
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 5, no. 5, pp. 3–16 (2001)

Carrying Umbrellas:

An Online Relocation Game on a Graph

Jae-Ha Lee

Max-Planck-Institut für Informatik
Saarbrücken, Germany

http://www.mpi-sb.mpg.de
lee@mpi-sb.mpg.de

Chong-Dae Park Kyung-Yong Chwa

Department of Computer Science
Korea Advanced Institute of Science and Technology

http://jupiter.kaist.ac.kr
{cdpark,kychwa}@jupiter.kaist.ac.kr

Abstract

We introduce an online relocation problem on a graph, in which a
player that walks around the vertices makes decisions on whether to relo-
cate mobile resources, while not knowing the future requests. We call it
Carrying Umbrellas. This paper gives a necessary and sufficient condition
under which a competitive algorithm exists. We also describe an online
algorithm and analyze its competitive ratio.

Communicated by T. Nishizeki, R. Tamassia and D. Wagner:
submitted December 1998; revised March 2000 and July 2000.

Research supported in part by the KOSEF (Korea Science and Engineering Founda-

tion) under grant 98-0102-07-01-3.

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 4

1 Introduction

“To carry an umbrella or not?” This is an everyday dilemma. This dilemma does
not vanish even when correct short-term weather forecasts are available. For
example, if it is sunny now but there is no umbrella at the current destination,
one has to carry an umbrella so as not to get wet when leaving there later. To
illustrate some of our concepts, we describe a detailed scenario.

Picture a person who walks around N places. At each place, he is told
where to go next and then must go there. As a usual person, he dislikes being
caught in the rain with no umbrella. Since today’s weather forecast is correct,
he carries an umbrella whenever it is rainy. However, he does not know the
future destinations and weather, which might be controlled by the malicious
adversary. We say a person is safe if he never gets wet. There exists a trivial safe
strategy: ′Always carry an umbrella′. However, carrying an umbrella in sunny
days is annoying. As an alternative, he has placed several umbrellas in advance
and thinks about an efficient strategy; he hopes, through some cleverness, to
minimize the number of sunny days on which he carries an umbrella. We say a
person’s strategy is competitive if he carries an umbrella in a small portion of
sunny days (for details, see Section 1.1). The following questions are immediate:
(1) What is the minimum number of umbrellas with which the person can be
safe and competitive? (For example, is placing one umbrella per place sufficient
or necessary?) (2) What is a safe and competitive strategy? We formally define
the problem next.

1.1 A Game

Let G=(V, E) be a simple graph with N vertices and M edges. An integer u(v)
is associated with each vertex v∈V , indicating the number of umbrellas placed
on the vertex v. We use u(G) to represent the total number of umbrellas in G.
Consider an on-line game between a player and the adversary, assuming that
u(G) is fixed in advance.

Game Carrying-Umbrellas(G, u(G))
1. Initialization

Player determines the initial configuration of u(G) umbrellas;
Adversary chooses the initial position s∈V of Player;

2. for i = 1 to L do
(a) Adversary specifies (v,w), where w is a boolean value and

v∈V is adjacent to the current vertex of Player;
(b) Player goes to v; If w =1, he must carry at least one umbrella;

As an initialization, we assume that the player first determines the initial con-
figuration of u(G) umbrellas and later the adversary chooses the initial position
s ∈V of the player, although our results of the present paper also hold even if
the initialization is done in reverse order. A play consists of L phases, where L
is determined by the adversary and unknown to the player. In each phase, the
adversary gives a request (v,w), where v is adjacent to the current vertex of

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 5

the player and w is a boolean value that represents the weather; w =1 indicates
that it is rainy, and w =0 sunny. For this request (v,w), the player must go to
the specified vertex v and decide whether to carry umbrellas or not. If w =1, he
must carry at least one umbrella; only in sunny days, he may or may not carry
umbrellas. Notice that the player can carry an arbitrary number of umbrellas,
if available.

The player loses if he cannot find any umbrella at the current vertex in a
rainy phase. A strategy of the player is said to be safe if it is guaranteed that
whenever w = 1 the player carries an umbrella. Moreover, a strategy of the
player should be efficient.

As a measure of efficiency, we adopt the competitive ratio [9], which has been
widely used in analyzing the performance of online algorithms. Let σ=σ1 · · ·σL

be a request sequence of the adversary, where σi =(vi,wi) is the request in the
i-th phase. The cost of a strategy A for σ, written CA(σ), is defined to be the
number of phases in which the player carries an umbrella by the strategy A.
Then, the competitive ratio of the strategy A is

CA(σ)
COpt(σ)

where Opt is the optimal off-line strategy of the player. (Since Opt knows
the entire σ in advance, it pays the minimum cost. However, Opt cannot be
implemented by any player and is used only for comparison.) A strategy whose
competitive ratio is bounded by c is termed c-competitive; it is simply said to be
competitive, if it is c-competitive for some bounded c irrespective of the length
of σ. The player wins, if he has a safe and competitive strategy; he loses,
otherwise.

Not surprisingly, whether the player has a winning strategy depends on the
number of umbrellas. In this paper, we are interested in that number.

Definition 1 For a graph G, we define u∗(G) to be the minimum number of
umbrellas with which the player has a winning strategy in G.

1.2 Summary of our results

Let G = (V, E) be a connected simple graph (having no parallel edges) with N
vertices and M edges. We show that u∗(G) = M +1. That is, no strategy of
the player is safe and competitive if u(G)<M+1 (Section 3) and there exists a
competitive strategy of the player if u(G)≥M+1 (Section 4). The competitive
ratio of our strategy is b(G), the number of vertices in the largest biconnected
component in G. Moreover, the upper bound is attained by the weak player
that carries at most one umbrella in a phase, and the competitive ratio of b(G)
is optimal for some graphs when u(G) = M +1. These results can be easily
extended to the case that G is not connected. For a simple graph G with M
edges and k connected components, u∗(G) = M + k. Throughout this paper,
we assume G is connected and simple.

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 6

1.3 Related works

Every online problem can be viewed as a game between an online algorithm and
the adversary [8, 3, 5]. In this prospect, Chrobak and Larmore [6] introduced
online game as a general model of online problems. Clearly, the problem of the
present paper is an example of the online game. Many researchers have studied
online problems on a graph. Such examples include the k-server problem [1, 7]
and graph coloring [2, 4].

2 Examples

In order to introduce the reader to the ideas, we explain two examples.

Example 1. Consider K2 =({v1, v2}, {(v1, v2)}) that consists of two vertices
v1 and v2 and an edge (v1, v2). Let u(K2) = 1. We assume without loss of
generality that the unique umbrella is initially placed at v1 (see Figure 1). We
claim that no strategy of the player can be safe and competitive in K2. Although
the adversary can maliciously determine the initial position s of the player, we
explain both cases.

v1 v2

Figure 1: K2

Case A. If s=v2, the adversary only has to choose σ1 =(v1, rainy). The player
at v2 has no umbrella and so must get wet in the first phase. Thus it is
not safe.

Case B. If s=v1, the adversary first chooses σ1 =(v2, sunny). For this request
σ1, the player must carry an umbrella because otherwise, the resulting
configuration is isomorphic to that of Case A; afterwards, the request
σ2 = (v1, rainy) makes the player not safe. Therefore, at the end of the
first phase, the player must be at v2 and u(v1) = 0 and u(v2) = 1. Note
that this is isomorphic to the initial configuration. Thus, in a similar
fashion, the subsequent requests such as σi = (v1, sunny) if i is even and
σi =(v2, sunny) if i is odd forces the player to always carry an umbrella.
Therefore, CA(σ) = L. However, since the weather is always sunny, Opt
does not carry an umbrella and COpt(σ)=0. Therefore, any safe strategy
of the player is not competitive.

It is easily seen that if u(K2) = 2, then the player has a simple 2-competitive
strategy: when it is sunny, the player carries an umbrella if and only if he is
going from a vertex with two umbrellas to one with zero.

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 7

Example 2. K3 is a triangle, that is, K3 =({v1, v2, v3}, {(v1, v2), (v2, v3), (v3, v1)}).
Let u(K3)=3. A natural initial configuration of the umbrellas is that u(vi)=1
for i=1, 2, 3 (Figure 2).

Though every vertex in K3 initially has an umbrella, we claim that no strat-
egy of the player is safe and competitive. Without loss of generality, let v1 be
the start vertex. The adversary first chooses σ1 = (v2, rainy). For this input,
the player must carry at least one umbrella, making u(v1) = 0 and u(v2) = 2.
Next, let σ2 = (v3, sunny). For this input, the player must carry an umbrella
because otherwise, the resulting subgraph induced by {v1, v3} contains only one
umbrella and is isomorphic to K2 in Example 1; afterwards, the adversary can
make the player unsafe or not competitive in K2. Hence, at the end of the
phase 2, there are two cases depending on the number of umbrellas the player
has carried: u(v2)=1 and u(v3)=2 or u(v2)=0 and u(v3)=3.

v3v2

v1

Figure 2: K3

In either cases, the next request is σ3 = (v2, sunny). Then the player must
carry enough umbrellas to make u(v2)≥2, because otherwise, K2 consisting of v1

and v2 is deficient in umbrellas. Thus, the resulting configuration is isomorphic
to that at the end of the phase 2. Similarly, the subsequent request sequence
σi =(v3, sunny) if i is even and σi =(v2, sunny) if i is odd forces the player to
always carry umbrellas. Therefore, CA(σ) = L. However, since Opt only has
to carry an umbrella in the first phase, the competitive ratio can be arbitrarily
large as L becomes large.

As we shall see later, the player has a 3-competitive strategy, if u(K3)≥ 4.
It means u∗(K3)=4.

3 Lower Bound

In this section, we show the lower bound on u∗(G). To simplify the explanation,
we first consider the weak player that can carry at most one umbrella in a phase,
and show that u∗(G)≥M+1 for the weak player. Later the same bound is shown
for the general player that can carry multiple umbrellas.

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 8

Theorem 1 Let G be a simple connected graph with N vertices and M edges.
Under the constraint that the player can carry at most one umbrella in a phase,
u∗(G)≥M +1.

Proof: We show that if u(G) ≤ M then no strategy of the player is safe and
competitive in G. Equivalently, it suffices to show that any safe strategy of the
player is not c-competitive for any fixed c (<∞). For convenience, imagine we
are the adversary that would like to defeat the player.

Let σ = σ1σ2 · · ·σL denote the request sequence that we generate. Recall
that the starting vertex s of the player is determined by the adversary. We fix s
as a vertex such that G−{s} is connected; we call such a vertex non-cut vertex
of G. (A non-cut vertex of G is easily obtained by taking a leaf vertex in an
arbitrary spanning tree of G.) We say that a graph G′ is deficient in umbrellas,
if u(G′) is no greater than the number of edges in it.

The basic idea is to force the player to go into a deficient subgraph of G and
recursively defeat the player in it. Suppose we were somehow able to make the
player be at s and at the same time, make u(s) = d+1, where d is the degree
of s in G. This would tell us that u(G−{s}) is strictly less than the number of
edges in G−{s}. In the next step, we make the player go into G−{s}. Even if
the player has carried an umbrella, G− {s} is deficient and the player is in it.
Now we use recursion: after making the player go to a non-cut vertex in G−{s},
we can make the player not safe or not competitive in G−{s} recursively. So
our subgoal is to make u(s) increase to d+1.

Let v1, · · · , vd be the adjacent vertices of s. We begin with explaining how
to increase u(s). Suppose that at the start of the (2i−1)-th phase, the player is
located at s and u(s)= j. In the subsequent two phases, the adversary makes
the player go to vj and return to s. That is, σ2i−1 =(vj , sunny) and σ2i =(s, ∗).
The 2i-th weather w2i depends on the player’s decision in the (2i−1)-th phase; if
the player carried an umbrella in the (2i−1)-th phase, then w2i is set to sunny;
otherwise rainy . Before the generation of σ2i, the adversary tests if G−{s} is
deficient in umbrellas. If it is, the adversary makes the player move to a non-cut
vertex of G−{s} and calls the recursive procedure. The strategy of the adversary
is summarized in Algorithm 1. Initially, the adversary calls Adversary(G, s, 1).
The lines 2–3 are the generation of σ2i−1 and the lines 9–13 are that of σ2i.
The lines 5–8 are the recursive procedure. In MOVE-TO-NON-CUT-VERTEX(G′),
the adversary picks an arbitrary non-cut vertex s′ in G′, makes the player go to
s′ while setting the weather to sunny, and returns s′.

To see why this request sequence makes u(s) increase, we define a weighted
sum Φ of the umbrellas placed in vertex s and its neighbors, where j umbrellas
in s weighs 0.5, 1.5, · · · , j−0.5, respectively and each umbrella in vertex vi weighs
i. Specifically,

Φ =
d∑

i=1

i · u(vi) +
u(s)∑

j=1

(j − 0.5)

Let Φk denote Φ at the end of the k-th phase. We are interested in the change

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 9

Algorithm 1 Adversary(G, s, i)
1: while TRUE do
2: j = u(s);
3: σ2i−1 = (vmin (j,d), sunny);
4: { Player’s move for σ2i−1}
5: if u(G−{s}) ≤ |E(G−{s})| then
6: s′= MOVE-TO-NON-CUT-VERTEX(G−{s});
7: Adversary(G− {s}, s′, i + 1);
8: end if
9: if the player carried an umbrella in phase (2i − 1) then

10: σ2i = (s, sunny);
11: else
12: σ2i = (s, rainy);
13: end if
14: i++;
15: end while

between Φ2k−2 and Φ2k. Suppose that u(s) is j at the end of the (2k−2)-th
phase. Depending on the decision of the player, there are four cases to consider.

Case A. If the player carried an umbrella throughout the (2k−1)-th and the
2k-th phase, we have Φ2k−2 = Φ2k because the number of umbrellas is
unchanged. However, the weather must be sunny from Adversary(G, s, i).
Therefore, the player did useless carrying.

Case B. If the player carried an umbrella from s to vj only, Φ2k =Φ2k−2+0.5.
This is because the umbrella moved had weight j−0.5 at s and has weight
j at vj .

Case C. If the player carried an umbrella from vj to s only, Φ2k =Φ2k−2+0.5.
This is because the weight of the umbrella moved changes from j to j+0.5.

Case D. The remaining case is that the player never carried an umbrella. How-
ever, if the player didn’t carry an umbrella in the (2k − 1)-th phase, the
adversary chooses the weather w2k rainy . Since we are considering a safe
strategy, the player must carry an umbrella. Hence this case is impossible.

In summary, over the two phases 2k−1 and 2k, Φ increases or is unchanged;
if Φ is unchanged, the player did useless carrying in sunny days. Note that
successive useless carryings make the player’s strategy not competitive, because
Opt would not carry an umbrella over two sunny days. Hence, in order to be
competitive, the player must sometimes increase Φ.

How many times can Φ increase before u(s) becomes d+1? Recall that
once u(s) becomes d+1, we can make G−{s} deficient in umbrellas and start
the recursive procedure. While u(s) ≤ d, each umbrella can have 2d different
weights. Moreover, since u(G) is less than or equal to the number of edges in G,
Φ can increase in at most 2d×N2

2 <N3 phases before u(s) becomes d+1. Thus,
Φ can increase in at most N3 phases, before the recursive procedure is called.

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 10

In Adversary(G−{s}, s′, i+1), we recursively define the request sequence
and weight sum Φ′. Thus, in G− {s}, Φ′ can increase in at most (N −1)3

phases, before the player moves into some deficient subgraph. In all recursive
procedures, the weight sum can increase in at most N3+(N − 1)3+· · ·+23 <N4

phases. This means that the player carries an umbrella in all except at most
N4 phases, and that for the same input, Opt can carry an umbrella in at most
N4 phases. At the final recursive call, the graph becomes K2 and the number
of umbrellas in it is at most 1. If there is no umbrella, the player is not safe,
which is a contradiction. Otherwise, the situation is the same as in Example 1
in the previous section; we can continue this game forever with no cost for Opt
and the cost of 1 for the player in every phase.

One remaining step we have to consider is MOVE-TO-NON-CUT-VERTEX, which
is executed at the start of each recursive call. Since the i-th call of MOVE-TO-NON-
CUT-VERTEX is done in G′ with (N − i) vertices, at most (N − i) requests are
given and thus the cost of Opt is at most (N − i). Throughout all executions
of MOVE-TO-NON-CUT-VERTEX, the cost of Opt is at most N2, because the total
number of requests is at most N2.

Since this game can continue forever as long as the player is safe, we can
choose the length L of the input sequence σ to be arbitrarily large. Specifically,
we let L≥(c + 1) · (N4 + N2). Then, the cost of the player’s strategy A is

CA(σ) ≥ L − N4 − N2 ≥ c · (N4 + N2)

And, the cost of Opt is
COpt(σ) < (N4 + N2)

Therefore, the competitive ratio is

CA(σ)
COpt(σ)

> c

for an arbitrary c(<∞), completing the proof.

Now we present the main result of this section.

Theorem 2 Let G be a simple connected graph with M edges. Then, u∗(G)≥
M +1.

Proof: Here, the player can carry an arbitrary number of umbrellas in a phase.
The algorithm of the adversary is exactly same as Adversary(G, s, i). However,
the analysis is slightly more complex. The crucial fact in proving Theorem 1 was
that if u(s) ≥ d+1 then the adversary makes the player go to vd, resulting that
G−{s} is deficient even if the player carries an umbrella, and calls the recursive
procedure. In this theorem, however, the player can carry an arbitrary number
of umbrellas and thus u(s) ≥ d + 1 does not imply that the recursive procedure
is called in the next phase. In other words, u(s) may fluctuate, even over d + 1,
without being trapped into the recursive procedure.

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 11

Φ is defined as in Theorem 1. We say Φ2k is stable if u(s) < d at the end
of the 2k-th phase; unstable otherwise. We divide the request sequence into a
number of stages, each of which starts with stable Φ2k and ends right before the
next stable Φ2k′ . We are interested in the change between Φ2k and Φ2k′ .

If k′ =k+1 (i.e., no unstable Φ exists in this stage), the change of Φ is the
same as in Theorem 1, except that Φ can increase by more than 0.5 when the
player carries multiple umbrellas. Assume otherwise, that is, Φ2k′′ (k<k′′<k′)
is unstable. Unless the player carries enough umbrellas to make G−{s} not
deficient in phase 2k′′+1, the recursive procedure is called. Thus, the player
must carry at least one umbrella in the (2k′′+1)-th phase. Similarly, the player
must carry at least one umbrella in phase 2k′′, to make Φ unstable. Therefore,
the player always carries an umbrella right before and right after Φ is unstable
and so the weather is always sunny. Comparing Φ2k and Φ2k′ reveals that some
umbrellas have moved from vj to vd (because the player went to some vj(j <d)
in the (2k+1)-th phase, and returned to s with enough umbrellas to make Φ
unstable and afterwards goes to and returns from vd till Φ becomes stable).
Therefore, Φ2k′ ≥ Φ2k + 1. Moreover, the player always carries at least one
umbrella, except in the (2k+1)-th and the 2k′-th phases.

Combining the cases of k′ = k + 1 and k′ > k +1, we can conclude that
in a stage, either (1) Φ increases at least 0.5 · x (x = 1 or 2) and the player
does not carry umbrellas in at most x phases, or (2) Φ is unchanged and the
player always does useless carrying. Opt still suffices to carry umbrellas only
in x phases in case of (1), depending on the change of Φ. The remaining proof
is same as that of Theorem 1. (Only one difference is that we concentrate on
stable Φ. Before the recursive procedure is called, stable Φ can increase at most
N3 times, the player does not carry umbrellas in at most N3 phases, and Opt
carries umbrellas in at most N3 phases.) By using the counting arguments in
Theorem 1 (ignoring unstable Φ), this theorem is easily seen.

4 Upper Bound

In this section, we show the upper bound on u∗(G).

Theorem 3 Let G be a simple connected graph with N vertices and M edges.
Then, u∗(G)≤M +1.

Proof: It suffices to show that if u(G)=M +1 then the player has a safe and
competitive strategy. Throughout this section, we assume that u(G) = M +1.
To show this theorem, we only consider the weak player that carries at most
one umbrella in a phase. Imagine that we are the player that should be safe
and competitive against the adversary.

The heart of our strategy is how to decide whether to carry an umbrella in
sunny days. To help this decision, we maintain two things: labels of umbrellas
and a subtree of G. First, let us explain the labels, recalling that u(G)=M+1.
M umbrellas are labeled as γ(e) for each edge e∈E, and one remaining umbrella

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 12

is labeled as Current. Under these constraints, labels are updated during the
game. In addition to the labels, we also maintain a dynamic subtree S of G,
called skeleton.

• S is a subtree of G whose root is the current position of the player.
• The root in S has the umbrella labeled as Current.
• For an edge e ∈ S, the child-vertex of e has the umbrella labeled as γ(e).
• For an edge e /∈ S, the umbrella labeled as γ(e) lies in one endpoint of e.

Note that all umbrellas labeled as γ(e) are placed on one endpoint of e. In an
example of Figure 3, the current skeleton S is enclosed by a dotted line and every
edge in S is directed towards the child, indicating the location of its umbrella.

root

Figure 3: Example of a skeleton (enclosed in a dotted line).

S is initialized as follows: The player first chooses an arbitrary spanning tree
T and places one umbrella in each vertex of T , while their labels undetermined.
Then, the number of umbrellas used in T is N . For an edge e not in T , we
place an umbrella on any endpoint of it; this umbrella is labeled as γ(e). Then,
the number of umbrellas labeled equals the number of edges not in T that is
M−N+1 and so the total number of umbrellas used is M+1. After the adversary
chooses the start vertex s, the umbrellas in T are labeled. The umbrella in s
is labeled as Current, and the umbrella in v (6= s) is labeled as γ(e), where e
connects v with its parent in T .

Now, we describe the strategy of the player. Suppose that currently, the
player is at vi−1 and the current request is (vi,wi). If the weather is rainy , the
player has no choice; it has to move to vi with carrying the umbrella Current.
In this case, the player resets S to a single vertex {vi}. It is easily seen that
the new skeleton satisfies the invariants, because only the umbrella Current is
moved. The more difficult case is when the weather is sunny.

Suppose that wi = 0, i.e., sunny. Depending on whether vi belongs to S
or not, there are two cases. If vi belongs to S (Figure 4a), then the player
moves to vi without an umbrella. Though no umbrellas are moved, labels must
be changed. Let e1, e2, · · · , er be the edges encountered when we traverse from
vi−1 to vi in S. The umbrella Current is relabeled as γ(e1) and the umbrella

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 13

γ(ek) is relabeled as γ(ek+1) for 1 ≤ k ≤ r−1 and finally, the umbrella γ(er)
is relabeled as the new Current. Observe that new skeleton S still satisfies the
invariants.

e3

e4

vi−1vi−1

(b)

vi

(a)

vi

e1

e2

Figure 4: After Figure 3, (vi, sunny) is given. (a) vi belongs to S. (b) vi does
not belong to S.

If vi does not belong to S (Figure 4b), the edge e = (vi−1, vi) does not lie
in S. Remember that the umbrella γ(e) was at vi−1 or vi from the invariants.
If the umbrella γ(e) was placed at vi−1, the player moves to vi carrying the
umbrella Current, and adds the vertex vi and the edge (vi−1, vi) to S. If the
umbrella γ(e) was placed at vi, the player moves to vi without carrying an
umbrella and adds the vertex vi and the edge (vi−1, vi) to S and additionally,
swaps the labels of Current and γ(e). In both cases, it is easy to see that S still
satisfies the invariants (see Figure 4b). The strategy of the player is summarized
in Algorithm 2.

In order to complete the proof, it suffices to show that Player(G) is a safe
and competitive strategy. First, it is easily seen that the player is safe, because
the player always has the umbrella Current. Next, we show that Player(G) is
an N -competitive strategy. Let us divide the request sequence into a number
of stages, each of which contains exactly one ‘rainy ’ and starts with ’rainy ’.
Remember that the player resets S to a single vertex at the start of every stage.
The cost of Player(G) in a stage is at most N , because the cost 1 is paid only
when S is set to a single vertex or becomes larger. The cost of Opt in a stage is
at least one, because each stage starts with ‘rainy ’. The cost of the initial part
of the sequence until the first ‘rainy ’ is zero for Player(G) since S has size N .
Therefore, the competitive ratio is at most N .

Unfortunately, the competitive ratio of N we obtained above is best possible for
some graph G when u(G)=M +1.

Theorem 4 Suppose that G is the N -vertex ring and that u(G)= N +1. The
competitive ratio of any strategy of the player is at least N .

Proof: Assume N vertices in G are numbered from 0 to N−1. See Figure 5a.
As an initial configuration, the player might evenly distribute M + 1 umbrellas

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 14

Algorithm 2 Player(G)
1: i = 1;
2: pick a spanning tree T of G; determine the initial configuration of u(G)

umbrellas;
3: receive s from the adversary;
4: transform T to the rooted tree S with root s; label the umbrellas;
5: while TRUE do
6: {σi = (vi,wi)}
7: if wi = rainy then
8: carry an umbrella; S = ({vi}, ∅);
9: else

10: if vi ∈ V (S) then
11: do not carry an umbrella; new root is vi; relabel;
12: else
13: if γ(vi−1, vi) is placed at vi then
14: do not carry an umbrella; V (S) = V (S) ∪ {vi}; E(S) = V (S) ∪

{(vi, vi−1)}; relabel;
15: else
16: carry an umbrella; V (S) = V (S)∪{vi}; E(S) = V (S)∪{(vi, vi−1)};

relabel;
17: end if
18: end if
19: end if
20: i++;
21: end while

(i.e., one umbrella per vertex and the remaining one to an arbitrary vertex).
Otherwise, one vertex, say i, has no umbrella and the adversary forces the
player to rotate the ring, setting the weather to sunny. When entering into
i, the player must carry an umbrella, yet Opt never carries umbrellas, which
makes the player not competitive.

Thus, we can assume that u(i)= 2 and u(j)= 1 for each j (6= i). Then the
adversary makes the player go to vertex i−1, setting the weather to sunny. The
player must go to i−1 without carrying umbrellas. Next request is (i, rainy),
so the player must carry an umbrella from i−1 to i. As a result, u(i)= 3 and
u(i − 1)=0 and u(j)=1 for other j (Figure 5b).

In any subsequent k-th steps (1 ≤k ≤ N −2), the adversary gives request
(i+k, sunny), where + is taken modulo N . In spite of sunny days, the player
must carry an umbrella because otherwise, the subgraph induced by the vertices
{i+k, i+k+1, · · · , i−1} shall contain N−k−1 edges and N−k−1 umbrellas
and the subgraph is deficient. The final request (i−1, sunny) brings the player
back to the starting point. Since vi−1 does not have any umbrella before this
request, the player must bring one to be safe. For these requests, CA(σ) is at
least N and COpt is 1 because only one day is rainy. Therefore, the competitive

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 15

i + 1i − 1

(b)(a)

i − 1 i + 1

ii

Figure 5: Theorem 4.

ratio is at least N .

Though the competitive ratio of N is optimal for rings, we can easily design
a 2-competitive algorithm for trees. Here we slightly modify the algorithm
Player(G) and show that the new algorithm is b(G)-competitive, where b(G) is
the number of vertices in the largest biconnected component in G. Note that
b(G) is 2 for any tree G.

Theorem 5 Let G be a simple connected graph with M edges and let u(G) =
M+1. The player has a b(G)-competitive strategy, where b(G) is the number of
vertices in the largest biconnected component in G.

Proof: It suffices to modify Player(G) for rainy phases. Suppose it is rainy
when the player goes from u to v. In Player(G), the player resets S to a single
vertex v (i.e. the current vertex) in every rainy phase.

In the new strategy, the player resets S in the biconnected component that
contains u and v. More formally, suppose the edges in G are partitioned into
l biconnected components C1, · · ·Cl and Ck contains the edge (u, v). Then the
player resets S in Ck to a single vertex v and maintains other edges outside Ck.
Note that the skeleton S may be disconnected during the game.

The analysis of the new strategy is nearly the same as that of Player(G).
Consider the sunny phase i in which the player carries an umbrella from u to v.
Let Ck be the biconnected component that contains the edge (u, v). This cost
1 is charged to the last rainy phase j (< i) in which u and v are disconnected
in S (i.e. the recent rainy phase in which the player was traversing an edge in
Ck). The cost of the player in every rainy phase is charged to itself. In this
way, all costs of the player are charged to rainy phases in the same biconnected
component. It is easily seen that at most b(G) is charged to each rainy phase,
because the player resets S in the biconnected component in G containing the
current edge, whose size is bounded by b(G).

J.-H. Lee et al., Carrying Umbrellas , JGAA, 5(5) 3–16 (2001) 16

5 Concluding Remarks

In this paper, we introduced an online game on a graph, Carrying Umbrellas.
We showed that the player has a safe and competitive strategy if and only if
u(G) is at least M +1. We also presented an b(G)-competitive strategy of the
player when u(G)=M+1. This paper is the first attempt on this problem, and
many questions remain open. First, observe that u∗(G) is independent of the
topology of the graph, the starting position of the player, and the number of
umbrellas that the player can carry in a phase. Finding this number u∗(G) for
digraphs seems to be interesting from a graph-theoretical viewpoint. Second, we
believe that the problem Carrying Umbrellas can be extended to be of practical
use. For now, however, it is mainly of theoretical interest. Finally, reducing the
competitive ratio with more umbrellas is an open problem.

Acknowledgment We are grateful to Oh-Heum Kwon for motivating the
problem of this paper, to Jung-Heum Park for helpful discussions and to anony-
mous referees for giving constructive comments.

References

[1] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game
and its application to the k-server problem. SIAM Journal of Computing,
24(1):78–100, 1995.

[2] R. Beigel and W. Gasarch. The mapmaker’s dilemma. Discrete Applied
Mathematics, 34(1):37–48, 1991.

[3] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Widgerson. On the
power of randomization in online algorithms. In Proc. of 22nd STOC, pages
379–386, 1990.

[4] H. L. Bodlaender. On the complexity of some coloring games. Int. J. of
Foundation of Computer Science, 2:133–147, 1991.

[5] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 1998.

[6] M. Chrobak and L. Larmore. The server problem and online games. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
volume 7, pages 11–64. AMS-ACM, 1992.

[7] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms
for server problem. Journal of Algorithms, 24(1):78–100, 1990.

[8] P. Raghavan and M. Snir. Memory versus randomization in online algo-
rithms. In Proc. of 16th ICALP, pages 687–703, 1987.

[9] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging
rules. Communications of ACM, 2(28):202–208, 1985.

