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Abstract
While efficient algorithms for finding minimal distance-k dominating

sets exist, finding minimum such sets is NP-hard even for bipartite graphs.
This paper presents a distributed algorithm to determine a minimum
(connected) distance-k dominating set and a maximum distance-2k in-
dependent set of a tree T . It terminates in O(height(T )) rounds and uses
O(log k) space. To the best of our knowledge this is the first distributed
algorithm that computes a minimum (as opposed to a minimal) distance-
k dominating set for trees. The algorithm can also be applied to general
graphs, albeit the distance-k dominating sets are not necessarily minimal.
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1 Introduction
The dominating and independent set problems are long known to be NP-com-
plete even for substantially restricted graph classes. This paper considers gen-
eralizations of these two problems in a distributed setting. Let G = (V,E) be
an undirected graph and k > 0 an integer. A distance-k dominating set of G is
a subset D of V such that for each v ∈ V there exists u ∈ D with dist(v, u) ≤ k.
While there are efficient algorithms for finding minimal distance-k dominat-
ing sets, finding minimum sets is NP-hard even for bipartite graphs. A subset
I ⊆ V is called distance-k independent if the distance between any two nodes of
I is greater than k. A maximum distance-k independent set is also a minimal
distance-k dominating set, but not necessarily a minimum such set. Finding a
maximum distance-k independent set of a graph is NP-hard. For k ≥ 2 this
even holds for regular bipartite graphs [14]. Maximum distance-k independent
sets can be computed for chordal graphs in polynomial time for odd k, whereas
for even k the corresponding decision problem on this class is NP-complete [10].

The following correlation can be exploited to obtain sequential algorithms
for distance-k related problems. The k-th power of G is the graph Gk = (V,Ek)
with (v, w) ∈ Ek for v 6= w iff the distance of v and w in G is at most k. A
subset U ⊆ V is a distance-k dominating set in G iff U is a dominating set
in Gk. Thus, the application of an algorithm for a minimum dominating set
algorithm in Gk gives a minimum distance-k dominating set for G (a similar
result holds for distance-k independent sets). There are two obstacles to use
this technique in distributed algorithms. Firstly, emulating the graph Gk in G
comes with a high communication cost. Secondly, many structural properties
of graphs are not preserved by powers, e.g., powers of trees are no longer trees.
Thus, a distributed algorithm requires a different approach.

This paper presents distributed algorithms for distance-k problems in trees.
In particular we present a distributed linear-time algorithm for computing min-
imum distance-k dominating sets of trees. For even k the algorithm computes
two different distance-k dominating sets, one of them is also distance-k inde-
pendent. The algorithm can be applied to general graphs, but the computed
distance-k dominating set is not necessarily minimal. As a by-product a max-
imum distance-2k independent set and a minimum connected distance-k domi-
nating set of a tree is computed.

1.1 Related Work
Distance-k dominating sets are an important tool for dealing with the inherent
lack of an infrastructure in ad hoc and wireless sensor networks. In this domain
the concept is better known under the name clustering [1]. Clustering allows the
formation of virtual backbones to improve the usage of scarce resources, such as
bandwidth and energy. In many applications of these networks nodes need to
frequently flood control messages to discover and maintain routes, which causes
performance problems in terms of unnecessary traffic, energy consumption, con-
tention, and collision. A connected k-hop dominating set can be used to dra-
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matically reduce the flooding search space. Messages are forwarded along this
tree and each node of the distance-k dominating set starts a restricted flooding
within its cluster. This approach results in significant flooding overhead reduc-
tion for all broadcast related applications [30, 31, 28]. This demonstrates the
need for distributed algorithms for computing connected distance-k dominating
sets. Wu and Li give an overview of further application patterns for (connected)
distance-k dominating sets in wireless sensor networks in [29]. Connected k-hop
dominating sets may become disconnected due to node mobility or switch-off,
which necessitates the reformation of the k-hop dominating set. To dynamically
react upon such network changes self-stabilization is a widely accepted solution.

Further applications of distance-k dominating based clustering such as ef-
ficient network initialization are discussed in [15]. Penso and Barbosa report
about the usage of distance-k dominating sets of small sizes in a variety of
contexts, including multicast systems, the placement of servers in a computer
network, the caching of replicas in database and operating systems, and message
routing with sparse tables [21]. The problem of allocating and utilizing centers
in communication networks can also be solved with distance-k dominating sets.
Using a collection of centers offers an intermediate approach between centralized
and fully distributed solutions, and provides a reasonable balance between the
need for fault-tolerance and economical considerations [3].

The only distributed algorithm for computing minimum and not only min-
imal distance-k dominating sets is due to Wang et al. [27]. Their algorithm
assumes split-star graphs, but handles only the cases k = 1, 2. The ideas cannot
be carried over to the case k > 2. All other distributed algorithms compute at
best minimal such sets, e.g. [21, 15, 8]. Jia et al. presented an algorithm for
distance-1 dominating sets that runs in O(logn log ∆) rounds with high prob-
ability [12]. The size of the obtained dominating set is within O(log ∆) of the
optimal size in expectation. Schneider and Wattenhofer present a deterministic
algorithm that computes in O(log∗ n) rounds a connected distance-1 dominating
set with constant approximation ratio for bounded-independence graphs [22].
Peleg describes a distributed algorithm to compute a distance-1 dominating set
of size at most n/2 for trees with time complexity O(log∗ n) [20].

One of the few works for k > 1 is due to Datta et al. [7]. They present a
distributed self-stabilizing algorithm to compute a distance-k dominating set D.
For unit disk graphs the size of D at most 7.2552k + O(1) times the minimum
possible size. The algorithm presented in this paper is similar to that in [7].
Our main contribution is a proof that, on trees, the algorithm in fact computes
a minimum and not just a minimal distance-k dominating set. Furthermore, we
extend the algorithm to also compute a maximum distance-2k independent set
and a minimum connected distance-k dominating set.

Métivier et al. present a randomized distributed maximal distance-1 inde-
pendent set algorithm for general graphs terminating in O(logn) rounds with
probability 1− o(n−1) [19]. The algorithm uses techniques introduced by Luby
[17]. There are only a few distributed algorithms for distance-k independent
sets with k > 1. Self-stabilizing solutions are described in [18] for arbitrary k
and in [23] (resp. [26]) for k = 2 (resp. k = 1). They compute maximal and
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not maximum solutions. In the first case the required number of rounds grows
exponentially with n.

Using the work of Awerbuch and Sipser it is possible to transform deter-
ministic distributed algorithms into self-stabilizing algorithms (see [16, 2]). The
price to pay is among other things an increased number of messages and ad-
ditional local storage depending on the run-time complexity of the algorithm.
Using this transformation concept some of the above mentioned algorithms can
be made self-stabilizing.

Deterministic efficient distributed approximation algorithms with a guaran-
teed approximation ratio for optimization problems for which no exact poly-
nomial sequential algorithm is known are extremely rare. Efficient distributed
algorithms that exactly solve such problems for restricted classes of graphs are
also not very common. These statements in particular hold for the distance-k
dominating and the distance-k independent set problems. To the best of our
knowledge the only work that comes close to this goal is a deterministic dis-
tributed algorithm to compute a maximal distance-1 independent set of size at
most n/2 for a tree with time complexity O(log∗ n) [20]. Cockayne et al. have
developed a sequential algorithm for minimum dominating set (i.e. k = 1) of
a tree that runs in linear time [6]. A sequential linear algorithm for the more
general problem of R-domination is due to Slater [24]. These sequential algo-
rithms do not directly lead to distributed algorithms. This paper presents the
first distributed algorithm that computes exact solutions for two notoriously
difficult problems – distance-k domination and distance-2k independence – for
the class of trees.

2 Notation
Let G = (V,E) be an undirected graph and k > 0. A distance-k dominating
set of G is a subset D of V such that for each v ∈ V there exists u ∈ D with
dist(v, u) ≤ k1. Nodes in D are called dominators. A distance-k dominating
set D is called minimum (resp. minimal) if there exists no other distance-k
dominating set D′ with |D′| < |D| (resp. D′ ⊂ D). The size of a minimum such
set D is denoted by γk(G). A distance-k dominating set D is called connected
if the subgraph induced by D is connected. Denote by Diam(G) the diameter
of G.

A subset I ⊆ V is called distance-k independent (a.k.a. distance-k packing)
if the distance between any two distinct nodes of I is greater than k. It is
called maximum (resp. maximal) distance-k independent if there exists no other
distance-k independent set I ′ with |I ′| > |I| (resp. I ′ ⊃ I).

Let T be a rooted tree. The edges are oriented towards the root. If (v1, v2)
is a directed edge then v2 is called the successor of v1 and v1 a predecessor of

1There exists a diverging notation in the literature. The described concept is sometimes
called k-dominating set, e.g. in [8, 15], while other authors use the latter term in the following
sense. A k-dominating set of G is a subset S of V such that each v ∈ V \S has at least k
neighbors in S, e.g. [11, 13].
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v2. The set of predecessors of v is denoted by P (v). An ancestor of v is a node
from where v is reachable. The distance from a node v to the root is called the
height of v. The maximal height of a node in T is called the height of T .

The distributed algorithms presented in this paper use the asynchronous
shared memory model, more precisely the asynchronous CONGEST model as
defined in [20]. In this model, each node can communicate only with its neigh-
bors by exchanging messages of size O(logn) via the communication links. The
network can be viewed as a communication graph G where nodes represent
processors and links correspond to communication registers. The restriction to
messages of small size is important. In a model in which messages of unlimited
size are allowed, each node can within Diam(G) rounds collect the informa-
tion about the entire topology and thus, solve any problem – including the one
considered in this work – locally.

Each node defines a finite number of variables. A node can read and write
its own variables. In addition a node can read the variables of each of its
neighbors, but it cannot write these variables. Apart from this shared memory,
nodes can also have some local memory. The actions of the individual nodes are
not coordinated, i.e., each node can run at its own speed. Time is measured in
rounds. A round is the minimal time span such that each node that wants to
execute an action gets a chance to execute that action. For detailed definitions
of these concepts we refer to the standard literature [25, 9, 20].

3 The Algorithm
3.1 Informal Description
Let T be a rooted tree. To provide a motivation for our distributed algorithm we
first sketch a sequential algorithm to compute a minimum distance-k dominating
set of T . The approach cannot be directly adopted to the distributed model,
but it conveys the main idea. The algorithm incrementally builds a distance-k
dominating set. In each round a yet not dominated node v of T with maximal
depth is selected. Its successor at distance k is marked as a member of the
distance-k dominating set. If the depth of the selected node v is less than k then
the root is marked. Algorithm 1 shows the complete code of this algorithm.
Lemma 1 The nodes marked by Algorithm 1 form a minimum distance-k dom-
inating set of T .

Proof: Let v1, . . . , vs be the selected nodes and W = {w1, . . . , ws} the corre-
sponding dominators. Furthermore, let D be any minimum distance-k domi-
nating set of T . Obviously, W is a distance-k dominating set of T . It suffices
to show that |D| ≥ |W |. For a set U of nodes let

domk(U) = {v | dist(u, v) ≤ k for some node u ∈ U}.
Let Wi = domk({w1, . . . , wi}). Choose d1 ∈ D such that v1 ∈ domk({d1}).
Since v1 has maximal depth in T we have domk({d1}) ⊆ domk({w1}). Sup-
pose we have chosen d1, . . . , di−1 ∈ D such that dj ∈ D\{d1, . . . , dj−1}, vj ∈
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foreach v in T do
v.dominated := false, v.dominator := false;

while not all nodes of T are dominated do
let v be a node of maximal depth in T with v.dominated = false;
if dist(v, root) ≤ k then

w := root;
else

w := successor of v with distance k;
w.dominator := true;
foreach u in T with dist(w, u) ≤ k do

u.dominated := true;

Algorithm 1: A sequential algorithm to compute a minimum distance-k dom-
inating set of a tree T .

domk({dj}) and domk({dj}) ⊆Wj for j = 1, . . . , i− 1. We will show that there
exists di ∈ D\{d1, . . . , di−1} such that wi ∈ domk({di}) and domk({di}) ⊆Wi.
Since vi is not distance-k dominated by the nodes w1, . . . , wi−1 it is not con-
tained in domk({d1, . . . , di−1}). Hence, there exists di ∈ D\{d1, . . . , di−1} such
that vi ∈ domk({di}). Suppose there exits a node u ∈ domk({di}) not con-
tained in Wi. By choice of vi, the depth of u is at most that of vi. Node
u cannot be an ancestor of wi, because this would imply dist(wi, u) ≤ k.
Hence, dist(vi, u) = dist(vi, wi) + dist(wi, u) > 2k. But then dist(vi, u) =
dist(vi, di) + dist(di, u) ≤ 2k leads to a contradiction. Thus, domk({di}) ⊆Wi.
This shows |D| ≥ |W |. 2

The above described algorithm does not directly lead to an efficient algo-
rithm in the distributed model. There are two obstacles. First, the repeated
search for a node that is not yet dominated at maximal depth and secondly, the
determination of the newly dominated nodes. For the first aspect note that the
same distance-k dominating set is selected, if we process the nodes of T with
descending depth. In each step i we mark the successors at distance k (or the
root) of all nodes at depth i that are not yet dominated by dominators. This
can be realized by a bottom up labeling scheme. All selected nodes at depth i
are assigned the value k and this assignment is decremented for each successor
until we reach the value 0. Such nodes are dominators. Note that during a
single iteration the assigned numbers are unique because they originate from
nodes with the same depth. This is not the case for assignments of different
rounds, this problem is resolved later.

Another issue is the distributed marking of the dominated nodes. This can
also be solved by assigning numbers to nodes. The successors of nodes with
assignment 0 receive assignment 2k and this assignment is decremented for
each successor until we reach the value k + 1. Note that all these nodes are
dominated by the node with assignment 0. The main challenge is the merging
of the different assignments into a single one. To formalize this concept the
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following notation is introduced.

Definition 1 A mapping A : V −→ {0, . . . , 2k} is called a k-assignment of T .

The proposed algorithm selects the same distance-k dominating set as the
sequential algorithm described above. It constructs the k-assignment L. We
will show that either the set of nodes with L(w) = 0 or those nodes together
with the root form a minimum distance-k dominating set. Informally a value for
L(w) between 1 and k indicates that the node needs a dominator within distance
L(w). A value larger than k indicates, that there is a dominator within distance
2k + 1− L(w).

Informally the construction of L works as follows. Dominators are pushed
beginning at the leaves as far as possible towards the root. The lowest domi-
nators have distance k from the leaves, i.e., a leaf requires a dominator within
distance k. Hence, L(v) = k for any leaf v. Successors of leaves get the value
k−1. In general the value of a node is one less than the minimal value among its
predecessors. But there are some exceptions to this rule. In case L(v) = 0 (i.e.
v is a dominator) there is no need to assign 0 to another node within distance
2k towards the root, but then such a node is required. Thus, a successor of a
node v with L(v) = 0 gets the value 2k, except v has another predecessor w
with L(w) = 1. Then L(v) must be 0 to provide a dominator to w and its pre-
decessors. Another exception is given if v for example has predecessors w1, w2
with L(w1) = k + 3 and L(w2) = k. Then w1 provides a dominator for w2 and
v does not have to provide one. Thus, it is possible to assign k + 2 instead of
k − 1 to v (see Fig. 1(a)). This is not possible in case L(w1) = k + 2, then it
is necessary to have L(v) = k − 1 to force v to provide a dominator for w2 (see
Fig. 1(b)).
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(a) Merging of 4-assignments
with rule max−1.

3
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4

(b) Merging of 4-assignments
with rule min−1.

3

4

2 0 2

1 1 0

2 2 1

2

(c) 2-assignment L. Lightly
colored nodes show resulting
distance-2 dominating set.

Figure 1: Examples of k-assignment L for the cases k = 4 and k = 2.

These observations lead to the following definition of L.



230 Turau et al. Minimum Distance-k Dominating Sets

Definition 2 The k-assignment L is defined as follows:

L(v) =


k if P (v) = ∅ else
0 if ∃w ∈ P (v) with L(w) = 1 else
2k if ∃w ∈ P (v) with L(w) = 0 else
max−1 if max + min ≥ 2k + 3,
min−1 otherwise

Here max = max{L(v) | v ∈ P (v)} and min = min{L(v) | v ∈ P (v)}.

The main four cases of Def. 2 are illustrated in Fig. 2.

1

0

1

(a) A predecessor v with L(v) = 1.

0

2k

0

(b) No predecessor v with L(v) = 1
and a predecessor v with L(v) = 0.

min max

max −1

min max

(c) L(v) > 1 for all predecessors v of w
and max + min ≥ 2k + 3.

min max

min −1

min max

(d) L(v) > 1 for all predecessors v of w
and max + min < 2k + 3.

Figure 2: Illustration of the definition of L(v).

The following lemma summarizes the properties of L.

Lemma 2 The k-assignment L has the following properties.

1. A node v with L(v) /∈ {k, 2k} has a predecessor w with L(w) = L(v) + 1.

2. Each node v with L(v) = 2k has a predecessor w with L(w) = 0.

3. Each node v with L(v) = k is either a leaf of T or has a predecessor w
with L(w) = k + 1.

Let T be a tree. Let D0 = {v ∈ V | L(v) = 0} and

D =
{
D0 ∪ {root} if L(root) ≤ k
D0 otherwise

Fig. 1(c) shows the 2-assignment L. The lightly colored nodes form the set
D. Note that L(root) > k. The following lemma proves an important property
of D.
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Lemma 3 D is a distance-k dominating set of T .

Proof: Let v be a node of T not contained in D. First consider the case
L(v) > k. The repeated application of Lemma 2 shows that v has an ancestor
w with L(w) = 0 and dist(v, w) ≤ 2k − L(v) + 1 ≤ k. Thus, v is distance-k
dominated by D. Next, consider the case L(v) ≤ k. This yields that v is not
the root of T , because v 6∈ D. We will show that in this case v is distance-L(v)
dominated. Let

W = {v ∈ V | 0 < L(v) ≤ k and v not distance-L(v) dominated by D}

Suppose W 6= ∅. Among all nodes in W choose v such that L(v) ≤ L(w) for all
w ∈W . Let v1 be the successor of v in T . If L(v) = 1 or v has a sibling w with
L(w) = 1 then L(v1) = 0 and thus, v is distance-k dominated by D. Hence,
L(v) > 1 and thus, k > 1. If L(v1) = 2k then v has a sibling w with L(w) = 0.
This would imply that v is distance-k dominated by w.

Denote by max (resp. min) the maximum (resp. minimum) L value of a
predecessor of v1. If max + min ≥ 2k + 3 then L(v1) = max−1. Note that
min ≤ L(v) ≤ k and hence max ≥ k+ 3. Thus, L(v1) ≥ k+ 2. As shown above
v1 has an ancestor w with L(w) = 0 and dist(v1, w) ≤ 2k − L(v1) + 1 ≤ k − 1.
This yields that v is distance-k dominated by w. Finally consider the case that
max + min < 2k + 3. Then L(v1) = min− 1 < L(v). By choice of v node v1 is
distance-L(v1) dominated by a node of D. Since L(v1) < k this yields that v is
distance-k dominated by a node of D. This shows that W = ∅ completing the
proof. 2

Definition 3 A fading path of a tree T is a path of length k starting in a node
v with L(v) = k where assigned values decrease by 1 at each node.

Fig. 3 shows a 2-assignment with three fading paths. The lightly colored
nodes form the set D. Note that L(root) ≤ k.

2 3 4 0
0 1 2

1 2 3 4 0 1 2

Figure 3: The three fading paths are highlighted (k = 2).

Lemma 4 The k-assignment L has the following properties.

1. Each node v with L(v) = 0 is contained in a fading path of T .

2. T contains |D0| disjoint fading paths.

Proof: The first statement follows immediately from Lemma 2. Let f be a
fading path. Let Tf be the graph obtained by removing all nodes of f and edges
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adjacent to nodes of f from T . Then Tf is a set of rooted trees containing |D0|−1
nodes with L(w) = 0. Furthermore, every node w of Tf with L(w) 6∈ {k, 2k} has
a predecessor u in Tf with L(u) = L(w) + 1. Repeating this argument proves
that T contains |D0| disjoint fading paths. 2

Lemma 5 Let f = v0, v1, . . . , vk and g = w0, w1, . . . , wk be two disjoint fading
paths. Then dist(vj , wj) > 2j for j = 0, 1, . . . , k.

Proof: Let x be the node of T with maximal depth such that v0 and w0 are
ancestors of x. If x is neither contained in f nor in g then dist(vj , wj) =
dist(vj , v0) + dist(v0, x) + dist(x,w0) + dist(w0, vj) > 2j. Assume x ∈ f . Let
u0 = w0, u1, . . . , us = x = vi be the path between w0 and f . If s > k then
obviously dist(vj , wj) > 2j. So let s ≤ k. Since L(u0) = 0 Def. 2 yields
L(u1) ∈ {0, 2k}. Repeated application of Def. 2 yields L(us) ∈ {0, 1, . . . , s −
1, 2k − (s− 1), . . . , 2k}. Now L(us) = i implies i ≤ s− 1. Thus, dist(wj , vj) =
dist(wj , w0) + dist(w0, vi) + dist(vi, vj) ≥ j + i+ 1 + |i− j| > 2j. 2

Theorem 4 D is a minimum distance-k dominating set of T .

Proof: D is a distance-k dominating set of T by Lemma 3. If L(root) 6∈
{k + 1, . . . , 2k} then we can without loss of generality assume L(root) = 0.
Otherwise T can be extended to a tree T ′ by a path of length L(root) on top of
root. Then the distance between any pair of nodes of T is the same in T and
T ′. This yields D = D0. Let f and g be two disjoint fading paths and wk, vk

nodes of f and g with L(wk) = L(vk) = k. By Lemma 5 dist(wk, vk) > 2k.
Thus, wk and vk cannot be distance-k dominated by the same node. Lemma 4
implies γk(T ) ≥ |D|. Hence D is a minimum distance-k dominating set of T . 2

Lemma 6 γk(T ) ≤ max(1, b n
k+1c) for each tree T .

Proof: By Theorem 4 γk(T ) = |D| and by Lemma 4 T contains |D0| disjoint
fading paths. If L(root) 6∈ {1, . . . , k} then D = D0 and hence, b n

k+1c) ≥ |D|.
Consider the case L(root) ∈ {1, . . . , k}. If D0 = ∅ then |D| = 1. So let D0 6= ∅.
According to Lemma 2 there exists a path vk, . . . , vs = root in T with L(vi) = i
for i = k, . . . , s > 0. None of these nodes is on a fading path. Let v ∈ D0
be a node with minimal distance from root and u be the successor of v. Then
obviously L(u) = 2k. Thus, the path from root to u contains at least s nodes.
Hence, there exist k + 1 nodes that are not on a fading path. This yields that
n ≥ |D|(k + 1). 2

3.2 Implementation
The definition of L leads to a sequential algorithm for computing a minimum
distance-k dominating set in a bottom-up style. The tree is traversed beginning
at the root in a depth first style. The purpose of this traversal is to compute
L. Whenever the depth first search finally backtracks from a node v the value
of the assignment L(v) is computed according to Def. 2. The computation can
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also be carried out in a distributed algorithm. Each node maintains a variable
L. In every round each node computes L(v) based on the value of variable L of
its predecessors using Def. 2 and assigns the result to its variable L. Thus, each
node v executes the following code

while v.L 6= L(v) do
v.L := L(v);

After height(T ) rounds all variables L have their final values. Note that
the distributed algorithm is also self-stabilizing. Each leaf continuously sets its
value for L to k and all other nodes continuously compute L(v) and assign this
value to L. No initialization is needed. Since the algorithm works bottom up,
there is no need to demand that a node’s access to variables of a neighbor is
atomic.

The following theorem summarizes the main result.

Theorem 5 Let T be a tree and k > 0. A minimum distance-k dominating set
of T can be computed with a distributed self-stabilizing algorithm in height(T )
rounds using O(log k) space per node. Furthermore, γk(T ) ≤ max(1, b n

k+1c).

4 Distance-k Independence
It is known that for k ≥ 2, finding a maximum distance-k independent set is
NP-hard, even for regular bipartite graphs [14]. In this section it is shown that
the k-assignment L gives rise to maximum distance-2k independent sets in trees.
Denote by F a set of |D0| disjoint fading paths of a tree T and let Ij = {v ∈
f | f ∈ F ∧ L(v) = j} for j = 1, . . . , k. If L(root) ∈ {1, . . . , k} then there
exists a path v0 = root, . . . , vs with s = k−L(v0) such that L(vi) = L(vi+1)− 1
and L(vs) = k. This path can be regarded as a partial fading path. With this
provision define Ij

L = Ij ∪ {vs} if L(root) ∈ {1, . . . , k} and Ij
L = Ij otherwise.

Lemma 7 In any tree T the sets Ij
L are distance-2j independent for j = 1, . . . , k.

Proof: If L(root) ∈ {1, . . . , k} then we can without loss of generality assume
L(root) = 0. Otherwise T can be extended to a tree T ′ by a path of length
L(root) on top of root. Then the distance between any pair of nodes of T is the
same in T and T ′. The result follows from Lemma 5. 2

Note that Ij
L is not necessarily a maximal distance-2j independent set of T .

But for j = k the following result holds.

Theorem 6 In any tree the set Ik
L is a maximum distance-2k independent set.

Proof: By Lemma 7 Ik
L is a 2k-independent set and |Ik

L| = |D|. Since any
distance-k dominating set must have at least of the size of any distance-2k in-
dependent set, it follows from Theorem 4 that Ik

L is a maximum distance-2k
independent set. 2
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Note that Chang et al. proved that for sun-free chordal graphs (in partic-
ular for trees), distance-2k independency and distance-k domination are dual
problems [5]. In particular, a minimum distance-k domination set has the same
cardinality as a maximum distance-2k independent set for this class of graphs.

4.1 Implementation
The main task to be performed is the recognition of fading paths and the mark-
ing of the corresponding nodes on these paths. This can be integrated into a
single depth-first scan of the tree. At each node v with L(v) = 0 a new fading
path begins. Thus, a sequential algorithm can compute the sets Ij

L in linear
time. To identify fading paths in a distributed setting each node has a vari-
able fading pointing to a predecessor. Its value is computed using the following
function where, succ(v) denotes the successor of node v in the tree.

fading(v) :=


p ∈ P (v) with p.L = 1 if v.L = 0
p ∈ P (v) with p.L = v.L + 1 if 0 < v.L < k ∧

(succ(v).fading = v ∨ v = root)
null otherwise

In case there are several nodes p ∈ P (v) that satisfy the given condition node
v randomly chooses one of these nodes and retains to this choice. Thus, each
node v executes the following code

while v.L 6= L(v) ∨ v.fading 6= fading(v) do
v.L := L(v);
v.fading := fading(v);

This code computes fading within k rounds. The values of variable fading are
called legal, if the above equation is satisfied. The following theorem summarizes
the result of this section.

Theorem 7 In a tree T with legal values for variable fading the set {v ∈ V |
L(v) = k ∧ succ(v).fading = v} is a maximum distance-2k independent set. It
can be computed in height(T ) + k rounds by a distributed self-stabilizing algo-
rithm.

5 Minimum Connected Distance-k Dominating
Sets

A sequential algorithm for computing connected distance-k dominating sets of
distance-hereditary graphs (i.e. also trees) in linear time was proposed in [4].
The algorithm does not allow an efficient distributed implementation. In the
following a distributed algorithm based the k-assignment L is presented.

Let F be a set of |D0| disjoint fading paths of T . For each f ∈ F denote by
f(i) the unique node v ∈ f with L(v) = i.
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Lemma 8 Let C be any connected distance-k dominating set of T and f, g ∈ F
such that g(k) is not contained in the subtree rooted in f(0). Then f(0) ∈ C.

Proof: By definition of a fading path the balls of radius k around f(k) and
g(k) are disjoint. Also any path from one ball to the other has to pass through
f(0). Furthermore, dist(f(k), g(k)) > 2k by Lemma 5. This yields f(0) ∈ C. 2

Let DC be the set of nodes that are successors of nodes in D0. To determine
a minimum connected distance-k dominating we consider three cases. If |D| = 1,
then D is by Theorem 4 a connected distance-k dominating set (see leftmost
graph in Figure 4). Next assume |D| > 1. The second case covers the situation
that there exists a node u ∈ D0 such that DC equals the set of nodes of the
path from u to root. Let w be the second top most node of D on this path and
Cw be the set of all ancestors of w that are contained in DC including w. By
Lemma 8 Cw ⊆ C. The second graph from the left in Figure 4 shows, that Cw

can be a proper subset of C. To compute these additional nodes the following
definition is needed. For each node v ∈ DC not contained in Cw a value distl(v)
is defined as follows.

v.distl :=
{

max({0} ∪ {k + 1− L(u) | u ∈ P (v)\DC}) if v = root
max({distl(succ(v)) + 1} ∪ {k + 1− L(u) | u ∈ P (v)\DC}) else.

Lemma 9 If there exist a node u ∈ D0 such that all nodes of DC lie on the
path from u to root, then the set {v ∈ DC | v.distl ≥ k} is a minimum connected
distance-k dominating set of T .

Proof: The value v.distl for a node v ∈ DC is equal to the largest distance
from v to a node in T\Tv, where Tv is the subtree of T rooted in v. Thus, if
v.distl < k then the predecessor of v will distance-k dominate all nodes of T\Tv

that are distance-k dominated by v. Furthermore, all nodes with v.distl = k
are required to distance-k dominate the furthest leaves in T\Tv. This proves
the lemma. 2

The above lemma suggests to compute v.distl for all nodes v of T . This
can be done in height(T ) rounds. But nodes of DC with distance larger than k
to the root are contained in any minimum connected distance-k dominating as
shown above, see Lemma 8. Thus, {v ∈ DC | dist(root, v) ≥ k ∨ v.distl ≥ k} is
equivalent to the description in Lemma 9. Assuming that the distances to the
root are known, it suffices to compute v.distl for nodes with dist(root, v) < k.
This can be done in k rounds.

For the third and last case let u be the node closest to root that has at least
two predecessors in Dc. If there is more then one node of D0 on the path from
u to root then let w be the second top most node of these nodes. Otherwise
let w = u. Let Cw be the set of all ancestors of w that are contained in DC

including w. By Lemma 8 Cw ⊆ C. The three graphs on the right side in
Figure 4 show again, that Cw can be a proper subset of C.

With the above definition of distl the conclusion of Lemma 9 does not nec-
essarily hold in this case. A problem arises if the the node closest to the root
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with at least two predecessors in Dc has distance less than k to the root (see
graph in the middle of Figure 4). This node is obviously part of any minimum
connected distance-k dominating set, but it can have a value for distl that is less
then k. Therefore it is necessary to find out, whether there exists a node with
this property with distance less than k to the root. This can be done within k
rounds. This leads to the following lemma that holds under the assumption of
the third case.

Lemma 10 If there exists a node u ∈ DC with at least two predecessors in DC

and c = min{dist(v, root) | v has at least two predecessors in DC}, then the set
{v ∈ DC | v.distl ≥ k ∨ dist(v, root) ≥ min(c, k)} is a minimum connected
distance-k dominating set of T .

This lemma is proved similarly to Lemma 9. Note that the value of min(c, k)
can be computed within k rounds.

5

6

0

1

2

3

2

3

4

1

2

3

2

3

0

1

2

3

1

2

3

3

1

2

3

2

3

4

5

1

2

3

5

1

2

3

2

3

3

4

5

6

1

2

3

6

1

2

3

1

2

3

Figure 4: Connected distance-3 dominating sets. Node w is depicted with a
diamond shape. Nodes belonging to the set DC are depicted in white, others
in black. Integers next to nodes in DC represent distl and L for the other
nodes. The nodes within the lightly colored region form the minimum connected
distance-3 dominating sets.

5.1 Implementation
To compute a minimum connected distance-k dominating set of T first the set
D0 is computed. The values of L are stored in a variable L as done in the last
section. In the process of computing L the computation of dist(root, v) for all
nodes v can be done with no further expense. This value is stored in variable
level of each node.

The following algorithm marks all nodes in DC using variable cds. Ex-
pression cds(v) evaluates to true, if there exists a predecessor w of v with
w.cds = true. This requires additional k rounds.
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while (v.L = k ∧ v.cds 6= true) ∨ (v.L 6= k ∧ v.cds 6= cds(v)) do
if v.L = k then

v.cds := true;
else

v.cds := cds(v);

Next the values of distl are computed. The algorithm uses the function distl
which can be defined on the same lines as above with the set DC being replaced
by the set of nodes with cds = true and L(v) is replaced by v.L. Let twoPred(v)
be an expression that evaluates to true if node v has at least two predecessors
with v.cds = true. Finally, let minc(v) be a function implemented as follows.

if v.level ≥ k then
return k;

else
if twoPred(v) = true then

return v.level;
else

return min{w.minc | w ∈ P (v)};

The purpose of this function is to compute the minimum of c and k where
c is defined as in Lemma 10. Variable min is used to store the value of this
function. The following code computes the values of variables minc and distl.

while (v.cds = true ∧ v.distl 6= distl(v)) ∨ v.minc 6= minc(v) do
v.distl := distl(v);
v.minc := minc(v);

Note that the values of cds, distl and twoPred required to compute a min-
imum connected dominating set with Lemma 9 and 10 are available after 3k
rounds. This is because the first variable is available after 2k rounds and the
latter two variables are only required for nodes with distance at most k to the
root.

The above cases can all be distinguished by the root of the tree. If root.cds =
false then {root} is a minimum connected dominating set. If root.cds = true
but all predecessors of the root have cds = false the same statement holds. If
root.cds = true then the set {v | v.cds = true∧(v.distl ≥ k∨v.level ≥ v.minc)}
is a minimum connected dominating set.

The following theorem summarizes the results of this section.

Theorem 8 There exists a self-stabilizing distributed algorithm that computes
a minimum connected distance-k dominating set of a tree T in height(T ) + 3k
rounds.
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6 General Graphs

Let T be a spanning tree of a graph G. Then obviously γk(T ) ≥ γk(G). The
following lemma suggests that the presented algorithm may also be used to
compute minimal distance-k dominating sets of general graphs.

Lemma 11 Every connected graph G has a spanning tree T with γk(T ) =
γk(G).

Proof: It suffices to prove that there exists a spanning tree T of G with
γk(T ) ≤ γk(G). Let D be a minimum distance-k dominating set of G. We
will construct a spanning tree that contains all nodes in D. First, each node
of G is connected to the closest node in D using a shortest path in G (ties are
broken arbitrarily). This results in a forest F of shortest-path-trees rooted at
the nodes in D containing all nodes of G. Next we add edges of G to F until it
becomes a spanning tree T of G. By construction, all nodes of G are distance-k
dominated in T by the nodes in D. Thus, γk(T ) ≤ γk(G). 2

Since finding a minimal distance-k dominating set is NP-hard there is only
little hope to find an efficient algorithm to compute the tree T of the last Lemma
without knowing D. Applying the algorithm to an arbitrary spanning tree can
lead to a very poor approximation of a minimal distance-k dominating set of G.
In fact it is easy to construct a graph G and a spanning tree T of G such that
γk(T )/γk(G) = bn/(k + 1)c.

In case the algorithm is applied to a spanning tree T of a graph G non-tree
edges can be used to reduce the size of the resulting distance-k dominating set.
So far all attempts to do so only led to heuristics without significantly improving
the above stated bound. It remains an open problem whether this can lead to
an approximation ratio significantly below n/(k + 1).

7 Conclusion

The paper presented a distributed algorithm to compute a minimum distance-
k dominating set for a tree T . The algorithm stabilizes in height(T ) rounds
requiringO(log k) storage in the distributed model. The message size isO(log k).
To the best of our knowledge this is the first distributed algorithm that computes
a minimum (as opposed to a minimal) distance-k dominating set for a non-trivial
class of graphs. For even k the algorithm also computes a maximum distance-k
independent set for a tree.

The presented distributed algorithms are self-stabilizing since they do not
require any initialization and temporal errors are automatically corrected. The
latter property is true since the algorithms work bottom-up with fixed values
for leaf nodes. The algorithms stabilize under the unfair distributed scheduler.
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