) is an edge of the outer face that is not crossed, thus ξ is
such that its reference edge belongs to the outer face of G+

ξ . If ξ is an R-node,
then Property 3 holds and we can compute a drawing of Gξ as described in the
proof of Lemma 11. Since the horizontal blue slope is not used in Γξ, we can
safely add (s, t) by using such a slope, hence, Invariants I1 and I2 hold. If ξ
is an S-node, then Property 6 holds and we can compute a drawing of Gξ as
described in the proof Lemma 8. In order to attach Gρ to Gξ, one can observe
that the same situation as in case (i) of Property 4 applies, since we need to
combine the drawings of a Q-node and an S-node. We apply for this case the
same technique as described in the proof of Lemma 9, for which Invariants I1
and I2 hold. If ξ is an S∗-node, then again we can draw Gξ as described in the
proof or Lemma 10. Since the horizontal blue slope is not used in Γξ, we can
safely add the edge (s, t) by using such a slope. Also in this case Invariants I1
and I2 hold. If ξ is a P -node, then by Property 7 only case (ii) of Property 4
applies. In order to attach Gρ to Gξ, one can observe that the same situation as
in cases either (i) or (iii) of Property 4 applies. Hence, we can use the technique
described in the proof of Lemma 9 for the specific case, and Invariants I1 and
I2 hold. �
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Lemma 13 Let G be a biconnected outer 1-planar graph with n vertices and
with maximum degree ∆. Then G admits an outer 1-planar straight-line drawing
with at most 6∆ slopes. Also, this drawing can be computed in O(n) time in the
real RAM model of computation.

Proof: By Lemmas 8, 9, 10, 11, and 12, G has an outer 1-planar straight-line
drawing that maintains the embedding, with at most 6∆ slopes. Concerning
the time complexity, we recall that an outer 1-plane embedding of G can be
computed in O(n) time by applying for example one of the algorithms defined
in [2, 14]. Furthermore, the SPQR-tree of G can be computed in O(n) time [7],
and the S∗-nodes can be created (if any) in O(n) time, as T has O(n) nodes.

Similarly as in the proof of Lemma 6, in order to achieve linear time com-
plexity, we implement the drawing computation phase of BO1P-Drawer so
that it works in two phases. In the first phase we perform a bottom-up visit
of T and for each node µ, we compute a drawing of the frame of µ for S-nodes
and R-nodes or we combine the drawings of the frames of the children of µ for
P -nodes. At the end of this phase, each node of T is associated with a drawing
of its frame (for S-nodes and R-nodes) or with a drawing of the union of the
frames of its children (for P -nodes and S∗-nodes). The drawing associated with
each node µ can be computed in O(n∗µ), where n∗µ is the number of vertices in
the frame of µ. The total number of vertices and edges of all the skeletons of T
is O(n) [7]. Thus,

∑
µ∈T O(n∗µ) = O(n) and the first phase can be executed in

O(n) time. In the second phase we perform a top-down visit of T and compute
the final coordinates of each vertex of G, thus combining all the drawings com-
puted in the first phase. Once the coordinates of the vertices of the drawing
associated with µ have been fixed, we can fix the coordinates of the vertices of
the drawings associated with its children (or its grand-children in the case of P -
nodes and S∗-nodes). Again, since

∑
∀µ∈T O(n∗µ) = O(n), the time complexity

of this phase is O(n). The statement about the time complexity follows. �

Extension to Connected Graphs. In order to deal with simply connected
graphs we use the technique described in Section 3 that augments a simply
connected outer 1-planar graph with maximum degree ∆ to a biconnected outer
1-planar graph with maximum degree ∆ + 2. By applying BO1P-Drawer to
the resulting biconnected graph and removing the inserted edges we obtain the
following result.

Theorem 2 Let G be an outer 1-planar graph with n vertices and with maxi-
mum degree ∆. Then G admits an outer 1-planar straight-line drawing with at
most 6∆ + 12 slopes. Also, this drawing can be computed in O(n) time in the
real RAM model of computation.

5 Conclusions and Open Problems

In this paper we proved a quadratic upper bound on the planar slope number
of outer 1-planar graphs. This result improves, for this family, the O(n5) upper
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bound that holds for general planar partial 3-trees. We also initiated the study
of the slope number of “nearly-planar” graphs. In particular, we proved a linear
upper bound on the outer 1-planar slope number of outer 1-planar graphs. This
result generalizes the result on the outerplanar slope number of outerplanar
graphs. Several interesting problems are suggested by the results in this paper.

• There is still a gap between upper and lower bound on the planar slope
number of outer 1-planar graphs, which can be closed in either direction.

• An obvious extension of our study of the outer 1-planar slope number
is the investigation of the 1-planar slope number. Is the 1-planar slope
number of 1-planar straight-line drawable graphs (not all 1-planar graphs
admit a 1-planar straight-line drawing [15]) bounded in ∆?

• Finally, it could be interesting to further explore trade-offs between slopes
and crossings, e.g., can we draw planar partial 3-trees with o(∆5) slopes
and a constant number of crossings per edge?
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