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Abstract

A biclique of a graph G is an induced complete bipartite graph. A
star of G is a biclique contained in the closed neighborhood of a vertex.
A star (biclique) k-coloring of G is a k-coloring of G that contains no
monochromatic maximal stars (bicliques). Similarly, for a list assignment
L of G, a star (biclique) L-coloring is an L-coloring of G in which no
maximal star (biclique) is monochromatic. If G admits a star (biclique) L-
coloring for every k-list assignment L, then G is said to be star (biclique)
k-choosable. In this article we study the computational complexity of
the star and biclique coloring and choosability problems. Specifically,
we prove that the star (biclique) k-coloring and k-choosability problems
are Σp

2-complete and Πp
3-complete for k > 2, respectively, even when the

input graph contains no induced C4 or Kk+2. Then, we study all these
problems in some related classes of graphs, including H-free graphs for
every H on three vertices, graphs with restricted diamonds, split graphs,
and threshold graphs.
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1 Introduction

Coloring problems are among the most studied problems in algorithmic graph
theory. In its classical form, the k-coloring problem asks if there is an assignment
of k colors to the vertices of a graph in such a way that no edge is monochromatic.
Many generalizations and variations of the classical coloring problem have been
defined over the years. One of such variations is the clique k-coloring problem,
in which the vertices are colored so that no maximal clique is monochromatic. In
this article we study the star and biclique coloring problems, which are variations
of the coloring problem similar to clique colorings. A biclique is a set of vertices
that induce a complete bipartite graph Kn,m, while a star is a biclique inducing
the graph K1,m. In the star (biclique) k-coloring problem, the goal is to color
the vertices with k colors without generating monochromatic maximal stars
(bicliques).

The clique coloring problem has been investigated for a long time, and it
is still receiving a lot of attention. Recently, the clique k-coloring problem was
proved to be Σp

2-complete [22] for every k ≥ 2, and it remains Σp
2-complete

for k = 2 even when the input is restricted to graphs with no odd holes [5].
The problem has been studied on many other classes of input graphs, for which
it is was proved to be NP-complete or to require polynomial time (e.g. [2, 3,
4, 11, 16, 19]). Due to the close relation between cliques and bicliques, many
problems on cliques have been translated in terms of bicliques (e.g. [1, 25, 27]).
However, there are some classical problems on cliques whose biclique versions
were not studied until recently [6, 12, 13, 14]. Clique colorings are examples of
such problems; research on biclique colorings begun in 2010 in the Master Thesis
of one of the authors [26] whose unpublished results are being extended in the
present article. It is worth mentioning that, despite its youthfulness, at least
two articles on biclique colorings were written: [19] develops a polynomial time
algorithm for biclique coloring some unichord-free graphs, and [18] determines
the minimum number of colors required by biclique colorings of powers of paths
and cycles.

The list coloring problem is a generalization of the coloring problem in which
every vertex v is associated with a list L(v), and the goal is to color each vertex v
with an element of L(v) in such a way that no edge is monochromatic. Function
L is called a list assignment, and it is a k-list assignment when |L(v)| = k
for every vertex v. A graph G is said to be k-choosable when it admits an
L-coloring with no monochromatic edges, for every k-list assignment L. The
choosability problem asks whether a graph is k-choosable. In the same way
as the coloring problem is generalized to the clique (star, biclique) coloring
problem, the choosability problem is generalized to the clique (star, biclique)
choosability problem. That is, a graph G is clique (star, biclique) k-choosable
when it admits an L-coloring generating no monochromatic maximal cliques
(star, bicliques), for every k-list assignment L. The choosability problems seem
harder than their coloring versions, because a universal quantifier on the list
must be checked. This difficulty is reflected for the k-choosability and clique
k-choosability problems in the facts that the former is Πp

2-complete for every
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k ≥ 3 [15], whereas the latter is Πp
3-complete for every k ≥ 2 [22]. In [23] it

is proven that every planar graph is clique 4-choosable. However, contrary to
what happens with the clique coloring problem, there are not so many results
regarding the complexity of the clique choosability problem for restricted classes
of graphs.

In this paper we consider the star and biclique coloring and choosability
problems, both for general graphs and for some restricted classes of graphs.
The star and biclique coloring and choosability problems are defined in Sec-
tion 2, where we introduce the terminology that will be used throughout the
article. In Section 3, we prove that the star k-coloring problem is Σp

2-complete
for k ≥ 2, and that it remains Σp

2-complete even when its input is restricted to
{K2,2,Kk+2}-free graphs. Clearly, every maximal biclique of a K2,2-free graph
is a star. Thus, we obtain as a corollary that the biclique k-coloring problem
on {K2,2,Kk+2}-free graphs is Σp

2-complete as well. The completeness proof
follows some of the ideas by Marx [22] for the clique coloring problem. In Sec-
tion 4 we show that the star k-choosability problem is Πp

3-complete for k ≥ 2,
and that it remains Πp

3-complete for {K2,2,Kk+2}-free graphs. Again, the Πp
3-

completeness of the biclique k-coloring problem on {K2,2,Kk+2}-free is obtained
as a corollary. As in [22], we require a structure to force a color on a vertex. The
remaining sections of the article study the star and biclique coloring problems
on graphs with restricted inputs. These graphs are related to the graph G that
is generated to prove the Σp

2-completeness of the star coloring problem in Sec-
tion 3. The aim is to understand what structural properties can help to make
the problem simpler. In Section 5, we discuss the star and biclique coloring and
choosability problems on K3-free, P3-free, P3-free, and K3-free graphs. For K3,
P3 and P3, the star coloring and star choosability problems are almost trivial
and can be solved in linear time. On the other hand, both problems are as
hard as they can be for K3-free graphs, even when the input is a co-bipartite
graph. In Section 6 we prove that the star coloring problem is NP-complete
for diamond-free graphs and that the star choosability problem is Πp

2-complete
for a superclass of diamond-free graphs. If no induced Ki,i is allowed for a
fixed i, then the biclique coloring and the biclique choosability problems are
also NP-complete and Πp

2-complete. In Section 7, the star coloring and the star
choosability problems on split graphs are proved to be NP-complete and Πp

2-
complete, respectively. Finally, Section 8 shows that the star coloring and the
star choosability problems are equivalent for threshold graphs, and both can be
solved in linear time. Table 1 sums up the results obtained in the article for the
star coloring and star choosability problems.

2 Preliminaries

In this paper we work with simple graphs. The vertex and edge sets of a graph
G are denoted by V (G) and E(G), respectively. Write vw to denote the edge
of G formed by vertices v, w ∈ V (G). For the sake of simplicity, E(G) is also
considered as the family of subsets of V (G) containing the set {v, w} for each
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Graph class star k-coloring star k-choosability
{K2,2,Kk+2}-free Σp

2-complete Πp
3-complete

K3-free, P3-free, P3-free O(n+m) O(n+m)
K3-free NP-complete Πp

2-complete
co-bipartite Πp

2-complete
{W4, gem, dart}-free NP-complete Πp

2-complete
diamond-free NP-complete Πp

2

C4-free NP-complete Πp
2-complete

split NP-complete Πp
2-complete

threshold O(n+m) O(n+m)

Table 1: Complexity results obtained in this article.

vw ∈ E(G). For v ∈ V (G), the neighborhood of v is the set NG(v) of vertices
adjacent to v, while the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. A
vertex w dominates v, and v is dominated by w, when NG[v] ⊆ NG[w], while
w false dominates v, and v is false dominated by w, when NG(v) ⊆ NG(w). If
NG[v] = NG[w], then v and w are twins, and if NG(v) = NG(w), then v and
w are false twins. The degree of v is dG(v) = |NG(v)|. A vertex is an isolated
vertex, a leaf, and a universal vertex when dG(v) equals 0, 1, and |V (G)| − 1,
respectively. We omit the subscripts from N and d when no ambiguities arise.

The complement of G is the graph G where V (G) = V (G) and E(G) =
{vw | vw 6∈ E(G)}. For a graph H, the union of G and H is the graph G ∪H
where V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H). Write G = H
to indicate that G and H are isomorphic. The n-cycle graph (n ≥ 3), denoted
by Cn, is the connected graph that has n vertices of degree 2. The n-path
graph, denoted by Pn, is the graph obtained from Cn by removing an edge.
The n-wheel graph (n ≥ 3), denoted by Wn, is the graph obtained from Cn by
inserting a universal vertex. The diamond, gem, and dart are the graphs shown
in Figure 1. The n-complete graph, denoted by Kn, is the graph formed by
n pairwise adjacent vertices. An independent set is a subset of V (G) formed
by pairwise non-adjacent vertices. Graph G is bipartite when V (G) can be
partitioned into two independent sets S and T . In this case, the unordered pair
ST is called a bipartition of G. The (n,m)-complete bipartite graph (n ≥ 1,
m ≥ 1), denoted by Kn,m, is the graph isomorphic to Kn ∪Km. Note that
Kn,m is a bipartite graph. The graph K1,n is also called the n-star graph. The
universal vertices of K1,n are referred to as the centers of K1,n, while K1,n is
said to be centered at v. Note that K1,1 has two centers.

Let W ⊆ V (G). We write G[W ] to denote the subgraph of G induced by W ,
and G \W to denote G[V (G) \W ]. Set W is said to be a clique, biclique, and
star when G[W ] is isomorphic to a complete, bipartite complete, and star graph,
respectively. For the sake of simplicity, we use the terms clique and biclique to
refer to G[W ] as well. Moreover, we may refer to ST as a biclique or star when
G[S ∪ T ] is a bipartite complete or star graph with bipartition ST . The family
of maximal cliques, maximal bicliques, and maximal stars are denoted by C(G),
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Figure 1: The diamond, dart, and gem graphs are shown from left to right.

B(G), and S(G), respectively.
A sequence of distinct vertices P = v1, . . . , vn is a path of length n− 1 when

vi is adjacent to vi+1. If in addition vn is adjacent to v1, then P is a cycle of
length n. A tree is a connected graph that contains no cycles. A rooted tree is a
tree T with a fixed vertex r ∈ V (T ) called the root of T . The parent of v in T
is the neighbor of v in its path to r. A path (resp. cycle) of G is chordless when
G[P ] = Pn (resp. G[P ] = Cn). A hole is a chordless cycle of length at least 4. A
graph G is said to be H-free, for some graph H, when no induced subgraph of
G is isomorphic to H. Similarly, G is F-free, for any family of graph F , when
G is H-free for every H ∈ F . A graph is chordal when it is {Cn}n≥4-free, i.e.,
chordal graphs have no holes.

A coloring of G is a function ρ that maps each vertex v ∈ V (G) to a color
ρ(v) ∈ N. When ρ(v) ≤ k for every v ∈ V (G), ρ is called a k-coloring. We
define ρ(W ) = {ρ(v) | v ∈ W} for any W ⊆ V (G). Set W is said to be ρ-
monochromatic when |ρ(W )| = 1. When there is no ambiguity, we say that
W is monochromatic instead of ρ-monochromatic. For a family F of subsets of
V (G), we say that ρ is a proper coloring of F if no W ∈ F is monochromatic.
Four kinds of families are considered in this article. A coloring ρ is a vertex,
clique, biclique, and star coloring when ρ is a proper coloring of E(G), C(G),
B(G), and S(G), respectively. The problems of finding a proper coloring for
these families are defined as follows.

Vertex (resp. clique, biclique, star) k-coloring

INPUT: A connected graph G and a value k ∈ N.

QUESTION: Is there a vertex (resp. clique, biclique, star) k-coloring of
G?

List colorings are a generalization of colorings. A list assignment of G is a
function that maps each vertex v ∈ V (G) to a set L(v) ⊆ N. When |L(v)| = k for
every v ∈ V (G), L is called a k-list assignment. An L-coloring of G is a coloring
ρ such that ρ(v) ∈ L(v) for every v ∈ V (G). Define L(W ) =

⋃{L(v) | v ∈ W}
for any W ⊆ V (G). Given a family F of subset of V (G) and a number k ∈ N,
graph G is said to be k-choosable with respect to F when there exists a proper
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L-coloring of F for every k-list assignment L of G. Graph G is vertex, clique,
biclique, and star k-choosable when G is k-choosable with respect to E(G), C(G),
B(G), and S(G), respectively. The problem of determining if G is k-choosable
is defined as follows.

Vertex (resp. clique, biclique, star) k-choosability

INPUT: A connected graph G and a value k ∈ N.

QUESTION: Is G vertex (resp. clique, biclique, star) k-choosable?

The vertex (resp. clique, biclique, star) chromatic number, denoted by χ(G)
(resp. χC(G), χB(G), and χS(G)), is the minimum k ∈ N such that G admits
a vertex (resp. clique, biclique, star coloring) k-coloring. Similarly, the vertex
(clique, biclique, star) choice number, denoted by ch(G) (resp. chC(G), chB(G),
chS(G)) is the minimum number k ∈ N such that G is vertex (resp. clique,
biclique, star coloring) k-choosable. By definition, χ(G) ≤ ch(G) and χ∗(G) ≤
ch∗(G) for ∗ ∈ {C,B, S}.

For a function f with domain D, the restriction of f to D′ ⊆ D is the
function f ′ with domain D′ where f ′(x) = f(x) for x ∈ D′. In such case, f
is said to be an extension of f ′ to D. A leafed vertex is a vertex adjacent to
a leaf. For the sake of simplicity, whenever we state that G contains a leafed
vertex v, we mean that G contains v and a leaf adjacent to v. It is well known
that χ(G) ≥ χ(H) for every induced subgraph H of G. Such a property is
false for clique, biclique, and star colorings. In particular, for any graph H, it
is possible to build a graph G such that ch∗(G) = 2 and G contains H as an
induced subgraph. For ∗ = C, graph G is built from H by iteratively inserting
a twin of each vertex of H. Similarly, G is obtained by inserting false twins for
∗ = B, while, by the next observation, G is obtained by inserting a leaf adjacent
to each vertex for ∗ = S.

Observation 1 Let G be a graph with a list assignment L, v be a leafed vertex
of G, and l be a leaf adjacent to v. Then, any L-coloring of G\ l can be extended
into an L-coloring of G in such a way that there is no monochromatic maximal
star with center in v.

A block is a maximal set of twin vertices. If v and w are twin vertices, then
{v}{w} is both a maximal star and a maximal biclique, and thus v and w have
different colors in any star or biclique L-coloring ρ. Consequently, |ρ(W )| = W
for any block W of G. We record this fact in the following observation.

Observation 2 Let G be a graph with a list assignment L, and v, w be twin
vertices. Then, ρ(v) 6= ρ(w) for any star or biclique L-coloring ρ of G.
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3 Complexity of star and biclique coloring

In this section we establish the hardness of the star and biclique coloring prob-
lems by showing that both problems are Σp

2-complete. The main result of this
section is that star k-coloring is Σp

2-complete for every k ≥ 2, even when
its input is restricted to {C4,Kk+2}-free graphs. Since all the bicliques of a
C4-free graph are stars, this immediately implies that biclique k-coloring is
also Σp

2-complete for {C4,Kk+2}-free graphs. The hardness results is obtained
by reducing instances of the qsat2 problem. The qsath problem is known to
be Σp

h-complete for every h [24], and is defined as follows.

Quantified 3-satisfiability with h alternations (qsath)

INPUT: A formula φ(~x1, ~x2, . . . , ~xh) that is in 3-CNF if h is odd, while
it is in 3-DNF if h is even.

QUESTION: Is (∃~x1)(∀~x2)(∃~x3) . . . (Qh~xh)φ(~x1, ~x2, ~x3, . . . , ~xh) (for Qh ∈
{∃,∀}) true?

Recall that φ is in 3-CNF if it is a conjunction of clauses where each clause is
a disjunction with three literals. Similarly, φ is in 3-DNF when it is a disjunction
of clauses, each clause being a conjunction with three literals.

3.1 Keepers, switchers, and clusters

In this section we introduce the keeper, switcher, and cluster connections that
are required for the reductions. The keeper connections are used to force the
same color on a pair of vertices, in any star coloring. Conversely, the switcher
connections force some vertices to have different colors. Finally, the cluster
connections are used to represent the variables of a DNF formula. We begin
defining the keeper connections.

Definition 1 [k-keeper] Let G be a graph and v, w ∈ V (G). Say that K ⊂
V (G) is a k-keeper connecting v, w (k ≥ 2) when K can be partitioned into a
clique D = {d1, . . . , dk−1} and k − 1 cliques C1, . . . , Ck−1 with k vertices each
in such a way that D ∪ {v, w} and Ci ∪ {di} are cliques for i ∈ {1, . . . , k − 1},
and there are no more edges incident to vertices in K.

Figure 2 (a) shows a k-keeper connecting two vertices v and w. The main
properties of k-keepers are summarized in the following lemma.

Lemma 1 Let G be a graph and K be a k-keeper connecting v, w ∈ V (G)
(k ≥ 2). Then,

(i) no induced hole or Kk+2 contains a vertex in K,
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C1 . . . Ck−1

bd1 . . . b dk−1

D

bv b w C

bu1 b u2 . . . b uh

C

bu1 b u2 . . . b uh

bw1 b w2 . . . b wh

(a) (b) (c)

Figure 2: (a) A k-keeper connecting v, w. (b) A k-switcher connecting
{u1, . . . , uh}. (c) A long k-switcher connecting {w1, . . . , wh}. In every figure,
gray nodes represent leafed vertices, circular shapes represent cliques, and dou-
ble lines represent a k-keeper connecting two vertices.

(ii) v and w have the same color in any star k-coloring of G, and

(iii) Any k-coloring ρ of G \K in which ρ(v) = ρ(w) can be extended into a k-
coloring of G in such a way that no monochromatic maximal star contains
a vertex in K.

Proof: Let C1, . . . , Ck−1 and D = {d1, . . . , dk−1} be as in Definition 1. (i) is
trivial.

(ii) Let ρ be a star k-coloring of G and fix i, j ∈ {1, . . . , k − 1}. Since
Ci is a block of size k, it contains vertices ci, cj , cv with colors ρ(di), ρ(dj),
and ρ(v), respectively, by Observation 2. Hence, ρ(di) 6= ρ(v) since otherwise
{di}{v, cv} would be a monochromatic maximal star, and, similarly, ρ(di) 6=
ρ(dj) because {di}{dj , cj} is not monochromatic. In other words, |ρ(D)| = k−1
and ρ(v) 6∈ ρ(D). Replacing v and w in the reasoning above, we can conclude
that ρ(w) 6∈ ρ(D) as well. Therefore, ρ(v) = ρ(w).

(iii) To extend ρ, set ρ(D) = {1, . . . , k} \ {ρ(v)}, and ρ(Ci) = {1, . . . , k} for
every i ∈ {1, . . . , k−1}. It is not hard to see that no maximal star with a vertex
in K is monochromatic. �

The switcher connection, whose purpose is to force a set of vertices to have
at least two colors, is now defined (see Figure 2 (b)).

Definition 2 [k-switcher] Let G be a graph and U = {u1, . . . , uh} be an inde-
pendent set of G with h ≥ 2. Say that C ⊂ V (G) is a k-switcher connecting U
(k ≥ 2) when |C| = k, C ∪ {ui} is a clique for i ∈ {1, . . . , h}, and there are no
more edges incident to vertices in C.

The following result is the analogous of Lemma 1 for switchers.

Lemma 2 Let G be a graph and C be a k-switcher connecting U ⊂ V (G)
(k ≥ 2). Then,
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(i) |ρ(U)| ≥ 2 for any star k-coloring ρ of G, and

(ii) Any k-coloring ρ of G \ S in which |ρ(U)| ≥ 2 can be extended into a
k-coloring of G in such a way that no monochromatic maximal star has
its center in C.

As defined, switchers are not useful for proving the hardness of the star
coloring problem for C4-free graphs. The reason is that their connected vertices
must have no common neighbors to avoid induced C4’s, and our proof requires
vertices with different colors and common neighbors. To solve this problem
we extend switchers into long switchers by combining them with keepers (see
Figure 2 (c)). We emphasize that the set of vertices connected by a long switcher
need not be an independent set.

Definition 3 [long k-switcher] Let G be a graph, and W = {w1, . . . , wh} be
a set of vertices of G with h ≥ 2. Say that S ⊂ V (G) is a long k-switcher
connecting W (k ≥ 2) when S can be partitioned into an independent set of
leafed vertices U = {u1, . . . , uh}, a k-switcher C, and k-keepers Q1, . . . , Qh in
such a way that C connects U , Qi connects wi, ui for i ∈ {1, . . . , h}, and there
are no more edges adjacent to vertices in U .

The analogous of Lemma 2 follows; its proof is a direct consequence of Ob-
servation 1 and Lemmas 1 and 2.

Lemma 3 Let G be a graph and S be a long k-switcher connecting W ⊂ V (G)
(k ≥ 2). Then,

(i) no induced C4 or Kk+2 of G contains a vertex of S,

(ii) |ρ(W )| ≥ 2 for any star k-coloring ρ of G, and

(iii) Any k-coloring ρ of G \ S in which |ρ(W )| ≥ 2 can be extended into a
k-coloring of G in such a way that no monochromatic maximal star has
its center in S.

The last type of connection that we require is the cluster, which is used
to represent variables of DNF formulas. As switchers, clusters are used to
connect several vertices at the same time. Specifically, clusters require two sets
X, −X, and a vertex s. The purpose of the connection is to encode all the
valuations of the variables in a formula φ by using monochromatic stars with
center in s. Thus, if a variable x is being represented by X and −X, then each
monochromatic maximal star with center in s contains all the vertices in X and
none of −X, when x is true, or it contains all the vertices of −X and none of
X, when x is false.

Definition 4 [`-cluster] LetG be a graph with vertices s, X = {x1, . . . , x`}, and
−X = {−x1, . . . ,−x`} (` ≥ 2). Say that K ⊆ V (G) is an `-cluster connecting
〈s,X,−X〉 when K has ` leafed vertices v1, . . . , v`, vertex s is adjacent to all
the vertices in X ∪ −X ∪K, sequence x1,−x1, v1, . . . , x`,−x`, v` is a hole, and
there are no more edges incident to vertices in K. For i ∈ {1, . . . , `}, we write
X[i] and −X[i] to refer to xi and −xi, respectively.
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Note that if K is an `-cluster connecting 〈s,X,−X〉, then the subgraph
induced byK∪X∪−X∪{s} is isomorphic to a 3`-wheel that has s as its universal
vertex. As mentioned, the main property of clusters is that its members can be
colored in such a way that monochromatic stars represent valuations.

Lemma 4 Let G be a graph and K be an `-cluster connecting 〈s,X,−X〉 for
{s} ∪X ∪ −X ⊆ V (G). Then,

(i) if N(x)∩N(x′) ⊆ K ∪ {s} for every x, x′ ∈ X ∪−X, then no induced K4

or C4 of G contains a vertex in K,

(ii) if {s}S is a maximal star of G with S ∩K = ∅, then S ∩ (X ∪−X) equals
either X or −X, and

(iii) any k-coloring ρ of G \K (k ≥ 2) can be extended into a k-coloring of G
in such a way that ρ(s) 6∈ ρ(K), and no monochromatic maximal star of
G has its center in K.

Proof: Let K = {v1, . . . , v`}, x1, . . . , x`, and −x1, . . . ,−x` be as in Definition 4.
(i) For i ∈ {1, . . . , `}, the non-leaf neighbors of vi are s,−xi, xi+1. Since −xi

and xi+1 are not adjacent and N(−xi) ∩ N(xi+1) = {vi, s}, it follows that vi
belongs to no induced K4 or C4 of G.

(ii) Suppose S ∩ K = ∅. If xi ∈ S for some i ∈ {1, . . . , `}, then −xi 6∈ S
because −xi ∈ N(xi). Then, since vi 6∈ S, it follows that xi+1 belongs to S.
Consequently, by induction on i, we obtain that S ∩ X equals either X or ∅.
In the former case, S ∩ −X = ∅ because every vertex in −X has a neighbor in
X. In the latter case, S ∩ −X = −X because S ∩ K = ∅ and at least one of
{xi+1,−xi, vi} belongs to S for every i ∈ {1, . . . , `}.

(iii) Just extend ρ so that ρ(s) 6∈ ρ(K), and color the leaves according to
Observation 1. �

3.2 Hardness of the star-coloring problem

It is well known that a problem P is Σp
2 when the problem of authenticat-

ing a positive certificate of P is coNP [24]. For the star k-coloring problem,
a k-coloring of G can be taken as a positive certificate. Since it is coNP to
authenticate that a k-coloring of G is indeed a star coloring, we obtain that
star k-coloring is Σp

2. The following theorem states the Σp
2-hardness of the

problem.

Theorem 1 star k-coloring is Σp
2-complete and it remains Σp

2-complete
even when its input is restricted to {C4,Kk+2}-free graphs.

Proof: We already know that star k-coloring belongs to Σp
2. To prove its

hardness, we show a polynomial time reduction from qsat2. That is, for any
3-DNF formula φ(~x, ~y) with ` ≥ 2 clauses P1, . . . ,P`, and n + m variables
~x = x1, . . . ,xn, ~y = y1, . . . ,ym, we build a graph G that admits a star k-
coloring if and only if (∃~x)(∀~y)φ(~x, ~y) is true. For the sake of simplicity, in
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this proof we use i, j, h, and q as indices that refer to values in {1, . . . , n},
{1, . . . ,m}, {1, . . . , `}, and {1, . . . , k}.

Graph G can be divided into connection, inner, and leaf vertices. Connection
vertices are in turn divided into a set of clause vertices P = {p1, . . . , p`}, a set
of x-vertices X = {x1, . . . , xn}, two sets of x-literal vertices Xi and −Xi with
` vertices each (for each i), two sets of y-literal vertices Yj and −Yj with `
vertices each (for each j), a set of color vertices C = {c1, . . . , ck}, and two
special vertices s and t. Let LX =

⋃
i(Xi ∪ −Xi), and LY =

⋃m
j (Yj ∪ −Yj).

Inner vertices are those vertices included in switchers, keepers, and clusters of
G. Inner vertices and the edges between the connection vertices are given by
the next rules.

Edges: s is adjacent to all the vertices in P , and if xi (resp. xi, yj , yj) is a
literal of Ph, then ph is adjacent to −Xi[h] (resp. Xi[h], −Yj [h], Yj [h]).

Keepers: there is a k-keeper connecting s with t.

Long switchers: exist long k-switchers connecting {xi,−Xi[h]} and {Xi[h],
−Xi[h]} (for every i, h), {c1, ph} (for every h), {c2, y} for every y ∈ LY ,
{cq, w} for every q > 2 and every connection vertex w 6= s, {c1, c2}, and
{c2, t}.

Variables: there are `-clusters connecting 〈s,Xi,−Xi〉 and 〈s, Yj ,−Yj〉.

Finally, each connection vertex other than s is leafed. This ends up the con-
struction of G, which can be easily computed from φ(~x, ~y) in polynomial time.
Figure 3 depicts a schema of the graph.

Before dealing with the star k-coloring problem on G, we show that G is
{C4,Kk+2}-free. By statement (i) of Lemmas 1, 3 and 4, it suffices to prove
that the subgraph H induced by the connection vertices is {Kk+2, C4}-free. For
this, observe that any induced C4 or Kk+2 must contain a vertex of LX ∪ LY

because {s}P is an induced star of H and xi, cq, and t have degree at most
1 in H. Now, Xi[h] has at most three neighbors in H, namely −Xi[h], s, and
maybe ph. Hence, since N(−Xi[h]) = {s,Xi[h]} when Xi[h] is adjacent to ph,
we obtain that Xi[h] belongs to no induced Kk+2 nor C4. A similar analysis is
enough to conclude no vertex of LX ∪ LY belongs to an induced Kk+2 nor C4,
thus H is {C4,Kk+2}-free.

Now we complete the proof by showing that (∃~x)(∀~y)φ(~x, ~y) is true if and
only if G admits a star k-coloring. Suppose first that (∀~y)φ(~x, ~y) is true for
some valuation ν : ~x → {0, 1}, and define ρ as the k-coloring of G that is
obtained by the following two steps. First, set ρ(cq) = q, ρ(Xi) = ρ(xi) =
2− ν(xi), ρ(−Xi) = 1 + ν(xi), ρ(pk) = 2, and ρ(LY ) = ρ(s) = ρ(t) = 1. Next,
iteratively set ρ for the leaves and inner vertices according to Observation 1,
and statement (iii) of Lemmas 1, 3, and 4. Observe that the second step is well
defined because every pair of vertices connected by k-keepers have the same
color, while every pair of vertices connected by long k-switchers have different
colors.
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Figure 3: Schema of the graph obtained from φ in Theorem 1. For the sake
of simplicity, we omit c3, . . . , ck and the edges from P to LX ∪ LY . Circular
shapes drawn with dashes represent independent sets; marked edges between
two vertices represent k-switchers connecting them; circular shapes with marks
represent sets of vertices pairwise connected by k-switchers; and squares repre-
sent sets of vertices.

We claim that ρ is a star k-coloring of G. To see why, consider a maximal
star {w}S of G and observe that w cannot be a leaf. If w 6= s, then {w}S is
not monochromatic by Observation 1 and Lemmas 1, 3 and 4. Suppose, then,
that w = s and, moreover, that S \ P is monochromatic. Then, no `-cluster
intersects S by statement (iii) of Lemma 4. Consequently, by statement (ii) of
Lemma 4, S ∩ (Xi ∪−Xi) equals either Xi or −Xi, while S ∩ (Yj ∪−Yj) equals
either Yj or −Yj for every i and every j. Extend ν to include ~y in its domain,
so that ν(yj) = 1 if and only if Yj ⊆ S. By hypothesis, ν(φ(~x, ~y)) = 1, thus
there is some clause Ph whose literals are all true according to ν. If ph has some
neighbor in −Xi, then ν(xi) = 1, thus −Xi 6⊂ S because ρ(−Xi) = 2. Similarly,
if ph has some neighbor in Xi (resp. −Yj , Yj), then Xi 6⊂ S (resp. −Yj 6⊂ S,
Yj 6⊂ S). Therefore, since P is an independent set and S ⊂ {t} ∪ LX ∪ LY ∪ P ,
we obtain that pk ∈ S, thus {s}S is not monochromatic.

For the converse, let ρ be a star k-coloring of G. Since there is are long
k-switchers connecting {c1, c2} and {cq, w} for every q > 2 and every connec-
tion vertex w 6= s, we obtain that |ρ(C)| = k and ρ(w) ∈ {ρ(c1), ρ(c2)} by
statement (ii) of Lemma 3. Define ν : ~x + ~y→ {0, 1} as any valuation in which
ν(xi) = 1 if and only if ρ(xi) = ρ(c1). Since ν(yj) can take any value from
{0, 1}, it is enough to prove that ν(φ(~x, ~y)) = 1. Let VX =

⋃
i((Xi | ν(xi) =

1) ∪ (−Xi | ν(xi) = 0)) and VY =
⋃

j((Yj | ν(yj) = 1) ∪ (−Yj | ν(yj) = 0)).

Let S = VX∪VY ∪{t}. By construction, S is an independent set, thus {s}S is
a star of G. Recall that there are long k-switchers connecting {xi,−Xi[h]} and
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{Xi[h],−Xi[h]}. Hence ρ(xi) = ρ(Xi) and ρ(−Xi) 6= ρ(xi) by statement (ii) of
Lemma 3. This implies that ρ(VX) = {1}. Similarly, there are long k-switchers
connecting {c2, y} for each y ∈ LY , thus ρ(VY ) ⊂ ρ(LY ) = 1 as well. Finally,
using Lemma 1, we obtain that ρ(s) = ρ(t) = 1 because there is a long k-
switcher connecting {c2, t} and a k-keeper connecting t, s. So, by hypothesis,
{s}S is not a maximal star, which implies that S ∪ {w} is also an independent
set for some w ∈ N(s).

Since t and s have the same neighbors in the k-keeper K connecting them,
it follows that w 6∈ K. Similarly, all the vertices in a cluster are adjacent to at
least one vertex of VX ∪ VY . Finally, each vertex of LX ∪ LY either belongs or
has some neighbor in VX ∪ VY . Consequently, w = ph, i.e., w represents some
clause Ph. If xi is a literal of Ph, then ph is adjacent to −Xi[h]. Hence, since
VX ∪ VY ∪ {ph} is an independent set, it follows that −Xi[h] 6∈ VX . By the way
VX is defined, this means that ν(xi) = 1. Similar arguments can be used to
conclude that if l is a literal of Ph, then ν(l) = 1. That is, Ph is satisfied by ν,
thus (∃~x)(∀~y)φ(~x, ~y) is true. �

3.3 Graphs with no short holes and small forbidden sub-
graphs

Note that every hole H of the graph G defined in Theorem 1 either 1. contains
an edge xy for vertices x, y connected by a k-keeper, or 2. contains a path
x, v,−x for a vertex v in a cluster K connecting 〈s,X,−X〉 with x ∈ X and
−x ∈ −X. A slight modification of G can be used in the proof of Theorem 1
so as to enlarge the hole H. In case 1., xy can be subdivided by inserting a
vertex z in such a way that x, z and z, y are connected by k-keepers. Similarly,
in case 2., dummy vertices not adjacent to any ph can be inserted into X and
−X so as to increase the distance between x and −x in H. Neither of these
modifications generates a new hole in G. Thus, in Theorem 1 we can use a
iterative modification of G whose induced holes have length at least h. The
following corollary is then obtained.

Corollary 1 For every h ∈ O(1), star k-coloring is Σp
2-complete when the

input is restricted to Kk+2-free graphs whose induced holes have length at least
h.

An interesting open question is what happens when h grows to infinity, i.e.,
what is the complexity of star k-coloring a chordal graph or a chordal Kk+2-free
graph. In following sections we consider the star coloring and star choosability
problems in two subclasses of chordal graphs, namely split and threshold graphs.

Theorem 1 also shows that the star 2-coloring problem is hard for {K4, C4}-
free graphs, which is a class of graphs defined by forbidding two small subgraphs.
Thus, another interesting question posed by Theorem 1 is what happens when
other small graphs are forbidden, so as to understand what structural properties
can simplify the problem. Following sections discuss the coloring problems from
this perspective as well. In particular, we study the problem for: every H-
free graphs where H has three vertices; a superclass of diamond-free graphs;
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and split and threshold graphs. Before dealing with this restricted versions, we
establish the complexity of the star k-choosability problem for {C4,Kk+2}-free
graphs.

4 Complexity of the choosability problems

In this section we deal with the list version of the star and biclique-coloring
problems. The goal is to show that star k-choosability and biclique k-
choosability are Πp

3-complete problems even when their inputs are restricted
to {C4,Kk+2}-free graphs. Again, only one proof is required because the star
and biclique-choosability problems coincide for C4-free graphs. In This oppor-
tunity, however, the proof is by induction on k. That is, we first conclude that
the star 2-choosability problem is Πp

3-complete with a polynomial-time re-
duction from the qsat3, and next we show that star k-choosability can be
reduced in polynomial time to the star (k + 1)-choosability. The proof for
k = 2 is similar to the proof of Theorem 1; however, we did not find an easy
way to generalize it for k > 2 because long switchers generate graphs that are
not star k-choosable.

4.1 Keepers, switchers, clusters and forcers

For the case k = 2 we require the keeper and cluster connections once again,
and a new version of the long switcher. We begin reviewing the main properties
of keepers, switchers, and clusters with respect to the star choosability problem.

Lemma 5 Let G be a graph, L be a k-list assignment of G, and K be a k-keeper
connecting v, w ∈ V (G) (k ≥ 2). Then, any L-coloring ρ of G\(K∪{w}) can be
extended into an L-coloring of G in such a way that no monochromatic maximal
star contains a vertex in K.

Proof: Let C1, . . . , Ck−1 and D = {d1, . . . , dk−1} be the vertices of K as in
Definition 1. Extend ρ into an L-coloring of G such that |ρ(D)\{ρ(v)}| = k−1,
|ρ(Ci)| = k for every i ∈ {1, . . . , k − 1}, and ρ(w) 6∈ ρ(D). Since L is a k-
list assignment, such an extension can always be obtained. Furthermore, no
monochromatic maximal star has a vertex in K. �

Lemma 6 Let G be a graph, L be a k-list assignment of G, and C be a k-
switcher connecting U ⊂ V (G) (k ≥ 2). Then, any L-coloring ρ of G \ C in
which |ρ(U)| ≥ 2 can be extended into an L-coloring of G in such a way that no
monochromatic maximal star has its center in C.

By the previous lemma, if C is a k-switcher connecting U , then G[U ∪C] is
star k-choosable. This property does not hold for long switchers because it is
no longer true that a k-keeper connects vertices of the same color. So, to avoid
induced C4’s, we need a new version of the long switcher. This new switcher
is defined only for 2-colorings, and it is star 2-choosable as desired. We refer
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to this switcher as the list switcher. In short, the difference between the long
2-switcher and the list switcher is that the latter has no leafed vertices and
2-keepers are replaced by edges (see Figure 4 (a)). Its definition is as follows.

Definition 5 [list switcher] Let G be a graph, and W = {w1, . . . , wh} be a set
of vertices of G with h ≥ 2. Say that S ⊂ V (G) is a list switcher connecting
W when S can be partitioned into an independent set U = {u1, . . . , uh} and a
2-switcher C in such a way that C connects U , wiui ∈ E(G) for i ∈ {1, . . . , h},
and there are no more edges adjacent to vertices in U .

The following lemma is equivalent to Lemma 3 for list switchers.

Lemma 7 Let G be a graph and S be a list switcher connecting W ⊂ V (G).
Then,

(i) no induced C4 or K4 of G contains a vertex of S,

(ii) |ρ(W )| ≥ 2 for any star k-coloring ρ of G, and

(iii) for any 2-list assignment L of G, every L-coloring ρ of G \ S in which
|ρ(W )| ≥ 2 can be extended into an L-coloring of G in such a way that no
monochromatic maximal star contains a vertex in S.

Proof: We only prove (iii). Let w1, . . . , wh, and u1, . . . , uh be as in Definition 5,
and {x, y} be the 2-switcher connecting {u1, . . . , uh}. Suppose, without loss
of generality, that ρ(w1) 6= ρ(w2), and observe that either ρ(w1) 6∈ L(x) or
ρ(w2) 6∈ L(y) or L(x) = L(y) = {ρ(w1), ρ(w2)}. In this setting, extend ρ to
include x and y in such a way that ρ(x) 6= ρ(y), ρ(x) 6= ρ(w1), and ρ(y) 6= ρ(w2).
Following, extend ρ into an L-coloring ofG such that ρ(u1) 6= ρ(y), ρ(u2) 6= ρ(x),
and ρ(ui) 6= ρ(wi) for i ∈ {3, . . . , h}. It is not hard to see that no monochromatic
maximal star contains a vertex in S. �

Finally, the proof of statement (iii) of Lemma 4 implies the following lemma.

Lemma 8 Let G be a graph, L be a 2-list assignment of G, and K be an `-
cluster connecting 〈s,X,−X〉 for {s}∪X∪−X ⊆ V (G). Then, any L-coloring ρ
of G\K can be extended into an L-coloring of G in such a way that ρ(s) 6∈ ρ(K),
and no monochromatic maximal star of G has its center in K.

Besides the 2-keepers, list switchers, and clusters, we use forth kind of con-
nection that can be used to force the color of a given vertex when an appropriate
list assignment is chosen. This connection is called the forcer and, contrary to
the other connections, it connects only one vertex.

Definition 6 [k-forcer] Let G be a graph and v ∈ V (G). Say that F ⊂ V (G)
is a k-forcer connecting v (k ≥ 2) when F can be partitioned into sets of leafed
vertices A and B, and cliques C(a, b) for a ∈ A ∪ {v} and b ∈ B in such a way
that |A| = k − 1, |B| = kk − 1, C(a, b) is a k-switcher connecting {a, b}, and
there are no more edges incident to vertices in A ∪B.
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Figure 4: (a) A list switcher connecting {u1, . . . , uh}. (b) A 2-forcer connecting
v with a 2-list assignment L; note that 1 is the unique L-admissible color for v.

Let L be a k-list assignment of G and F be a k-forcer connecting v ∈ V (G).
We say that c ∈ L(v) is L-admissible for v when there is an L-coloring ρ of G in
which ρ(v) = c and no monochromatic maximal star has its center in F . Clearly,
if c is L-admissible for v, then any L-coloring ρ of G\F in which ρ(v) = c can be
extended into an L-coloring of G in such a way that no monochromatic maximal
star has its center in F . The main properties of forcers are summed up in the
following lemma (see Figure 4 (b)).

Lemma 9 Let G be a graph and F be a k-forcer connecting v ∈ V (G) (k ≥ 2).
Then,

(i) no induced Kk+2 or C4 of G contains a vertex in F ,

(ii) for every k-list assignment L of G there is an L-admissible color for v,
and

(iii) every k-list assignment L of G\F can be extended into a k-list assignment
of G in which v has a unique L-admissible color.

Proof: Let A, B, and C(a, b) be as in Definition 6, and define A∗ = A ∪ {v}.
Statement (i) follows from the fact that no pair of vertices in A∗ ∪ B have a
common neighbor.

(ii) Let H be the complete bipartite graph with bipartition {ha | a ∈
A∗}{hb | b ∈ B}, and M be a k-list assignment of H where M(ha) = L(a)
for every a ∈ A∗ ∪B. In [22] it is proven that H admits a vertex M -coloring γ.
Define ρ as any L-coloring of G in which ρ(a) = γ(ha) for a ∈ A∗ ∪ B, where
k-switchers and leaves are colored according to Lemma 6 and Observation 1,
respectively. The coloring of the k-switchers is possible because γ is a vertex
M -coloring. By Observation 1, no vertex in A ∪ B is the center of a maxi-
mal star, while by Lemma 6, no vertex in C(a, b) is the center of a maximal
monochromatic star for a ∈ A∗ and b ∈ B. That is, ρ(v) is L-admissible for v.

(iii) Extend L into a k-list assignment of G such that 1. L(a) ∩ L(a′) = ∅
for every pair of vertices a, a′ ∈ A∗, 2. L(B) = {L(b) | b ∈ B} is a family of
different subsets included in L(A∗) such that |L(b)∩L(a)| = 1 for every a ∈ A∗



JGAA, 18(3) 347–383 (2014) 363

and b ∈ B, and 3. L(C(a, b)) = L(b) for every a ∈ A∗, and b ∈ B. Define H and
M as in statement (ii). By statement (ii), there is an L-coloring ρ of G that
contains no monochromatic maximal star with center in F . Since C(a, b) is a
block of G, it follows that ρ(C(a, b)) = L(b) by Observation 2. Then, since no
maximal star with center in C(a, b) is monochromatic, it follows that ρ(a) 6= ρ(b)
for every a ∈ A∗, b ∈ B. Thus, if γ is the coloring such that γ(ha) = ρ(a) for
every a ∈ A∗ ∪B, then γ is a vertex M -coloring of H. Consequently, as proven
in [22], γ(hv) = ρ(v) is the unique color of L(v) that belongs to the subset of
L(A∗) 6∈ L(B). �

4.2 Hardness of the star choosability problem

A problem P is Πp
3 when the problem of authenticating a negative certificate

of P is Σp
2 [24]. For the star k-choosability problem, a k-list assignment of G

can be taken as the negative certificate. Using arguments similar to those in
Section 3.2 for star k-colorings, it is not hard to see that it is a Σp

2 problem
to authenticate whether a graph G admits no L-colorings for a given k-list
assignment L. Therefore, star k-choosability is Πp

3. In this section we
establish the hardness of star k-choosability. For k = 2 we reduce the
complement of an instance of qsat3 into an instance of star 2-choosability.
Then, we proceed by induction showing how to reduce an instance of star k-
choosability into an instance of star (k+ 1)-choosability for every k ≥ 2.

The proof for the case k = 2 is, in some sense, an extension of Theorem 1.
The goal is to force the true literals of z variables to have the same color as s,
so that a monochromatic maximal star centered at s appears when the formula
is false.

Theorem 2 star 2-choosability is Πp
3-hard, and it remains Πp

3-hard even
when its input is restricted to {C4,K4}-free graphs.

Proof: The hardness of star 2-choosability is obtained by reducing the
complement of qsat3. That is, given a 3-DNF formula φ(~z, ~x, ~y) with ` clauses
P1, . . . ,P`, and n + m + o variables ~x = x1, . . . ,xn, ~y = y1, . . . ,ym, ~z =
z1, . . . , zo, we build a graph G that is 2-list-choosable if and only if (∀~z)(∃~x)(∀~y)
φ(~z, ~x, ~y) is true. For the sake of simplicity, in this proof we use i, j, h, and f to
refer to values in {1, . . . , n}, {1, . . . ,m}, {1, . . . , `}, and {1, . . . , o}, respectively.

Graph G is similar to the graph in Theorem 1. Its vertex set is again divided
into connection, inner, and leaf vertices. In turn, connection vertices are divided
into a set P = {p1, . . . , p`}, a set X = {x1, . . . , xn}, sets Xi, −Xi, Yj , −Yj , Zf ,
and −Zf with ` vertices each, and two vertices s, t. Let LX =

⋃
i(Xi ∪ (−Xi)),

LY =
⋃

j(Yj ∪ (−Yj)), and LZ =
⋃

f (Zf ∪ (−Zf )).
Inner vertices are those vertices included in 2-keepers, list switcher, clusters

and 2-forcers. The following rules define inner vertices and the edges between
connection vertices. Edges: s is adjacent to all the vertices in P , and if xi

(resp. xi, yj , yj , zf , zf ) is a literal of Ph, then ph is adjacent to −Xi[h] (resp.
Xi[h], −Yj [h], Yj [h], Zf [h], −Zf [h]). Keepers: s and t are connected by a
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Figure 5: Schema of the graph obtained from φ in Theorem 2; for the sake of
simplicity, we omit the edges from P to LX∪LY ∪LZ . Square vertices represent
vertices connected to a 2-forcer.

2-keeper. List switchers: there are list switchers connecting {xi, −Xi[h]} and
{Xi[h], −Xi[h]} (for every i, h), {Zf [h],−Zf [h]} (for every f, h), and {ph, t} (for
every h). Clusters: there are `-clusters connecting 〈s,Xi,−Xi〉, 〈s, Yj ,−Yj〉,
and 〈s, Zf ,−Zf 〉. Forcers: there are 2-forcers connecting each vertex of Zf

(for every f) and each vertex of LY .
Finally, every connection vertex other than s is leafed. This ends up the

construction of G (see Figure 5), which can be easily computed from φ(~z, ~x, ~y)
in polynomial time. Arguments similar to those in Theorem 1 are enough to
conclude that G is {C4,K4}-free.

We now show that (∀~z)(∃~x)(∀~y)φ(~z, ~x, ~y) is true if and only if G is 2-
choosable. We first show that if (∀~z)(∃~x)(∀~y)φ(~z, ~x, ~y) is true, then G admits
a star L-coloring ρ for any 2-list assignment L. The L-coloring ρ is obtained by
executing the following algorithm.

Step 1: For every w connected to a forcer, let ρ(w) be L-admissible for w. Such
a color always exists by statement (ii) of Lemma 9. Suppose, w.l.o.g., that
ρ(t) = 1 and let ν(~z) be a valuation of ~z such that ν(zf ) = 1 if and only
if ρ(Zf ) = {1}.

Step 2: By hypothesis, ν can be extended to include ~x so that (∀y)ν(φ(~z, ~x, ~y))
is true. If L(xi) 6= L(−Xi[h]) or L(Xi[h]) 6= L(−Xi[h]) for some h, then:

Step 2.1: Let ρ(Xi[h]) 6= ρ(−Xi[h]) in such a way that ρ(Xi[h]) = 1 if
and only if 1 ∈ L(Xi[h]) and ν(xi) = 1, while ρ(−Xi[h]) = 1 if and
only if 1 ∈ L(−Xi[h]) and ν(xi) = 0.

Step 2.2: Let ρ(xi) 6= ρ(−Xi[h]).
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Step 2.3: Let ρ(−Xi[k]) 6= ρ(xi) and ρ(Xi[k]) 6= ρ(−Xi[k]) for every
k 6= h.

If L(xi) = L(−Xi) = L(Xi), then:

Step 2.4: Let ρ(xi) = ρ(Xi) = 1 if and only if 1 ∈ L(xi) and ν(xi) = 1,
and ρ(−Xi) 6= ρ(xi).

Note that, whichever case gets executed, ρ(xi) 6∈ ρ(−Xi) and ρ(−Xi[h]) 6=
ρ(Xi[h]) for every h.

Step 3: Let ρ(−Zf [h]) 6= ρ(Zf [h]) and ρ(ph) 6= 1.

Step 4: Let ρ for s, leaves, and inner vertices be as in Observation 1, and Lem-
mas 5, 7, 8 and 9. Observe that this is always possible. In particular,
observe that every pair of vertices connected by a list switcher have dif-
ferent colors, while every vertex connected to a forcer has an L-admissible
color.

We claim that ρ is a star L-coloring of G. Let {w}S be any maximal star of
G. By Observation 1 and Lemmas 5, 7, 8 and 9, {w}S is not monochromatic
when w 6= s. Suppose, for the rest of the proof, that w = s and {s}(S \ P ) is
monochromatic. By Lemma 5, this implies that t ∈ S, thus ρ(s) = ρ(t) = 1.
Also, by Lemma 8, S intersects no k-cluster, thus S ⊆ {t} ∪LX ∪LY ∪LZ ∪P .
Moreover, by statement (ii) of Lemma 4, S ∩ (Xi ∪ −Xi) equals either Xi or
−Xi, S ∩ (Yj ∪ −Yj) equals either Yj or −Yj , and S ∩ (Zf ∪ −Zf ) is either
Zf or −Zf , for every i, j, and f . Extend ν to ~y so that ν(yj) = 1 if and
only if Yj ⊂ S. By hypothesis, ν(φ(~z, ~x, ~y)) = 1, thus there is some clause Ph

whose literals are all true according to ν. If ph has some neighbor in −Yj , then
ν(yj) = 1, thus Yj ⊂ S and −Yj ∩ S = ∅. If ph has some neighbor −zh ∈ −Zf ,
then ν(zf ) = 1 which means, by the way ν is defined for ~z in Step 1, that
ρ(Zf ) = {1}. Consequently, by Step 3, ρ(−zh) 6= 1, i.e., −zh 6∈ S. Similarly,
if ph has some neighbor in Zf , then ν(zf ) = 0 which means that ρ(Zf ) 6= {1}.
Thus, there must exist at least one vertex zf ∈ Zf with ρ(zf ) 6= 1. Then, since
ρ(S) = 1, it follows that Zf 6⊂ S. Finally, if ph has a neighbor in −Xi, then
ν(xi) = 1, thus ρ(−Xi[h]) 6= 1 for some h by either Step 2.1 or Step 2.4. Hence,
ρ(−Xi) 6= {1}, thus −Xi 6⊂ S. Analogously, ph has no neighbors in Xi ∩ S.
Summing up, since P ∪ {t} is an independent set, it follows that ph has no
neighbors in S, thus ph ∈ S and {s}S is not monochromatic by Step 3.

For the converse, suppose G is star 2-choosable, and consider any valuation
ν of ~z. Define L to be a 2-list assignment of G so that ν(zf ) is the unique color
admissible for all the vertices in Zf , 1 is the unique color admissible for all the
vertices in LY ∪ {t}, and L(w) = {0, 1} for every vertex not connected to a 2-
forcer. By statement (iii) of Lemma 9, such list assignment L always exists. Let
ρ be a star L-coloring of G and extend ν to include ~x + ~y in its domain so that
ν(xi) = ρ(vi). Note that ν(yj) can take any value from {0, 1}, so it is enough
to prove that ν(φ(~x, ~y,~z)) = 1. Define VX =

⋃
i((Xi | ν(xi) = 1) ∪ (−Xi |

ν(xi) = 0)), VY =
⋃

j((Yj | ν(yj) = 1)∪ (−Yj | ν(yj) = 0)), and VZ =
⋃

f ((Zf |
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ν(zf ) = 1) ∪ (−Zf | ν(zf ) = 0)), and let S = {s}({t} ∪ VX ∪ VY ∪ VZ). As in
Theorem 1, it can be observed that (i) S is a monochromatic star and (ii) every
vertex in N(s) \ P is either adjacent or equal to a vertex in S. Thus, since ρ is
a star L-coloring of G, there must be some vertex ph adjacent to no vertex in
VX ∪ VY ∪ VZ . Moreover, such vertex ph corresponds to some clause Ph whose
literals are all true by the way ν is defined. �

The proof for k > 2 is by induction, i.e., we reduce star k-choosability
into star (k + 1)-choosability for every k ≥ 2. Roughly speaking, the idea
of the reduction is to insert a vertex z that forbids every vertex of the reduced
graph to have the same color as z.

Theorem 3 star k-choosability is Πp
3-complete for every k ≥ 2, and it

remains Πp
3-complete when the input is restricted to {C4,Kk+2}-free graphs.

Proof: The proof is by induction on k. The base case k = 2 corresponds to
Theorem 2. For the inductive step, we show how to transform a {C4,Kk+2}-free
graph Gk into a {C4,Kk+3}-free graph Gk+1 so that Gk is star k-choosable if
and only if Gk+1 is star (k + 1)-choosable.

The vertices of Gk+1 are divided into connection and inner vertices. Con-
nection vertices comprise a set W inducing Gk and a vertex z. Inner vertices are
included in (k + 1)-forcers or (k + 1)-switchers connecting connection vertices.
There is a (k+ 1)-forcer connecting z, and a (k+ 1)-switcher connecting {z, w}
for every w ∈ W . Let C(w) be the (k + 1)-switcher connecting {w, z}, i.e.,
C(w) ∪ {w} and C(w) ∪ {z} are cliques of Gk+1. By statement (i) of Lemmas
2 and 9, Gk+1 is {Kk+3, C4}-free.

Suppose Gk is star k-choosable. Let Lk+1 be a (k + 1)-list assignment of
Gk+1, and c(z) ∈ L(z) be L-admissible for z. Recall that c(z) always exists
by statement (ii) of Lemma 9. Define Lk as a k-list assignment of Gk+1[W ]
such that Lk(w) ⊆ Lk+1(w) \ {c(z)} for w ∈ W . By hypothesis, there is a star
Lk-coloring ρ of Gk+1[W ]. Define σ to be the Lk+1-coloring of Gk+1 such that
σ(w) = ρ(w) for w ∈ W and σ(z) = c(z). Inner vertices are colored according
to Lemma 6 and statement (ii) of Lemma 9. Clearly, if {w}S is a maximal star
of Gk+1 and w is a connection vertex, then either w = z or {w}S includes a
maximal star of Gk[W ]. Whichever the case, {w}S is not monochromatic, i.e.,
σ is a star coloring of Gk+1.

For the converse, let Lk be an k-list assignment of Gk+1[W ] and take a
color c 6∈ L(V (Gk+1)). Define Lk+1 as any (k+ 1)-list assignment of Gk+1 such
that c is the unique Lk+1-admissible color for z, and Lk+1(w) = Lk+1(C(w)) =
Lk(w) ∪ {c} for every w ∈ W . Such list assignment always exists by state-
ment (iii) of Lemma 9. Let σ be a star Lk+1-coloring of Gk+1. By construction,
σ(z) = {c}, and by Lemma 2, c 6∈ σ(W ). Hence, the restriction ρ of σ to W is
an Lk-coloring of Gk+1[W ]. Moreover, if {w}S is a maximal star of Gk+1[W ],
then {w}(S∪{x}) is a maximal star of Gk+1, for every x ∈ C(w). Since C(w) is
a block of Gk+1 and L(C(w)) = L(w), it follows that ρ(w) = σ(w) ∈ σ(C(w)).
Hence, {w}S is not monochromatic. �
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5 Forbidding graphs of order 3

The previous sections dealt with time complexity of the star and biclique color-
ing and choosability problems. The remaining of the article is devoted to these
problems in other restricted classes of graphs. As discussed in Section 3.3, we
are interested in classes of graphs that are related to chordal graphs or can be
defined by forbidding small induced subgraphs. In this section, we study the
classes of H-free graphs, for every graph H on three vertices.

There are four graphs with exactly three vertices, namely K3, P3, P3, and
K3. The following theorem shows that K3-free graphs are star 2-choosable.

Theorem 4 Every K3-free graph is star 2-choosable. Furthermore, for any
2-list assignment, a star L-coloring can be obtained in linear time.

Proof: Let L be a 2-list assignment of a K3-free graph G, T be a rooted tree
subgraph of G with V (T ) = V (G), r be the root of T , and p(v) be the parent
of v in T for each v ∈ V (G) \ {r}. Define ρ to be an L-coloring of G where
ρ(r) ∈ L(r) and ρ(v) ∈ L(v) \ {ρ(p(v))} for every v ∈ V (G) \ {r}. Since G is
K3-free, {v}S is a maximal star of G for v ∈ V (G) only if S = N(v), hence
{v}S is not monochromatic. Observe that a BFS traversal of G is enough to
compute ρ, thus ρ is computed in linear time from G. �

As a corollary, we obtain that {C4,K3}-free graphs are biclique 2-choosable
also. However, this corollary can be easily strengthened so as to include those
K3-free graphs that are biclique-dominated. A graph G is biclique-dominated
when every maximal biclique is either a star or has a false dominated vertex.
Some interesting classes of graphs are K3-free and biclique-dominated, including
hereditary biclique-Helly graphs [6].

Theorem 5 Every K3-free graph that is biclique-dominated is biclique 2-choos-
able. Furthermore, for any 2-list assignment, a biclique L-coloring can be com-
puted in polynomial time.

Proof: Let L be a 2-list assignment of a K3-free graph G that is biclique-
dominated. The algorithm for biclique L-coloring G has two steps. First, apply
Theorem 4 on G so as to obtain a star L-coloring ρ of G. Second, traverse
each vertex w and, for each v that is false dominated by w, change ρ(v) with
any color in L(v) \ ρ(w). (It is not important if ρ(v) or ρ(w) are later changed
when other vertices are examined.) The coloring thus generated is a biclique
L-coloring. Indeed, if a maximal biclique contains a false dominated vertex v,
then it also contains the vertex w such that ρ(v) was last changed in the second
step while traversing w. Since false domination is a transitive relation, it follows
that ρ(v) 6= ρ(w) when the second step is completed. On the other hand, if S
is a maximal biclique with no false dominated vertices, then S is a star. Since
the colors of the vertices of S are not affected by the second step, we obtain
that S is not monochromatic. It is not hard to see that the algorithm requires
polynomial time. �
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Coloring a connected P3-free graph is trivial because the unique connected
P3-free graph G with n vertices is Kn. Thus, chB(G) = χB(G) = χS(G) =
chS(G) = n.

Theorem 6 If G is a connected P3-free graph with n vertices, then chB(G) =
χB(G) = χS(G) = chS(G) = n.

The case of P3-free graphs, examined in the next theorem, is not much
harder.

Theorem 7 If G is a P3-free graph with k universal vertices, then chB(G) =
χB(G) = χS(G) = chS(G) = max{2, k}.

Proof: Let K be the set of universal vertices of G. Clearly, K is a block of G,
thus chB(G) ≥ k and chS(G) ≥ k by Observation 2. For the other bound, let L
be a k-list assignment of G, and B1, . . . , Bn be the sets of vertices that induce
components of G \ K. Define ρ as an L-coloring of G such that |ρ(K)| = k
and |ρ(Bi)| = 2 for i ∈ {1, . . . , n}. Note that Bi is a set of false twin vertices
(i ∈ {1, . . . , j}) because Bi is a clique of G. Thus, every maximal star or biclique
S is formed by two vertices of K or it contains a set Bi for some i ∈ {1, . . . , n}.
Whichever the case, S is not monochromatic, thus ρ is a star and biclique L-
coloring. �

The remaining class is the class of K3-free graphs. By definition, if G is
K3-free, then every maximal star and every maximal biclique of G has O(1)
vertices. Thus, it takes polynomial time to determine if an L-coloring of G is a
star or biclique coloring, for any k-list assignment L. Hence, when restricted to
K3-free graphs, the star and biclique k-coloring problems belong to NP, while
the star and biclique k-choosability problems belong to Πp

2. The next theorem
shows that, when k ≥ 3, the choosability problems are Πp

2-complete even when
the input is further restricted to co-bipartite graphs.

Theorem 8 star k-choosability and biclique k-choosability are Πp
2-

complete for every k ≥ 3 when the input is restricted to co-bipartite graphs.

Proof: The proof is obtained by reducing the problem of determining if a
connected bipartite graph with no false twins is vertex k-choosable, which is
known to be Πp

2-complete [15]. Let G be a connected bipartite graph with
no false twins, XY be a bipartition of G, and k ∈ N. Define H to be the
bipartite graph obtained from G by inserting, for every vw ∈ E(G), the stars
{ai(vw)}Ai(vw) (i ∈ {1, . . . , 4}) with |Ai(vw)| = k − 1 and the edges va1(vw),
va3(vw), wa2(vw), wa4(vw), a1(vw)a2(vw), and a3(vw)a4(vw) (see Figure 6).
We claim that G is vertex k-choosable if and only if H is star (resp. biclique)
k-choosable.

Suppose first that G is vertex k-choosable, and let L be a k-list assignment
of H and M be the restriction of L to V (G). By hypothesis, G admits a vertex
M -coloring ρ. Define σ to be any vertex L-coloring of H so that σ(v) = ρ(v)
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Figure 6: Transformation applied to vw in Theorem 8; each independent set
has k − 1 vertices.

for v ∈ V (G), and |σ(Ai(vw) ∪ {ai(vw)})| = k for every vw ∈ E(G) and every
i ∈ {1, . . . , 4}. It is not hard to see that such a coloring always exists. Clearly,
every maximal star (resp. biclique) S of H is formed by two twins of H or it
contains two vertices that are adjacent in H. In the latter case S is not σ-
monochromatic because σ is a vertex coloring of H, while in the former case S
is not σ-monochromatic because both of its vertices must belong to Ai(vw), as
G has no false twins, for some vw ∈ E(G) and some i ∈ {1, . . . , 4}.

For the converse, suppose H is star (resp. biclique) k-choosable, and let M be
a k-list assignment of G. Define σ to be a star (resp. biclique) L-coloring of H,
for the k-list assignment L ofH where L(a) = L(v) = M(v) for every vw ∈ E(G)
with v ∈ X, and every a ∈ Ai(vw) ∪ {ai(vw)} with i ∈ {1, . . . , 4}. Suppose, to
obtain a contradiction, that σ(v) = σ(w) for some vw ∈ E(G) with v ∈ X and
w ∈ Y . Then, for every a ∈ Ai(vw) (i ∈ {1, . . . , 4}), we obtain that σ(a) 6= σ(v)
because {a}{v, w} is a maximal star (resp. biclique) of H. Hence, since Ai(vw)
is a block of H, we obtain by Observation 2 that σ(Ai(vw)) = L(v) \ {σ(v)}
for every i ∈ {1, . . . , 4}. Consequently, since {b}{a, a1(vw)} is a maximal star
(resp. biclique) for every b ∈ A2(vw) and every a ∈ A1(vw), it follows that
σ(a1(vw)) = σ(v). Analogously, σ(ai(vw)) = σ(v) for every i ∈ {1, . . . , 4}. But
then, {ai(vw) | 1 ≤ i ≤ 4} is a monochromatic maximal biclique that contains
a maximal star, a contradiction. Therefore, σ(v) 6= σ(w) for every edge vw of
V (G), which implies that the restriction of σ to V (G) is a vertex M -coloring of
G. �

Let G be a K3-free graph with no false twins, and define H as the K3-free
graph that is obtained from G as in Theorem 8. By fixing the list assignment
that maps each vertex to {1, . . . , k} in the proof of Theorem 8, it can be observed
that G admits a vertex k-coloring if and only if H admits a star (resp. biclique)
k-coloring, for every k ≥ 3. The problem of determining if a connected K3-
free graph with no false twins admits a vertex k-coloring is known to be NP-
complete [17, 20]. Hence, the star and biclique k-coloring problems are NP-
complete when restricted to K3-free graphs, for every k ≥ 3.

Theorem 9 star k-coloring and biclique k-coloring are NP-complete
for every k ≥ 3 when the input is restricted to K3-free graphs.
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6 Graphs with restricted diamonds

The graphG defined in Theorem 1 contains a large number of induced diamonds.
For instance, to force different colors on a pair of vertices v and w, a k-switcher
C connecting {v, w} is used. Such switcher contains O(k2) diamonds, one for
each edge of C. An interesting question is, then, whether induced diamonds can
be excluded from Theorem 1. The answer is no, as we prove in this section that
the star coloring problem is NP-complete for diamond-free graphs. By taking a
deeper look at G, it can be noted that every diamond of G \ {s} has a pair of
twin vertices. In order to prove that the star coloring problem is NP-complete
for diamond-free graphs, we show that the problem is NPeven for the larger class
of graphs in which every diamond has two twin vertices. This class corresponds
to the class of {W4, dart, gem}-free graphs (cf. below), and is worth to note
that its graphs may admit an exponential number of maximal stars. We also
study the biclique coloring problem on this class, for which we prove that the
problem is NPwhen there are no induced Ki,i for i ∈ O(1). At the end of the
section, we study the star and biclique choosability problems, which turn to be
Πp

2-hard for {C4, dart, gem}-free graph.
Let G be a graph. Say that v ∈ V (G) is block separable if every pair of adja-

cent vertices w, z ∈ N(v) not dominating v are twins in G[N(v)]. The following
lemma shows that {W4, dart, gem}-free graphs are precisely those graphs in
which every induced diamond has twin vertices, and they also correspond to
those graphs is which every vertex is block separable. This last condition is
crucial in the NPcoloring algorithms.

Theorem 10 The following statements are equivalent for a graph G.

(i) G is {W4, dart, gem}-free.

(ii) Every induced diamond of G contains a pair of twin vertices.

(iii) Every v ∈ V (G) is block separable.

Proof: (i) =⇒ (ii) If D ⊆ V (G) induces a diamond with universal vertices v, w
and there exists x ∈ N(v) \N(w), then D ∪ {x} induces a W4, a dart, or a gem
in G depending on the remaining adjacencies between x and the vertices of D.

(ii) =⇒ (iii) Suppose v ∈ V (G) is not block separable, thus N [v] contains two
adjacent vertices w and z not dominating v that are not twins in H = G[N [v]];
say dH(z) ≥ dH(w). Then, v and z are the universal vertices of a diamond
containing w and a vertex inNH(z)\NH(w), i.e., G contains an induced diamond
with no twin vertices.

(iii) =⇒ (i) The W4, dart, and gem graphs have a vertex of degree 4 that is
not block separable. �

Note that if v is block separable, then N [v] can be partitioned into sets
B0, . . . , B` where v ∈ B0 and each Bi is a block of G[N [v]]. Moreover, no vertex
in Bi is adjacent to a vertex in Bj , for 1 ≤ i < j ≤ `. We refer to B0, . . . , B`

as the block separation of v. By definition, {v}S is a maximal star of G with
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|S| > 1 if and only if ` > 1, |S ∩ B0| = 0 and |S ∩ Bi| = 1 for i ∈ {1, . . . , `}.
By Theorem 10, every vertex of a {W4, dart, gem}-free graph admits a block
separation, hence the next result follows.

Lemma 10 Let G be a {W4, dart, gem}-free graph with a coloring ρ. Then, ρ
is a star coloring of G if and only if

• |ρ(B)| = |B| for every block B of G, and

• for every v ∈ V (G) with block separation B0, . . . , B`, there exists Bi such
that ρ(v) 6∈ ρ(Bi).

It is well known that the blocks of a graph G can be computed in O(n+m)
time. Hence, it takes O(d(v)2) time obtain the block separation of a block sepa-
rable vertex v, and, consequently, the star k-coloring and the star k-choosability
problems are in NPand Πp

2 for {W4, dart, gem}-free graphs, respectively.

Theorem 11 star k-coloring is NPwhen the input is restricted to {W4, dart,
gem}-free graphs.

Theorem 12 star k-choosability is Πp
2 when the input is restricted to {W4,

dart, gem}-free graphs.

We now consider the biclique coloring problem. The algorithm for deter-
mining if a coloring ρ is a biclique coloring of G is divided in two steps. First,
it checks that no monochromatic maximal star is a maximal biclique. Then, it
checks that G contains no monochromatic maximal biclique Ki,j with 2 ≤ i ≤ j.

For the first step, suppose ρ is a coloring of G where ρ(B) = |B| for every
block B of G. Let v be a vertex with a block separation B0, . . . , B`. As discussed
above, {v}S is a maximal star if and only if ` > 1, |S ∩ B0| = 0, and |S ∩
Bi| = 1 for every i ∈ {1, . . . , `}. If {v}S is not a maximal biclique, then there
exists w ∈ V (G) \ N [v] adjacent to all the vertices in S. Observe that w has
at most one neighbor in Bi with color c, for each color c. Otherwise, taking
into account that twin vertices have different colors, v, w, y, z would induce a
diamond with no twin vertices, for y, z ∈ N(v) ∩N(w). Therefore, at most one
monochromatic maximal star with center v is included in a biclique containing
w, for each w ∈ V (G) \ N(v). Thus, to check if there is a monochromatic

maximal biclique containing v we first check whether
∏`

i=1 |{z ∈ Bi | ρ(z) =
ρ(v)}| < n. If negative, then ρ is not a biclique coloring of G. Otherwise, all
the monochromatic maximal stars with center in v are generated in polynomial
time, and for each such star {v}S it is tested if there exists w ∈ V (G) \ N [v]
adjacent to all the vertices in S.

Lemma 11 If a {W4, dart, gem}-free graph G and a coloring ρ are given as
input, then it takes polynomial time to determine if there exists a monochromatic
maximal biclique {v}S with v ∈ V (G).
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For the second step, suppose S is an independent set with at least two
vertices, and let I =

⋂
v∈S N(v). Note that if w, z ∈ I are adjacent, then they

are twins in G because w, z are the universal vertices of any induced diamond
formed by taking a pair of vertices in S. Hence, I can be partitioned into
a collection B1, . . . , B` of blocks of G where no vertex in Bi is adjacent to a
vertex in Bj , for 1 ≤ i < j ≤ `. Thus, ST is a maximal biclique of G if and only
if no vertex of V (G)\S is complete to I and |T ∩Bi| = 1 for every i ∈ {1, . . . , `}.
That is, G has a monochromatic maximal biclique ST if and only if |ρ(S)| = 1,
each block of I has a vertex of color ρ(S), and

⋂
w∈I N(w) = S.

Lemma 12 Let G be a {W4, dart, gem}-free graph. If an independent set S and
a coloring ρ of G are given as input, then it takes polynomial time to determine
if G has a monochromatic maximal biclique ST with T ⊆ V (G).

If G is Ki,i-free for some constant i, then every biclique ST of G with
|S| ≤ |T | has |S| < i. Thus, to determine if ρ is a biclique coloring of G, it
is sufficient to traverse every independent set S of G with O(i) vertices and to
check that there exists no T ⊂ V (G) such that ST is a monochromatic maximal
biclique. By Lemmas 11 and 12, it takes polynomial time to determine if there
exists T such that ST is a monochromatic maximal star. Since there are nO(1)

independent sets with at most i vertices, the algorithm requires polynomial time.
We thus conclude that biclique k-coloring and biclique k-choosability
are respectively NPand Πp

2 when the input is restricted to {Ki,i, W4, dart,
gem}-free graphs.

Theorem 13 biclique k-coloring is NPwhen the input is restricted to {Ki,i,
W4, dart, gem}-free graphs, for i ∈ O(1).

Theorem 14 biclique k-choosability is Πp
2 when the input is restricted to

{Ki,i, W4, dart, gem}-free graphs, for i ∈ O(1).

In the rest of this section, we discuss the completeness of the star and biclique
coloring and choosability problems. As in Sections 3 and 4, only one proof is used
for each problem because C4-free graphs are considered. For the reductions, two
restricted satisfiability problems are required, namely nae-sat and nae∀∃sat.
A valuation ν of a CNF formula φ is a nae-valuation when all the clauses of
φ have a true and a false literal. The formula (∃~x)φ(~x) is nae-true when φ(~x)
admits a nae-valuation, while (∀~x)φ(~x) is nae-true when every valuation of φ(~x)
is a nae-valuation. nae-sat is the NP-complete problem (see [9]) in which a
CNF formula φ is given, and the goal is to determine if φ admits a nae-valuation.
Analogously, nae∀∃sat is the Πp

2-complete problem (see [7]) in which a CNF
formula φ(~x, ~y) is given, and the purpose is to determine if (∀~x)(∃~y)φ(~x, ~y) is
nae-true. We begin discussing the completeness of the star coloring problem.
In order to avoid induced diamonds, we define a replacement of long switchers.

Definition 7 [diamond k-switcher] Let G be a graph and U = {u1, . . . , uh} be
an independent set of G with h ≥ 2. Say that S ⊂ V (G) is a diamond k-switcher
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connecting U (k ≥ 2) when S can be partitioned into a vertex w1, a set of leafed
vertices {w2, . . . , wh}, a family Q1, . . . , Qh of k-keepers, and a clique C with k
vertices in such a way that C ∪ {w1} is a clique, {w1}{w2, . . . , wh} is a star,
Qi connects ui, wi for i ∈ {1, . . . , h}, and there are no more edges adjacent to
vertices in S.

A diamond k-switcher is depicted in Figure 7. The main properties of dia-
mond switchers are given in the next lemma.

C bw1

b
w2b
w3

..
.

b
wh

b
u1 b

u2b
u3

..
.

b
uh

Figure 7: A diamond k-switcher connecting {u1, . . . , uh}.

Lemma 13 Let G be a graph and S be a diamond k-switcher connecting U ⊂
V (G) (k ≥ 2). Then,

(i) no induced C4, diamond, or Kk+2 of G contains a vertex of S,

(ii) |ρ(U)| ≥ 2 for any star k-coloring ρ of G, and

(iii) Any k-coloring ρ of G \ S in which |ρ(U)| ≥ 2 can be extended into a
k-coloring of G in such a way that no monochromatic maximal star has
its center in S.

Proof: Let U = {u1, . . . , uh}, w1, . . . , wh, Q1, . . . , Qh, and C be as in Defini-
tion 7. Statement (i) follows by statement (i) of Lemma 1, observing that U
is an independent set and that no induced diamond can contain a vertex in a
k-keeper.

(ii) Let ρ be a star k-coloring of G. Since C is a block of size k, it contains
a vertex c with color ρ(w1) by Observation 2. Then, taking into account that
{w1}{c, u1, w2, . . . , wh} is a maximal star and ρ(ui) = ρ(wi) by statement (ii) of
Lemma 1 for i ∈ {1, . . . , h}, it follows that ρ(ui) 6= ρ(u1) for some i ∈ {2, . . . , h}.

(iii) To extend ρ, first set ρ(C) = {1, . . . , k} and ρ(wi) = ρ(ui) (for i ∈
{1, . . . , h}), and then iteratively extend ρ to color the leaves and the k-keepers
according to Observation 1 and statement (iii) of Lemma 1. �

We are now ready to prove the NP-completeness of the star-coloring problem.

Theorem 15 star k-coloring is NP-complete when the input is restricted to
{C4, diamond, Kk+2}-free graphs for every k ≥ 2.
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Proof: By Theorem 11, star k-coloring is NPfor {C4, diamond, Kk+2}-free
graphs. For the hardness part, we show a polynomial time reduction from nae-
sat. That is, given a CNF formula φ with ` clauses P1, . . . ,P` and n variables
x1, . . . ,xn, we define a {C4, diamond, Kk+2}-free graph G such that φ admits
a nae-valuation if and only if G admits a star k-coloring.

The vertices of G are divided into connection and inner vertices. For each
i ∈ {1, . . . , n} there are two connection vertices xi,−xi representing the literals
xi and xi, respectively. Also, there are k − 2 connection vertices y3, . . . , yk.
Let X = {x1, . . . , xn,−x1, . . . ,−xn}, Y = {y3, . . . , yk}, and Ph = {x ∈ X |
x represents a literal in Ph} for h ∈ {1, . . . , `}. Inner vertices are the vertices
included in diamond k-switchers connecting connection vertices. For each v ∈
X ∪ Y and each y ∈ Y there is a color diamond k-switcher connecting {v, y}.
Also, for each i ∈ {1, . . . , n} there is a valuation diamond k-switcher connecting
{xi,−xi}. Finally, there is a clause diamond k-switcher connecting Ph for every
h ∈ {1, . . . , `}. Observe that X ∪ Y is an independent set of G. Thus, by
statement (i) of Lemma 13, G is {C4, diamond, Kk+2}-free.

Suppose φ has a nae-valuation ν : ~x→ {0, 1}, and let ρ be a k-coloring of the
connection vertices such that ρ(xi) = 2− ν(xi) and ρ(yj) = j for i ∈ {1, . . . , n}
and j ∈ {3, . . . , k}. Clearly, every color or valuation k-switcher connects a
pair of vertices that have different colors. Also, since ν is a nae-valuation,
every set Ph (h ∈ {1, . . . , `}) has two vertices representing literals l1 and l2
of Ph with ν(l1) 6= ν(l2). Hence, Ph is not monochromatic, thus every clause
diamond k-switcher connects a non-monochromatic set of vertices. Therefore,
by statement (iii) of Lemma 13, ρ can be iteratively extended into a star k-
coloring of G.

For the converse, suppose G admits a star k-coloring ρ. By applying state-
ment (ii) of Lemma 13 while considering the different kinds of diamond k-
switchers, we observe the following facts. First, according to the color diamond
k-switchers, |ρ(Y )| = k − 2 and ρ(X) ∩ ρ(Y ) = ∅. Then, we can assume that
ρ(X) ⊆ {1, 2} and ρ(Y ) = {3, . . . , k}. Hence, by the valuation diamond k-
switcher connections, we obtain that ρ(xi) 6= ρ(−xi) for every i ∈ {1, . . . , n}.
Thus, the mapping ν : ~x → {0, 1} such that ν(xi) = 2 − ρ(xi) is a valuation.
Moreover, by the clause diamond k-switcher connections, Ph is not monochro-
matic for h ∈ {1, . . . , `}. Consequently, ν is a nae-valuation of φ. �

Observe that the graph G defined in Theorem 15 is not chordal. However,
as discussed in Section 3.3, every edge xy such that x, y are connected by a
k-keeper (inside the diamond k-switchers) can be subdivided so as to eliminate
all the induced holes of length at most i, for every i ∈ O(1).

We now deal with the star choosability problem. Recall that long switchers
are not well suited for the star choosability problem because they contain keep-
ers, and vertices connected by keepers need not have the same colors in every
list coloring. Keepers are also present inside diamond switchers, thus it is not
a surprise that diamond k-switchers are not star k-choosable. For this reason,
as in Section 4, the proof is by induction, using list switchers for k = 2. Since
list switchers contain induced diamonds, the Σp

2-hardness will be obtained for
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{W4, gem, dart}-free graphs, and not for diamond-free graphs. Unfortunately,
we did not find a way to avoid these diamonds. Moreover, some kind of forcers
are required as well; our forcers have induced diamonds that we were not able
to remove either. The hardness proof for k = 2 is, in some sense, a combination
of the proofs of Theorems 2 and 15. Roughly speaking, the idea is to force the
colors of the universal variables of the input formula as in Theorem 2, while a
nae-valuation is encoded with colors as in Theorem 15.

Theorem 16 star 2-choosability is Πp
2-hard when its input is restricted to

{C4, dart, gem, K4}-free graphs.

Proof: The hardness of star 2-choosability is obtained by a reduction from
nae∀∃sat. That is, given a CNF formula φ(~z, ~x) with ` clauses P1, . . . ,P`, and
m+n variables ~x = x1, . . . ,xn, ~z = z1, . . . , zm, we build a {C4, dart, gem, K4}-
free graph G that is star 2-choosable if and only if (∀~z)(∃~x)φ(~z, ~x) is nae-true.
For the sake of simplicity, in this proof we use i, f , and h as indices that refer
to values in {1, . . . , n}, {1, . . . ,m}, and {1, . . . , `}.

Graph G is an extension of the graph in Theorem 15 for k = 2 (replacing
diamond switcher with list switchers). It has a connection vertex xi (resp. −xi,
zf , −zf ) representing xi (resp. xi, zf , zf ) for each i (and each f), and two con-
nection vertices t, −t. Let LX = {xi,−xi | 1 ≤ i ≤ n}, Z = {z1, . . . , zm}, −Z =
{−z1, . . . ,−zm}, and Ph = {x | x ∈ X ∪ Z ∪ −Z represents a literal in Ph}.
Graph G also has inner vertices which are the vertices in list switchers and 2-
forcers connecting connection vertices. There are 2-forcers connecting each ver-
tex of Z ∪ {t,−t}, and list switchers connecting: {t, xi,−xi} and {−t, xi,−xi}
for each i; {zf ,−zf} for each f ; and Ph ∪ {t} and Ph ∪ {−t} for each h.

Let L be a 2-list assignment of G, and suppose (∀~z)(∃~x)φ(~z, ~x) is nae-true.
Define ρ as an L-coloring of the connection vertices satisfying the following
conditions.

(i) ρ(v) is any color L-admissible for v ∈ Z ∪ {t,−t}. Such a color always
exists by statement (ii) of Lemma 9. Suppose, w.l.o.g., that ρ(t) = 1 and
ρ(−t) ∈ {0, 1}, and define ν(~z) as a valuation of ~z such that ν(zf ) = 1 if
and only if ρ(zf ) = 1.

(ii) By hypothesis, ν can be extended into a nae-valuation of φ(~z, ~x). If ν(xi) ∈
L(xi), then ρ(xi) = ν(xi). Otherwise, ρ(xi) ∈ L(xi)\{1−ν(xi)}. Similarly,
ρ(−xi) = 1− ν(xi) if 1− ν(xi) ∈ L(−xi), while ρ(−xi) ∈ L(−xi) \ {ν(xi)}
otherwise.

(iii) ρ(−zf ) ∈ L(zf ) \ {ρ(zf )}.
It is not hard to see that ρ can always be obtained. Observe that ρ(−zf ) 6= ρ(zf ),
ρ(xi) = ρ(−xi) only if ρ(xi), ρ(−xi) 6∈ {ρ(t), ρ(−t)}, and ρ(Ph) is monochro-
matic only if ρ(Ph) 6⊆ {ρ(t), ρ(−t)}. Therefore, ρ can be extended into an
L-coloring of G by statement (iii) of Lemma 7 and statement (ii) of Lemma 9.

For the converse, suppose G is star 2-choosable, and consider any valuation
ν of ~z. Define L to be a 2-list assignment of G such that 1 is the unique color
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admissible for t, 0 is the unique color admissible for −t, ν(zf ) is the unique
color admissible for zf , and L(v) = {0, 1} for v ∈ V (G) \ (Z ∪ {t,−t}). By
statement (iii) of Lemma 9, such a list assignment always exists. Let ρ be a
star L-coloring of G. By repeatedly applying statement (ii) of Lemma 7, it
can be observed that none of {t, xi,−xi}, {−t, xi,−xi}, {t} ∪ Ph, and {−t} are
monochromatic. Therefore, ν is a nae-valuation of φ(~z, ~x). �

Note that if C is a k-switcher, then every induced diamond that contains
a vertex u ∈ C also contains a twin of u. Hence, by Theorem 10, if F is a
k-forcer connecting v, then no vertex in F belongs to an induced dart or gem.
Consequently, if Gk is a {C4, dart, gem, Kk+2}-free graph, then the graph
Gk+1 defined in the proof of Theorem 3 is {C4, dart, gem, Kk+3}-free. That is,
a verbatim copy of the proof of Theorem 3 can be used to conclude the following.

Theorem 17 star k-choosability is Πp
2-complete when its input is restricted

to {C4, dart, gem, Kk+2}-free graphs for every k ≥ 2.

7 Split graphs

In this section we consider the star coloring and star choosability problems
restricted to split graphs. The reason for studying split graphs is that they
form an important subclass of chordal graphs, and also correspond to the class
of {2K2, C4, C5}-free graphs [10]. A graph G is split when its vertex set
can be partitioned into an independent set S(G) and a clique Q(G). There
are O(d(v)) maximal stars centered at v ∈ V (G), namely {v}(N(v) ∩ S(G))
and {v}((N(v) ∪ {w}) \N(w)) for w ∈ Q(G). Thus, the star coloring and star
choosability problems on split graphs are NPand Πp

2, respectively. In this section
we prove the completeness of both problems.

We begin observing that G admits a star coloring with β + 1 colors, where
β is the size of the maximum block. Indeed, each block B of Q(G) is colored
with colors {1, . . . , |B|}, while each vertex of S(G) is colored with color β + 1.
We record this fact in the following observation.

Observation 3 If G is a split graph whose blocks have size at most β, then G
admits a star coloring using β + 1 colors. Furthermore, such a coloring can be
obtained in linear time.

Computing a star coloring of a split graph using β + 1 colors is easy, but deter-
mining if β colors suffice is an NP-complete problem. The proof of hardness is
almost identical to the one in Section 6 for {C4, diamond, Kk+2}-free graphs.
That is, given a CNF formula φ we build a graph G using split switchers in such
a way that φ admits a nae-valuation if and only if G admits a star k-coloring.
As switchers, split switchers force a set of vertices to have at least two colors
in a star k-coloring. The difference is that split switchers do so in a split graph
(see Figure 8).
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X Y

W ba1 b a2 S(G)

Q(G)

Figure 8: A split k-switcher connecting a set W .

Definition 8 [split k-switcher] Let G be a split graph and W ⊆ S(G) with
|W | ≥ 2. Say that S ⊂ V (G) \W is a split k-switcher connecting W when S
can be partitioned into two sets X,Y ⊆ Q(G) and two vertices a1, a2 ∈ S(G) in
such a way that |X| = |Y | = k, X ∪ {v} is a clique for every v ∈ W ∪ {a1, a2},
Y ∪ {a1} and Y ∪ {a2} are cliques, there are no more edges between vertices in
X ∪Y and vertices in S(G), and there are no more edges incident to a1 and a2.

The properties of split k-switchers are summarized in the following lemma.

Lemma 14 Let G be a split graph and S be a split k-switcher connecting W ⊂
S(G). Then,

(i) |ρ(W )| > 1 for every star k-coloring ρ of G, and

(ii) For every k-list assignment of G, any L-coloring ρ of G \ S in which
|ρ(W )| > 1 can be extended into an L-coloring of G in such a way that no
monochromatic maximal star has its center in S.

Proof: Let X, Y , a1, and a2 be as in Definition 8.
(i) Let ρ(G) be a star k-coloring of G. By definition, X and Y are blocks of

G, thus |ρ(X)| = |ρ(Y )| = k by Observation 2. Let xc and yc be the vertices
with color c in X and Y , respectively. Since the maximal star {xc}(W ∪ {yc})
is not monochromatic, it follows that ρ(W ) 6= {c}. Therefore, |ρ(W )| > 1.

(ii) To extend ρ to S, define |ρ(X)| = |ρ(Y )| = k, and ρ(a1) 6= ρ(a2). Let
{v}V be a maximal star with v ∈ S. If either v ∈ Y or v ∈ X and V ∩ Y = ∅,
then {a1, a2} ⊆ V , thus {v}V is not monochromatic. Otherwise, if v ∈ X and
V ∩ Y 6= ∅, then W ⊆ V , thus {v}V is not monochromatic as well. �

By replacing diamond k-switchers with split k-switchers in the proof of The-
orem 15, the NP-completeness of the star k-coloring problem for split graphs is
obtained. For the sake of completeness, we sketch the proof, showing how to
build the graph G from the CNF formula.

Theorem 18 star k-coloring restricted to split graphs is NP-complete for
every k ≥ 2.
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Proof: Split graphs have O(n + m) maximal stars, hence star k-coloring
is NP for split graphs. For the hardness part, let φ be a CNF formula with
m clauses P1, . . . ,Pm and n variables x1, . . . ,xn. Define G as the split graphs
with connection and inner vertices, as follows. For each i ∈ {1, . . . , n} there
are two connection vertices xi,−xi representing the literals xi and xi, re-
spectively. Also, there are k − 2 connection vertices y3, . . . , yk. Let X =
{x1, . . . , xn,−x1, . . . ,−xn}, Y = {y3, . . . , yk}, and Ph = {x ∈ X | x represents
a literal in Ph} for h ∈ {1, . . . , `}. Inner vertices form the split k-switchers

connecting connection vertices. For each v ∈ X ∪ Y and each y ∈ Y there is a
color split k-switcher connecting {v, y}. Also, for each i ∈ {1, . . . , n} there is a
valuation split k-switcher connecting {xi,−xi}. Finally, there is a clause split
k-switcher connecting Ph for every h ∈ {1, . . . , `}. Clearly, G is a split graph,
and, as in the proof of Theorem 15, G admits star k-star coloring if and only if
φ admits a nae-valuation. �

For the star choosability problem of split graphs, the idea is to adapt the
proof of Theorem 16, providing a new kind of forcer. This new forcer is called
the split k-forcer and it is just a k-forcer where its k-switchers form a clique.
For the sake of completeness, we include its definition.

Definition 9 [split k-forcer] Let G be a split graph and v ∈ S(G). Say that
F ⊆ V (G) is a split k-forcer connecting v (k ≥ 2) when F can be partitioned
into sets A,B ⊆ S(G) and C(a, b) ⊆ Q(G) for a ∈ A ∪ {v} and b ∈ B in such a
way that |A| = k − 1, |B| = kk − 1, C(a, b) ∪ {a} and C(a, b) ∪ {b} are cliques,
there are no more edges between vertices in F ∩Q(G) and vertices in S(G), and
there are no more edges incident to vertices in A ∪B.

Let L be a k-list assignment of a split graph G and F be a split k-forcer
connecting v ∈ V (G). As in Section 4, we say that c ∈ L(v) is L-admissible for
v when there is an L-coloring ρ of G such that ρ(v) = c and no monochromatic
maximal star has its center in F . The following lemma resembles Lemma 9.

Lemma 15 Let G be a split graph and F be a split k-forcer connecting v ∈
S(G). Then,

(i) for every k-list assignment L of G there is an L-admissible color for v,
and

(ii) every k-list assignment L of G\F can be extended into a k-list assignment
of G in which v has a unique L-admissible color.

Proof: The lemma can be proven with a verbatim copy of the proof of Lemma 9.
In particular, observe that a split k-forcer can be obtained from a k-forcer by
inserting the edges between C(a, b) and C(a′, b′), for every a, a′ ∈ A ∪ {v} and
b, b′ ∈ B. �

The hardness of the star choosability problem is also obtained by adapting
the proof of Theorem 16. We remark, however, that in this case no induc-
tion is required, because split k-switchers are k-choosable by statement (ii) of
Lemma 14. The proof is sketched in the following theorem.
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Theorem 19 star k-choosability restricted to split graphs is Πp
2-complete

for every k ≥ 2.

Proof: star k-choosability is Πp
2 for split graphs because split graphs have

a polynomial amount of maximal stars. Let φ(~z, ~x) be a CNF formula with
` clauses P1, . . . ,P`, and m + n variables ~x = x1, . . . ,xn, ~z = z1, . . . , zm.
Use i, f , h, and q to denote indices in {1, . . . , n}, {1, . . . ,m}, {1, . . . , `}, and
{3, . . . , k}, respectively. Define G as the split graph that has a connection ver-
tex xi ∈ S(G) (resp. −xi, zf , −zf ) representing xi (resp. xi, zf , zf ), and
k connection vertices t, −t, y3, . . . , yk. Let X = {xi,−xi | 1 ≤ i ≤ n},
Y = {y3, . . . , yk}, Z = {z1, . . . , zm}, −Z = {−z1, . . . ,−zm}, and Ph = {x |
x ∈ X ∪ Z ∪ −Z represents a literal in Ph}. Graph G also has inner vertices
that are the vertices of split k-switchers and split k-forcers connecting connec-
tion vertices. There are split k-forcers connecting zf , t, −t, and split k-switchers
connecting: {t, xi,−xi}, {−t, xi,−xi}, {zf ,−zf}, Pk∪{t}, Pk∪{−t}, and {v, yq}
for every v ∈ X ∪ Y ∪ −Z ∪ {t,−t}.

Following the proof of Theorem 16, it can be observed that, for k = 2,
G admits a star L-coloring, for a k-list assignment L of G, if and only if
(∀~x)(∃~y)φ(~x, ~y) is nae-true. For k > 2, observe that if (∀~x)(∃~y)φ(~x, ~y) is nae-
true, then a star L-coloring ρ is obtained if ρ(Y ) is taken so that |ρ(Y )| = k− 2
and ρ(t), ρ(−t) 6∈ ρ(Y ). Conversely, if G admits a star L-coloring for the k-
list assignment in which L(v) = {0, . . . , k − 1} for every connecting vertex
v 6∈ Z ∪{t,−t}, then ρ(X) = {0, 1}, thus a nae-valuation of φ(~x, ~y) is obtained.

�

To end this section, consider the more general class of C4-free graphs. By
definition, {v}S is a star of a graph G if and only if S is a maximal independent
set of G[N(v)]. In [8], it is proved that G[N(v)] has O(d(v)2) maximal indepen-
dent sets when G is C4-free. Thus, C4-free graphs have O(nm) maximal stars,
which implies that the star coloring and star choosability problems on this class
are NPand Πp

2, respectively.

Theorem 20 star k-coloring and star k-choosability are respectively
NP-complete and Πp

2-complete for every k ≥ 2 when the input is restricted to
C4-free graphs.

8 Threshold graphs

Threshold graphs form a well studied class of graphs which possesses many
definitions and characterizations [10, 21]. The reason for studying them in this
article is that threshold graphs are those split graphs with no induced P4’s.
Equivalently, a graph is a threshold graph if and only if it is {2K2, P4, C4}-free.

In this section we develop a linear time algorithm for deciding if a threshold
graph G admits a star k-coloring. If affirmative, then a star k-coloring of G
can be obtained in linear time. If negative, then a certificate indicating why
G admits no coloring is obtained. We prove also that G is star k-choosable if
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and only if G admits a star k-coloring. Thus, deciding whether G is star k-
choosable takes linear time as well. It is worth noting that threshold graphs can
be encoded with O(n) bits using two sequences of natural numbers (cf. below).
We begin this section with some definitions on such sequences.

Let S = s1, . . . , sr be a sequence of natural numbers. Each i ∈ {1, . . . , r} is
called an index of S. For k ∈ N, we write S = [k] and S ≤ [k] to respectively
indicate that si = k and si ≤ k for every index i. Similarly, we write S > [k]
when S 6≤ [k], i.e., when si > k for some index i. Note that S could be empty;
in such case, S = [k] and S ≤ [k] for every k ∈ N. For indices i, j, we use S[i, j]
to denote the sequence si, . . . , sj . If i > j, then S[i, j] = ∅. Similarly, we define
S(i, j] = S[i+ 1, j], S[i, j) = S[i, j − 1], and S(i, j) = S[i+ 1, j − 1].

A threshold representation is a pair (Q,S) of sequences of natural numbers
such that |Q| = |S|+1. Let Q = q1, . . . , qr+1 and S = s1, . . . , sr. Each threshold
representation defines a graph G(Q,S) whose vertex set can be partitioned into
r + 1 blocks Q1, . . . , Qr+1 with |Q1| = q1, . . . , |Qr+1| = qr+1 and r independent
sets S1, . . . , Sr with |S1| = s1, . . . , |Sr| = sr such that, for 1 ≤ i ≤ j ≤ r, the
vertices in Qi are adjacent to all the vertices in Sj ∪ Qj+1. It is well known
that G is a connected threshold graph if and only if it is isomorphic to G(Q,S)
for some threshold representation (Q,S) [10, 21]. The following observation
describes all the maximal stars of G(Q,S).

Observation 4 Let (Q,S) be a threshold representation and v be a vertex of
G(Q,S). Then, {v}W is a maximal star of G(Q,S) if and only if there are

indices i ≤ j of Q such that v ∈ Qi, and W = {w} ∪⋃j−1
h=i Sh for some vertex

w ∈ Qj.

For k ∈ N, we say that index i of Q is k-forbidden for the threshold rep-
resentation (Q,S) when either qi > k or qi = k and there exists some index
j > i such that qj = k, Q(i, j) = [k − 1] and S[i, j) = [1]. The next theorem
shows how to obtain a star k-coloring of G when a threshold representation is
provided.

Theorem 21 The following statements are equivalent for a threshold represen-
tation (Q,S).

1. G(Q,S) is star k-choosable.

2. G(Q,S) admits a star k-coloring.

3. No index of Q is not k-forbidden for (Q,S).

Proof: (i) =⇒ (ii) is trivial.
(ii) =⇒ (iii). Suppose G(Q,S) admits a star k-coloring ρ and yet Q contains

some k-forbidden index i. Since Qi is a block of G(Q,S), then qi ≤ k by
Observation 2. Hence, qi = k and there exists an index j > i such that qj = k,
Q(i, j) = [k − 1], and S[i, j) = [1]. Let wh be the unique vertex in Sh for
h ∈ {i, . . . , j−1}. By Observation 2, both Qi and Qj have at least one vertex of
each color c ∈ {1, . . . , k}, while for each index h ∈ {i+ 1, . . . , j− 1} there exists
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a color ch such that ρ(Qh) = {1, . . . , k} \ {ch}. Consequently, there are indices
a < b in {i, . . . , j} such that ρ(wa) ∈ ρ(Qa)∩ρ(Qb) and ch = ρ(wh) = ρ(wa) for
every index h ∈ {a+1, . . . , b−1}. Indeed, it is enough to take a ∈ {i, . . . , j−1}
as the maximum index with ρ(wa) ∈ ρ(Qa) and b ∈ {a, . . . , j} as the minimum
index such that ρ(wa) 6∈ ρ(Qa+1)∪ . . .∪ρ(Qb−1). Therefore, if va and vb are the
vertices of Qa and Qb with color c, respectively, then {va}{vb, wa+1, . . . , wb−1}
is a monochromatic maximal star by Observation 4, a contradiction.

(iii) =⇒ (i). Let L be a k-list assignment of G(Q,S) and define wi as any
vertex of Si for each index i of I. For each index i of Q, define p(i) ∈ {1, . . . , i}
as the minimum index such that Q(p(i), i] < [k]. Let ρ be an L-coloring of
G(Q,S) that satisfies all the following conditions for every index i of Q:

(1) |ρ(Qi)| = qi,

(2) if qi < k and i 6= r + 1, then ρ(wp(i)) and ρ(wi) do not belong to ρ(Qi),

(3) if qi < k − 1 and 1 < i < r + 1, then ρ(wi) 6= ρ(wp(i)), and

(4) if si > 1 and i 6= r + 1, then |ρ(Si)| ≥ 2.

A coloring satisfying all the above conditions can obtained iteratively, by col-
oring the vertices in Qi ∪ Si before coloring the vertices in Qj ∪ Sj for every
pair of indices i < j. We claim that ρ is a star L-coloring of G(Q,S). To see
why, let {v}W be a maximal star of G(Q,S). By Observation 4, there are two
indices i ≤ j of Q such that v ∈ Qi and W = {w} ∪ Si ∪ . . . ∪ Sj−1 for some
w ∈ Qj . If i = j, then ρ(v) 6= ρ(w) by (1). If S[i, j) > [1], then Sh is not
monochromatic by (4). If qi < k, then {v} ∪ Si is not monochromatic by (2).
If qi = k and qj < k, then p(i) ∈ {i, . . . , j − 1}, thus {v} ∪ Sp(j) ⊂ W is not
monochromatic by (2). Finally, if qi = qj = k and S[i, j) = [1], then there exists
index h such that qh < k−1; otherwise i would be a k-forbidden index of (Q,S).
Then, by (3), ρ(wh) 6= ρ(wp(h)) which implies that W is not monochromatic.
Summing up, we conclude that G(Q,S) has no monochromatic maximal star.

�

Theorem 21 has several algorithmic consequences for a threshold representa-
tion (Q,S) of a graph G. As mentioned, G is a split graph where Q(G) =

⋃
Qi

and S(G) =
⋃
Si, thus χS(G) is either k or k + 1, for k = max(Q). While

deciding if k colors suffice for a general split graph is an NP-complete prob-
lem, only O(|Q|) time is needed to decide whether χS(G) = k when (Q,S) is
given as input; it is enough to find a k-forbidden index of Q. Furthermore, if
k < χS(G), then a k-forbidden index can be obtained in O(|Q|) time as well.
Also, if χS(G) = k, then a star k-coloring ρ of G can be obtained in linear
time by observing rules (1)–(4) of implication (iii) =⇒ (i). To obtain ρ, begin
traversing Q to find p(i) for every index i of Q. Then, color the vertices of each
block Qi with colors 1, . . . , qi. Following, color the vertices w1, . . . , wr in that
order, taking the value of qi into account for each index i of S. If qi ≥ k−1, then
ρ(wi) = k; otherwise, ρ(wi) is any value in {qi + 1, . . . , k} \ ρ(wp(i)). Finally,
color the vertices in Si\{wi} with color 1 for each index i of S. To encode ρ only
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two values are required for each index i of Q, namely, qi and ρ(wi). Thus, ρ can
be obtained in O(|Q|) time as well. Finally, (Q,S) can be obtained in O(n+m)
time from G when G is encoded with adjacency lists [10, 21]. Thus, all the above
algorithms take O(n+m) when applied to the adjacency list representation of
G. We record all these observation in the theorem below.

Theorem 22 Let (Q,S) be a threshold representation of a graph G. The prob-
lems of computing χS(G), chS(G), a k-forbidden index of Q for k < χS(G),
and a χS(G)-coloring of G can be solved in O(|Q|) time when (Q,S) is given as
input. In turn, all these problems take O(n + m) time when an adjacency list
representation of G is given.

9 Further remarks and open problems

In this paper we investigated the time complexity of the star and biclique col-
oring and choosability problems. In this section we discuss some open problems
that follow from our research.

Theorem 1 states that the star k-coloring problem is Σp
2-complete even when

the input is restricted to {C4, Kk+2}-free graphs. In Section 3.3 we discussed
how to generalize this theorem to include {Ci, Kk+2}-free graphs, for every
i ∈ O(1). An interesting question is what happens when i grows to infinity, i.e.,
what happens when chordal graphs are considered. By Theorem 18, we know
that the star k-coloring problem is at least NP-hard on chordal graphs. Is it
NP-complete or not? Similarly, by Theorem 19, the star k-choosability problem
on chordal graphs is at least Πp

2-hard; is it Πp
2-complete?

Problem 1 Determine the time complexity of the star k-coloring (k-choosabil-
ity) problem on chordal graphs and chordal Kk+2-free graphs.

To prove the Σp
2-completeness of the star k-coloring problem we showed how

to transform a formula φ(~x, ~y) into a graph G. Graph G has many connection
vertices that are joined together by k-keepers and k-switchers. The purpose of
the k-keepers is to force two vertices to have the same colors, while k-switchers
are used to force different colors on a pair of vertices. Both k-keepers and k-
switchers contain blocks of size k. By taking a close examination at Lemmas
1 and 2, it can be seen that these blocks play an important role when colors need
to be forced. An interesting question is whether these blocks can be avoided.

Problem 2 Determine the time complexity of the star k-coloring (k-choosabil-
ity) problem on graph where every block has size at most j, for j ≤ k.

Keepers and switchers not only have blocks of size k; when a k-keeper or
a k-switcher connects two vertices v and w, a clique of size k + 1 containing v
and w is generated. We know that the star k-coloring problem is Σp

2-complete
for Kk+2-free graphs, but what happens when Kk+1-free graphs are considered?
The answer for the case k = 2 is given by Theorem 4, i.e., the star 2-coloring
problem is easy on K3-free graphs. And for larger values of k?
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Problem 3 Determine the time complexity of the star k-coloring (k-choosabil-
ity) problem on Kj-free graphs, for k > 2 and 4 ≤ j ≤ k + 1.

In Section 4, the Πp
3-completeness of the star k-choosability problem on C4-

free graphs is proved by induction. For the case k = 2, a graph G2 is built
from a DNF formula using the same ideas that we used to prove the hardness
of the star 2-coloring problem. Then, for the case k > 2, the graph Gk−1 is
transformed into a graph Gk. The reason for splitting the proof in two cases
is that long k-switchers can no longer be included into Gk. So, to avoid the
inclusion of induced C4’s, list switchers are used to build G2, while k-switchers
are used to transform Gk−1 into Gk for k > 2. This way, each generated graph
Gk is C4-free. We did not find a way to extend the holes in Gk as it is done in
Section 3.3 for the star k-coloring problem. Thus, Gk contains C5 as an induced
subgraph for every k > 2, while G2 contains C7 as an induced subgraph. Is the
problem simpler when such holes are avoided?

Problem 4 Determine the time complexity of the star k-choosability problem
when all the holes in the input graph have length at least i, for i ∈ O(1).

The star coloring problem is easier when any of the graphs on three vertices
does not appear as an induced subgraph, as discussed in Section 5. Similarly,
the biclique coloring problem is simpler when it contains no induced P3, P3, or
K3, or when it is K3-free and biclique-dominated. Also, by Theorem 13, the
biclique coloring problem on K3-free graphs is “only” NPwhen it contains no
induced Ki,i for i ∈ O(1).

Problem 5 Determine the time complexity of the biclique k-coloring (k-choos-
ability) problem on K3-free graphs.

The star and biclique coloring problems are also simplified when diamonds
are forbidden, as seen in Section 6. By Theorem 11, the star k-coloring problem
is NPfor diamond-free graphs, while the biclique k-coloring problem is NPfor
{diamond, Ki,i}-free graphs (i ∈ O(1)) by Theorem 13. Additionally, if holes
and nets are forbidden, then the star k-coloring problem can be solved easily [26].
This leaves at least two interesting questions.

Problem 6 Determine the time complexity of the biclique k-coloring problems
on diamond-free graphs.

Problem 7 Determine the time complexity of the star k-choosability problems
on diamond-free graphs.
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