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Abstract

A graph is called a strong ( resp. weak) bar 1-visibility graph if its
vertices can be represented as horizontal segments (bars) in the plane so
that its edges are all (resp. a subset of) the pairs of vertices whose bars
have a ε-thick vertical line connecting them that intersects at most one
other bar.

We explore the relation among weak (resp. strong) bar 1-visibility
graphs and other nearly planar graph classes. In particular, we study
their relation to 1-planar graphs, which have a drawing with at most one
crossing per edge; quasi-planar graphs, which have a drawing with no three
mutually crossing edges; and the squares of planar 1-flow networks, which
are upward digraphs with in- or out-degree at most one. Our main results
are that 1-planar graphs and the (undirected) squares of planar 1-flow
networks are weak bar 1-visibility graphs and that these are quasi-planar
graphs.
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1 Introduction

Developing a theory of graph drawing beyond planarity has received increasing
interest in recent years. This is partly motivated by applications of network
visualization, where it is important to compute readable drawings of non-planar
graphs. Within this research framework, a rich body of papers has in particular
been devoted to the study of the combinatorial properties of different types of
drawings that are nearly planar, i.e., do not allow a specific restricted set of
crossing configurations, such as the crossings cannot form too sharp angles (see,
e.g., [12] for a survey). Another study of visualizations of non-planar graphs
that are “close to planar” was conducted by Dean et al. [9], by introducing so-
called bar k-visibility graphs and representations. Dean et al. were particularly
interested in measurements of closeness to planarity of bar k-visibility graphs.
In this work we shed some light on this question by investigating the relation
of bar 1-visibility graphs with graphs that are known to be “close to planar”.
Thus, we study the relation of bar 1-visibility graphs with nearly planar graphs,
particularly 1-planar and quasi-planar graphs. Moreover, we investigate the
relation of bar 1-visibility graphs with squares of planar graphs.

A bar layout consists of n horizontal non-intersecting line segments (bars). A
pair of bars u and v are k-visible if and only if there is an axis-aligned rectangle
of positive width touching u and v which intersects at most k bars in the layout.
For a given bar layout, its (unique) strong bar k-visibility graph has a vertex
for every bar and an edge uv if and only if the corresponding bars u and v
are k-visible1. A weak bar k-visibility graph of a bar layout is any (spanning)
subgraph of its strong bar k-visibility graph. Note that there are 2m weak bar
k-visibility graphs if there are m edges in the strong bar k-visibility graph. A
graph is a strong (weak) bar k-visibility graph if it is the strong (weak) bar k-
visibility graph of some bar layout. Independently, Wismath [30] and Tamassia
and Tollis [27] characterized strong bar 0-visibility graphs as exactly those that
have a planar embedding with all cut vertices on the exterior face. Weak bar
0-visibility graphs are exactly the planar graphs [10]. Dean et al. [9] showed
that Kn (n 6 8) is a strong bar 1-visibility graph, that K9 is not a strong bar
1-visibility graph, and that all n-vertex strong (and thus weak) bar 1-visibility
graphs have fewer than 6n − 20 edges. Felsner and Massow [18] showed that
there exists a strong bar 1-visibility graph that has thickness three, disproving
an earlier conjecture [9] that all such graphs have thickness two or less.

While bar layouts represent the vertices of a graph as horizontal segments,
a topological drawing of a graph G maps each vertex u of G to a distinct point
pu in the plane and each edge uv of G to a Jordan arc connecting pu and pv.
In a topological drawing it is required that an edge does not pass through any
other vertex except for its end-vertices, and any intersection point of two edges
is either their common end-vertex or a crossing point. In this paper we consider
simple topological drawings, where it is required that any two edges have at
most one common point. A k-planar graph is one which admits a topological

1We denote by uv the undirected edge between u and v, and by (u, v) the edge directed
from u to v.
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drawing in which each edge is crossed by at most k other edges. Pach and Tóth
proved that 1-planar graphs with n vertices have at most 4n − 8 edges, which
is a tight upper bound [24] and that, in general, k-planar graphs are sparse.
Korzhik and Mohar proved that recognizing 1-planar graphs is NP-hard [21].
A limited list of additional papers on k-planar graphs includes [3, 5, 7, 8, 16,
14, 17, 15, 20, 26, 29]. Sultana et al. [25] recently investigated the relation
between 1-planar and bar 1-visibility graphs and showed that several restricted
subclasses of 1-planar graphs are weak bar 1-visibility graphs.

A k-quasi-planar graph admits a topological drawing such that no k edges
mutually cross; 3-quasi-planar graphs are commonly called quasi-planar, for
short. Ackerman and Tardos showed that quasi-planar graphs with n vertices
have at most 6.5n − O(1) edges [2]. Di Giacomo et al. [11] described how to
construct linear area k-quasi-planar drawings of graphs with bounded treewidth.
Recently, Geneson et al. [19] showed that all semi-bar k-visibility graphs2 are
(k + 2)-quasi-planar. See also [1, 23] for additional references about k-quasi-
planar graphs.

Another family of non-planar graphs, which are in some sense “close to
planar” are the squares of directed planar graphs with bounded in- or out-
degree. The square G2 of a graph G = (V,E) has vertex set V and all edges
(u, v) (or uv in the case that G is undirected) where there is a path of length
at most two from u to v in G. Observe that if for each vertex of a directed
planar graph G, either in- or out-degree is bounded by a constant, then the
number of edges in G2 is linear. This fact is captured by the notion of k-flow
networks. A (planar) k-flow network is a (upward planar) directed graph in
which every vertex v has min{indeg(v), outdeg(v)} 6 k. The name of the class
stems from the fact that at most k units of flow can pass through each vertex.
Tarjan [28] studied 1-flow networks under the name of unit flow networks. Bessy
et al. [4] studied the arc-chromatic number of k-flow networks under the name
of (k ∨ k)-digraphs. We let k-flow2 denote the class of graphs that are the
undirected squares of planar k-flow networks. Squares of graphs arise naturally
in understanding bar 1-visibility graphs since a bar layout that represents a bar
0-visibility graph G also represents a family of weak bar 1-visibility graphs each
of which is a spanning subgraph of G2. That is, every weak bar 1-visibility
graph is a spanning subgraph of the square of a bar 0-visibility graph. Thus, it
is natural to consider which bar 0-visibility graphs have squares that are weak
bar 1-visible.

While several properties of bar 1-visibility graphs have been investigated,
it remains an open problem to provide their complete characterization. Recall
that bar 1-visibility graphs are generally non-planar and contain at most 6n−
20 edges. Observe that this number is greater than the maximum number
of edges in 1-planar graphs (at most 4n − 8) and smaller than the maximum
number of edges in quasi-planar graphs (at most 6.5n−O(1)). Recall also that,
every weak bar 1-visibility graph is a spanning subgraph of the square of a

2Semi-bar visibility graphs require all horizontal bars to have minimum x-coordinate equal
to zero [18].
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bar 0-visibility graph. Motivated by these facts we study the relation of bar
1-visibility graphs with families of 1-planar, quasi-planar and squares of planar
graphs. Our contribution is threefold: (i) We show that the class of weak bar 1-
visibility graphs contains the class of 1-planar graphs, which proves a conjecture
of Sultana et al. [25], (ii) we show that the class of bar 1-visibility graphs is
contained in the class of quasi-planar graphs, and (iii) we show that 1-flow2

graphs are weak bar 1-visibility graphs, and that this is not always true for 2-
flow2 graphs. An overview of our results is illustrated in Figure 1 and thoroughly
described in Section 2. Proof details about the inclusion relationships of Figure 1
are given in Sections 3, 4, and 5.

We note that, recently, Brandenburg [6] independently showed (i).

Quasi-Planar

WeB1

1-Planar

Planar

StB1

K9

K7 ∪K3,3

K3,3

C4

K7
K8

K5 K6

1-flow2

K7 ∪ C4

cater-
pillars

C5

S3

K5 ∪ S3
K5 ∪ C4

Figure 1: Relationships among graph classes proved in this paper.

2 Graph classes and their relationships

In this section we describe Figure 1. We abbreviate strong and weak bar 1-
visibility graphs as StB1 and WeB1 graphs. Since a strong bar 1-visibility
graph is a weak bar 1-visibility graph of the same bar layout, it follows that
StB1 ⊆ WeB1. The observation that every planar graph is WeB1 (it is in fact
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Figure 2: 1-flow graph G such that the square of the subgraph of G induced by
vertices 1, . . . , n is Kn (n 6 7).

a weak bar 0-visibility graph [10]); the fact that K3,3 is WeB1
( )

; and

the following simple lemma prove that StB1 ⊂ WeB1.

Lemma 1 Any graph that is StB1 is either a forest or contains a triangle.

Proof: Let G be StB1 and suppose G does not contain a triangle. We will show
that G does not contain any cycle, which implies that it is a forest. For the sake
of contradiction, assume that G contains a cycle C. Consider a strong bar 1-
visibility layout of G. Let v be a vertex of C whose bar has right endpoint with
minimum x-coordinate, x. Since v has at least two neighbors in C, their bars
must share some x-coordinate with bar v and all must span x. Thus at least
three bars span x implying a triangle in the graph, which is a contradiction. �

The number of edges in any 1-planar graph is known to be at most 4n−8 [24].
Thus, K7 and K8 are not 1-planar (too many edges) but are StB1 as proved
by Dean et al. [9]. The disjoint union K7 ∪K3,3 is WeB1 but it is not 1-planar
(because of K7) and it is not StB1 (because of K3,3 by Lemma 1). We show
that all 1-planar graphs are WeB1 (see Section 3) and that all WeB1 graphs are
quasi-planar (see Section 4).

In Section 5, we show that 1-flow2 graphs are WeB1. We also show that
2-flow2 graphs are not always WeB1. It is easy to see that if G2 6= G then
G2 contains a triangle. Thus, since K3,3 is not planar and does not contain a
triangle, it is not a 1-flow2 graph. However, every planar bipartite graph G can
be directed (from one bipartition to the other) so that G is a 1-flow network with
G2 = G and is thus a 1-flow2 graph. Therefore, caterpillars and C4 are 1-flow2

graphs. It is also easy to see that caterpillars are StB1. If G is the 1-flow graph
of Figure 2, then the square of the subgraph of G induced by vertices 1, . . . , n is
Kn (n 6 7). In Section 5 we show that K8 is not the square of a 1-flow network,
and that there exists a planar StB1 graph (S3) that is not the square of a 1-flow
network.
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3 1-planar graphs are WeB1

Theorem 1 If a graph G is 1-planar then G is WeB1.

Proof: It suffices to prove the theorem for a maximal 1-planar graph G =
(V,E) since a WeB1-representation of G is a WeB1-representation of every graph
(V,E′) with E′ ⊆ E. Let Γ be a 1-planar drawing of G. Let ab and cd be a
pair of edges that cross in Γ. By Proposition 1 [7], vertices a, b, c and d form a
K4. Thus, edges ac, cb, bd, and da exist in G. In case some of these edges are
crossed, we can redraw them so that they become uncrossed. If, for example,
edge ac was crossed in Γ, we could re-route it without introducing crossings by
following edge ab from a to its intersection with cd and then following cd to c;
always following slightly to the c-side of ab and the a-side of cd.

Since G is a maximal 1-planar graph, the planar graph G0 obtained by
removing all crossing edges from G is biconnected [14] and thus has an st-
orientation [22], which is a partial order, �, on the vertices V with a single
source (minimal vertex) and a single sink (maximal vertex). We direct the
edges of G0 to be consistent with this partial order; so uv is directed as (u, v)

if u � v. Let
⇀
G0 be the directed version of G0, and let Γ0 be the drawing Γ

restricted to G0.

For every crossing pair of edges ab and cd in G, the (undirected) cycle C =
acbda exists in G0 since none of its edges are crossed in Γ. We claim that the
oriented version, ⇀C , of C consists of two directed paths with common origin
and common destination. This claim is a slight generalization of:

Lemma 2 (Lemma 4.1 [10]) Each face f of
⇀
G0 consists of two directed paths

with common origin and common destination.

In our case, ⇀C may not be a face of
⇀
G0; it may contain vertices and edges in

its interior. However, if our claim is violated, we can re-route the edges of the
cycle C (as above) so that ⇀C is a face of

⇀
G0 and contradict the previous lemma.

Thus the claim holds and there must be two consecutive edges in C that are
oriented in the same direction, say (a, c) and (c, b). See for example Fig. 3(a).

We return the edge cd to the drawing Γ0 and direct it to be consistent with
the partial order, �, defined by the st-orientation. In place of the edge ab,
we insert the directed path aucvb that contains two dummy vertices, u and v
(specifically for this crossing). Note that, by the above discussion, this path is
also consistent with the partial order. The dummy vertices u and v are placed
as follows. Let x be the point where ab and cd intersect. We place u on the
segment ax at ε distance from x. Similarly, we place v on the segment xb at ε
distance from x (see Fig. 3(b)). By choosing ε small enough we have that none
of the edges (a, u), (u, c), (c, v), (v, b) creates a crossing and the result, after
every pair of crossing edges is replaced in this fashion, is an st-oriented plane
graph G′ with drawing Γ′. Since G′ is planar and has an st-orientation, G′ has
a bar 0-visibility representation [30, 27].
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Figure 3: (a) At least two edges (ac and cb) are oriented in the same direction
around the cycle C. (b) One edge (ab) in a pair of crossing edges is replaced
with the path aucvb by adding dummy vertices u and v. (c) The visibility edges
of the path aucvb are vertically aligned. (Only these bars are shown.)

The set of inserted paths are nonintersecting, meaning they are edge dis-
joint and do not cross at common vertices3 in the drawing Γ′. Thus, we may
construct a bar 0-visibility representation so that for each inserted path, aucvb,
the visibility lines realizing the edges of the path are vertically aligned (Theo-
rem 4.4 [10]). If we remove the bars representing dummy vertices u and v, the
visibility lines become a line of sight between a and b that is crossed only by
the bar representing vertex c. It follows that the bar 0-visibility representation,
after removing all dummy bars, is a weak bar 1-visibility representation of G.
See Figure 3(c). �

4 WeB1 graphs are Quasi-planar

Theorem 2 If a graph G is WeB1, then G is quasi-planar.

Proof: Let R be a weak bar 1-visibility representation of G = (V,E). We show
that the set of all edges E′ realized by the representation R (i.e., the strong bar
1-visibility graph of R) forms a quasi-planar graph. Since E is a subset of E′,
G is quasi-planar.

We construct a quasi-planar drawing, Q, from the bar representation R as
follows. In Q, place vertex v at the left endpoint, `(v), of the bar representing v
in R. The edges of E′ are in one of two classes. Let E′0 ⊆ E′ be the edges, called
blue edges, realized in R by a direct visibility between bars. Let E′1 = E′−E′0 be
the remaining edges of G′, called red edges, that is, those that are only realized
by a visibility through another bar. For a blue edge (u, v), with bar u below bar
v, draw a polygonal curve in Q consisting of three segments: the middle segment
is nearly identical to the rightmost vertical visibility segment that connects bar
u with bar v, but it starts γ (a small, positive value) above bar u, ends γ below

3Two paths cross at a vertex v in a drawing Γ if v has four incident edges e1, e2, e3, and
e4 in clockwise order such that one path contains e1 and e3 while the other contains e2 and
e4.
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Figure 4: Construction of the quasi-planar drawing Q. The shaded region
around bar v contains no vertical edge segments. The values of γ and δ in the
figure are larger than what they would be in a true construction.

bar v, and is shifted γ to the left. The first and third segments connect `(u) to
the bottom of the middle segment and the top of the middle segment to `(v),
respectively.

We first show that the polygonal curves from two distinct blue edges do
not cross. Let R(v) be the rectangular region composed of points less than L∞-
distance γ from bar v. We choose γ > 0 to be at most half the minimum positive
difference between bar x-coordinates and bar y-coordinates. With this choice
of γ, for any pair of vertices u 6= v, the regions R(u) and R(v) do not intersect.
The vertical segment, ν(u, v), of an edge (u, v) connects a point on the boundary
of R(u) with a point on the boundary of R(v), since the left-shift by γ from a
rightmost vertical visibility segment keeps the x-coordinate of ν(u, v) within the
x-range of bar u and bar v. In addition, the left-shift insures that ν(u, v) is at
least distance γ from the left end of any bar, and no closer than γ to the right end
of any bar. So no vertical edge segment intersects R(u) for any u. All (nearly)
horizontal segments that connect to `(v) lie within R(v) by construction, and
do not intersect (except at `(v)). Thus, no vertical edge segment intersects a
(nearly) horizontal segment from another edge, and no (nearly) horizontal edge
segment intersects a (nearly) horizontal segment from another edge. Thus the
curves representing blue edges do not cross. See Figure 4.

For a red edge (u,w), let v be the bar that is crossed by the rightmost 1-
visibility segment, σ, that connects bar u with bar w. We call v the bypass
vertex for the red edge (u,w). Draw edge (u,w) as a polygonal curve in Q
consisting of six segments: the first three connect `(u) to `(v) (as above) where
the middle segment lies γ to the left of σ, and the last three connect `(v) to `(w)
(as above) where, again, the middle segment lies γ to the left of σ. The edges
(u, v) and (v, w) are in E′0 and therefore have polygonal curves in Q that lie on
or to the right of the curve for (u,w). In order to prevent the curve for (u,w)
from intersecting the curves for (u, v) and (v, w) (except at `(u) and `(w)), we
shift all the points of the curve for (u,w), except `(u) and `(w), slightly to the
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left. The amount of this shift depends on the red edges that have v as a bypass
vertex. If k red edges with bypass vertex v have 1-visibility segments to the
right of σ then the shift is by (k+1)δ, where δ is a positive value that is smaller
than γ/|E′|2. In this way, no two red edge curves with the same bypass vertex
intersect.

Note that no (red or blue) vertical edge segments intersect region R(v) for
any vertex v, and all (nearly) horizontal edge segments lie in such a region for
some bar. Thus all edge curve intersections occur within such regions. See
Figure 4.

In fact, two red edge curves intersect if and only if the bypass vertex of the
edge whose curve has vertical segments further to the right is an endpoint of the
other. One consequence of this is that if two red edge curves, say for edges (u, v)
and (u,w), share an endpoint then they do not intersect. If they did then the
bypass vertex of one, say (u,w), must be the unshared endpoint of the other,
in this case v. This implies that there is a direct visibility between u and v and
the edge (u, v) is blue not red.

Suppose, for the sake of contradiction, that the drawing Q is not quasi-
planar. Consider a triple of edges (edge curves), (u1, w1), (u2, w2), and (u3, w3),
that mutually intersect in Q. Since no two blue edges intersect, at most one
edge in the triple is blue. In the first case, suppose all edges in the triple are red.
Two red edges do not intersect if they share an endpoint, so all the endpoints
u1, u2, u3, w1, w2, and w3 are distinct. Let (u1, w1) be the edge whose curve
has vertical segments furthest to the right of the three. The bypass vertex of
(u1, w1) can be the endpoint of only one of the edges (u2, w2) and (u3, w3). Thus
(u1, w1) does not intersect the other; a contradiction.

In the second case, suppose (u1, w1) is the only blue edge in the triple of
mutually intersecting edges. The intersection of a blue edge and a red edge must
occur near the bypass vertex of the red edge, i.e. inside R(v) if v is the bypass
vertex. Since both red edges, (u2, w2) and (u3, w3), in the triple intersect edge
(u1, w1), they must have bypass vertices u1 or w1. Because (u2, w2) and (u3, w3)
intersect, they cannot share the same bypass vertex. Assume by renaming if
necessary that (u2, w2) has bypass vertex u1 and (u3, w3) has bypass vertex
w1. Also because (u2, w2) and (u3, w3) intersect, the bypass vertex of one, say
(u2, w2), is an endpoint of the other. Thus one of the endpoints of (u3, w3) is
u1 and its bypass vertex is w1. This implies that three segments of the curve
representing (u3, w3) are shifted versions of the curve representing the blue edge
(u1, w1). Thus (u3, w3) doesn’t intersect the blue edge; a contradiction. �

5 Squares of planar 1-flow networks are WeB1

An acyclic digraph is called upward planar if it admits a planar drawing where all
edges are represented by curves monotonically increasing in a common direction.
An upward planar digraph with one source s and one sink t, embedded so that
s and t are on the outer face, is called a planar st-digraph.

For a planar st-digraph G = (V,E), let left(v) (resp. right(v)) denote the
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face of G separating the incoming from the outgoing edges in clockwise (resp.
counterclockwise) order. A topological numbering of G is an assignment of num-
bers to the vertices of G, such that for every edge (u, v), the number assigned
to v is greater than the number assigned to u. The numbering is optimal if the
range of the numbers assigned to the vertices is minimized.

Recall that a planar k-flow network is an upward planar digraph in which
every vertex v has min{indeg(v), outdeg(v)} 6 k. Recall also that k-flow2 denote
the class of graphs that are the undirected squares of planar k-flow networks.

As we already mentioned, a bar layout that represents a bar 0-visibility
graph G also represents a family of weak bar 1-visibility graphs each of which is
a spanning subgraph of G2. In other words, every weak bar 1-visibility graph is
a spanning subgraph of the square of a bar 0-visibility graph. In the following
we investigate the reverse question, thus, we investigate which bar 0-visibility
graphs have squares that are weak bar 1-visible.

Theorem 3 The square of a planar 1-flow network is WeB1.

Proof: LetG′ be a planar 1-flow network andG be a planar st-digraph for which
G′ is a spanning subgraph. We will prove in Lemma 3 that such G exists. The
argument is a slight modification of the method used to prove Theorem 6.1 [10].

Lemma 3 Any planar 1-flow network is a spanning subgraph of an st-digraph
that is also a 1-flow network.

Proof: Let G′ be a planar 1-flow network, i.e., an upward planar digraph with
min{indeg(v), outdeg(v)} 6 1, for each vertex v. We add edges to G′ to make
it a planar 1-flow network G, with a unique source and a unique sink. For an
upward planar drawing Γ′ of G′, let t1, . . . , tk (resp. s1, . . . , sf ) be the sinks
(resp. sources) of G′ that are on the outer face, where t1 (resp. s1) has the
largest (resp. smallest) y-coordinate (see Figure 5(a)). Add an edge from each
of t2, . . . , tk to t1 and from s1 to each of s2, . . . , sf so that the resulting drawing
Γ′′ is planar. Call the new planar 1-flow network G′′.

Let t be a sink of G′′. Consider a vertical half-line `, originating at t to
+∞. If t 6= t1, half-line ` crosses a boundary of an interior face f of Γ′′ that
contains t, since otherwise t would have been on the outer face of Γ′ and would
not be a sink in G′′ (the edge (t, t1) would be in G′′). We follow half-line `
and the boundary of face f upward until we reach a sink t′ of the face and add
an edge (t, t′) to G′′. Vertex t′ either has no outgoing edge, i.e., is a sink of
G′′, or already has two incoming edges. Thus, the addition of (t, t′) keeps G′′

a 1-flow network. Moreover, edge (t, t′) does not create any crossing and keeps
the graph upward, therefore after this step G′′ is still a planar 1-flow network.
The step cancels a sink of G′′. We repeat this step until no other sink except
for t1 remains. We perform a symmetric procedure for the remaining sources
(see Figure 5(b)). The resulting graph G is a planar 1-flow network. Since only
edges have been added, G′ is a spanning subgraph of G. �

We come back to the proof of the theorem. In the following we show that the
bar 0-visibility representation Γ of G produced by the algorithm of Tamassia
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Figure 5: Illustration for the proof of Lemma 3. (a) Added thick edges cancel
all sinks except t1. (b) Added thick edges cancel all sources except s1.
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Figure 6: Illustration for the proof of Theorem 3

and Tollis [27] is a WeB1 visibility representation of G2. Since G′ is a spanning
subgraph of G, G′2 is a spanning subgraph of G2, and therefore Γ is a WeB1
visibility representation of G′2.

We first review the construction of Γ. Let G? be the dual of G, where each
of G? is directed so that it crosses the corresponding edge of G from its left to
its right. It is easy to see that G? is a planar st-digraph [10]. Let ψ and χ be the
functions that assign an optimal topological numbering to the vertices of G and
G?, respectively. In Γ, vertex v is represented as a horizontal bar at y-coordinate
ψ(v) and with end-points at x-coordinates χ(left(v)) and χ(right(v)) − 1. We
show that each edge of G2 of the form (u,w), such that (u, v), (v, w) ∈ G, exists
in Γ and is represented by a vertical line crossing only one vertex v. Assume
that v has one incoming and several outgoing edges. The case when v has one
outgoing and several incoming edges can be proven symmetrically.

Let (u, v) be the only incoming edge of v. If edge (u, v) is the only outgoing
edge of u (Figure 6(a)), χ(left(u)) = χ(left(v)) and χ(right(u)) = χ(right(v)).
Therefore u and v are represented in Γ as two bars with the same left and
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v′ right(v′)
left(x′)

x

v

x′

Figure 7: Illustration of the Lemma 4.3 [10]. The edges of the primal graph G
are solid, the edges of the dual G? are dashed. Duplicate edges in the dual are
not shown.

right ends. If vertex u has more outgoing edges (Figure 6(b)), χ(left(u)) <
χ(left(v)) and χ(right(v)) < χ(right(u)). Thus generally it holds that χ(left(u))
6 χ(left(v)) and χ(right(v)) 6 χ(right(u)) (see Figure 6(c)) and any vertical
line that intersects bar v also intersects bar u. Thus, any vertical line that
represents the edge from v to w, also crosses u.

It remains to show that there is no bar in Γ between u and v crossed by such
a vertical line. Let x be a vertex different from u and v. By Lemma 4.3 [10],
exactly one of the following directed paths exists (see Figure 7): (1) from v to
x in G (blue bold path in the figure), (2) from x to v in G, (3) from right(v) to
left(x) in G? (red dashed bold path in figure), or (4) from right(x) to left(v) in
G?. The first case implies that ψ(v) < ψ(x) and therefore x is above v in Γ. The
second case implies that the path from x to v passes through u, since (u, v) is the
only incoming edge to v. Therefore ψ(x) < ψ(u) and x lies below u. In the third
case, χ(right(v)) < χ(left(x)) and in the fourth case, χ(right(x)) < χ(left(v)).
Thus, there is no vertex x that prevents the edge (u,w) from existing in Γ. �

5.1 Limitations on the squares of planar 2-flow networks

We show that while the squares of planar 1-flow networks are WeB1, the squares
of some planar 2-flow networks are not.

Theorem 4 There exists a planar 2-flow network whose square is not WeB1.

Proof: Consider the graph G of Figure 8 oriented upward. It consists of a√
n × √n grid, rotated by 45◦. The diagonals are present only in odd rows.

Thus, G is a 2-flow network. Each vertex has out-degree in G2 indicated by its
label in Figure 8. Consider the (

√
n− 2)2 vertices that are distance at least two

from the upper boundary vertices in G. At least half of these vertices have out-
degree 7 and the others have out-degree 6. Thus G2 has more than 13

2 (
√
n−2)2
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Figure 8: Illustration for the proof of Theorem 4.

edges, which exceeds the upper bound of 6n − 20 on the number of edges in a
WeB1 graph [9], for sufficiently large n. �

5.2 Examples for different graph classes related to squares
of planar 1-flow networks

The following two lemmata introduce examples of graphs that distinguish cer-
tain graph classes in Figure 1.

Lemma 4 K8 is not the square of a planar 1-flow network.

Proof: Suppose G = (V,E) is a 1-flow network such that G2 = K8. First, if
we view G as a partial order, �, it must be a total order otherwise two vertices
u 6� v would not be connected in G2. We number the vertices v1 � v2 � . . . � v8
according to the total order so that (vi, vi+1) ∈ E, for all 1 6 i 6 8. Observe
that, if there exists an index i, 3 6 i 6 6, such that indeg(vi) = indeg(vi+1) = 1
then G2 cannot contain the edge (v1, vi+1) . Similarly, if there exists 3 6 i 6 6
such that outdeg(vi) = outdeg(vi+1) = 1 then G2 cannot contain the edge
(vi, v8). These facts imply the following observation which will be repeatedly
used in the proof of the lemma.

Observation 1 For 3 6 i 6 6 it holds in G that (1) either indeg(vi) > 1 or
indeg(vi+1) > 1; and (2) either outdeg(vi) > 1 or outdeg(vi+1) > 1.

Statement 1 For 3 6 i 6 6 it holds in G that either indeg(vi) = 1 and
outdeg(vi) > 1, or indeg(vi) > 1 and outdeg(vi) = 1.

Proof: For the sake of contradiction assume that indeg(vi) = outdeg(vi) = 1
then, by Observation 1, indeg(vi+1) > 1 and outdeg(vi+1) > 1, which con-
tradicts the fact that G is a 1-flow network. The same fact is contradicted
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v1

v2

v3

v4

v5

v6

v7

v8

(a)

G2 G

(v1, v5) (v1, v4)

(v3, v6) (v3, v6)

(v1, v6) (v1, v6)

(v4, v8) (v5, v8)

⇒

(b)

Figure 9: Illustration for the proof of Lemma 4. (a) Edges (vi, vi+1), 1 6 i 6 7
are in G. The stroked out edges symbolize the fact that in- or outdegree of the
vertex is 1. (b) Edges of G2 (first column) that imply the existence of the edges
of G (third column).

by assuming that both indeg(vi) > 1 and outdeg(vi) > 1, thus the statement
follows. �

We are now ready to prove the following

Statement 2 It holds in G that indeg(v2) = indeg(v3) = indeg(v5) = 1 and
outdeg(v4) = outdeg(v6) = outdeg(v7) = 1.

Proof: Observe that, if outdeg(v3) = 1 and indeg(v6) = 1 then G2 cannot
contain the edge (v3, v6). Thus either outdeg(v3) > 1 or indeg(v6) > 1. Us-
ing Observation 1 and Statement 1 we have the following chain of double im-
plications which can be constructed either from fact that outdeg(v3) > 1 or

from the fact that indeg(v6) > 1: indeg(v6) > 1
Stat.1⇐⇒ outdeg(v6) = 1

Obs.1⇐⇒
outdeg(v5) > 1

Stat.1⇐⇒ indeg(v5) = 1
Obs.1⇐⇒ indeg(v4) > 1

Stat.1⇐⇒ outdeg(v4) =

1
Obs.1⇐⇒ outdeg(v3) > 1

Stat.1⇐⇒ indeg(v3) = 1.
The observation that indeg(v2) = outdeg(v7) = 1 concludes the proof of the

statement. �

From Statement 2 and the fact that G2 = K8 we infer that the following
edges exist in G (see Figure 9 for more detail): (v1, v4), (v3, v6), (v1, v6), (v5, v8).
The same statement implies that either (v3, v7) or (v3, v8) is in G. However,
(v3, v7) and (v7, v8), is a subdivision of (v3, v8). ThusG contains either (v3, v8) or
its subdivision. Similarly, by Statement 2, either (v1, v7) or (v2, v8) or (v1, v8) is
in G. Since the pairs (v1, v7), (v7, v8) and (v1, v2), (v2, v8) are both subdivisions
of (v1, v8), we infer that G contains either (v1, v8) or its subdivision.

So, we infer that G contains either the following edges or their subdivisions:
(v1, v4), (v3, v4), (v5, v4), (v1, v6), (v3, v6), (v5, v6), (v1, v8), (v3, v8), (v5, v8).
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Figure 10: (a) Graph S3 of Lemma 5. (b) StB1 representation of S3.

Thus, G is non-planar since {v1, v3, v5} and {v4, v6, v8} form a subdivision of
K3,3 in G. �

Let S3 denote the graph consisting of a cycle of length 6 with an inscribed
triangle (Figure 10.a).

Lemma 5 S3 is a planar StB1 graph and is not the square of a 1-flow network.

Proof:
A StB1 representation of S3 is shown in Figure 10(b). In the following we

show that there exists no 1-flow network G, such that G2 = S3. For the sake of
contradiction assume such a G exists. We first assume that G does not contain
all the edges of the external face of S3. Without loss of generality assume that
ab is not in G. Then both bc and ac must be in G. Moreover they must be
appropriately directed. Assume that they are directed as (b, c) and (c, a) ((c, b)
and (a, c), respectively). Then edge dc is not inG, since (d, c) would induce (d, a)
(resp. (d, b)) in G2, while (c, d) would induce (b, d) (resp. (a, d)). Thus both
edges ec and ed must be in G. Edge ec must be oriented as (e, c) (resp. (c, e)),
otherwise edge (b, e) (resp. (e, b)) is in G2. Thus, (d, e) ∈ G (resp. (e, d) ∈ G).
Similarly, we conclude that (a, e) ∈ G (resp. (e, a) ∈ G), and therefore we get
a cycle ace in G, which is a contradiction to the upward condition of 1-flow
networks.

Now, assume that G contains all the edges of the outer face. We distinguish
cases based on the length of the directed paths contained in the outer face. If
the longest path has length one then none of the edges ae, ac, ec are induced in
G2 by outer edge paths, and so at least one must be in G. But, any orientation
of this edge creates an additional edge in G2, which does not belong to S3.

If there exists a path of length three we get a contradiction, since one of its
length two subpaths induces an edge not in S3.

Assume there exists a single path of length two, and no path of length three.
Then the middle vertex of the path must be b, d, or f , otherwise the path
induces an edge not in S3. Without loss of generality assume that the path is
abc. Then fa is oriented as (a, f) and dc as (d, c). Any orientation of fe and
ed either introduces a path of length three (above case) or two paths of length
two (the next case).
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Finally, assume there are two paths of length two. They must share a vertex,
otherwise one of them induces an edge not in S3, and they must be oriented
opposite, otherwise a path of length three exists. Without loss of generality we
can assume that they are either paths efa and cba, or paths afe and abc. In
case of efa and cba, edges ed and cd must be oriented as (e, d) and (c, d). Thus
edge ec must be in G. But any orientation of ec induces an edge in G2 that is
not in S3. Similar facts hold for paths afe and abc. �

6 Conclusion and Open Problems

In this paper we investigated the relation of bar 1-visibility graphs with other
classes of graphs that are “close to planar” by proving: (i) All 1-planar graphs
are WeB1, (ii) All WeB1 graphs are quasi-planar, and (iii) All 1-flow2 (but not
all 2-flow2) graphs are WeB1. While these results provide some insight on the
class of bar 1-visibility graphs it would be interesting to provide a complete
characterization of WeB1 or StB1 graphs. Regarding the relation of WeB1 and
k-flow2 graphs, what can we say about the squares of planar digraphs, where for
each vertex v, either min{indeg(v), outdeg(v)} = 1, or indeg(v) = outdeg(v) = 2
(except for v = s, t)?
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