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Abstract

Recently, a new layout style to avoid edge crossings in straight-line
drawings of non-planar graphs received attention. In a Partial Edge
Drawing (PED), the middle part of each segment representing an edge
is dropped and the two remaining parts, called stubs, are not crossed. To
help the user inferring the position of the two end-vertices of each edge,
additional properties like symmetry and homogeneity are ensured in a
PED. In this paper we explore this approach with respect to orthogonal
drawings - a central concept in graph drawing. In particular, we focus on
orthogonal drawings with one bend per edge, i.e., 1-bend drawings, and
we define a new model called 1-bend Orthogonal Partial Edge Drawing, or
simply 1-bend OPED. Similarly to the straight-line case, we study those
graphs that admit 1-bend OPEDs when homogeneity and symmetry are
required, where these two properties are defined so to support readability
and avoid ambiguities. According to this new model, we show that every
graph that admits a 1-bend drawing also admits a 1-bend OPED as well
as 1-bend homogeneous orthogonal PED, i.e., a 1-bend HOPED. Further-
more, we prove that all graphs with maximum degree 3 admit a 1-bend
symmetric and homogeneous orthogonal PED, i.e., a 1-bend SHOPED.
Concerning graphs with maximum degree 4, we prove that the 2-circulant
graphs that admit a 1-bend drawing also admit a 1-bend SHOPED, while
there is a graph with maximum degree 4 that does not admit such a
representation.
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1 Introduction

In the field of graph drawing, one of the main objectives for visualization of
graphs is to avoid visual clutter for readability. To achieve this, one aspect
is to avoid crossing edges, which seriously affect the comprehensibility of a
graph drawing [21, 25]. However, avoiding all crossings is not always possible
and a lot of research was focused on minimizing the number of crossings in a
drawing [5, 7, 18].

(a) (b)

Figure 1: (a) A 1-bend drawing of the 4-dim. cube where one vertex has been
removed, taken from [14]. (b) A 1-bend OPED drawing of the same graph.
Omitted segments are drawn by thin dotted lines.

Other papers study which non-planar graphs can be drawn such that the
complexity of the edge crossings in the drawing is controlled. In the case of
k-planar drawings, each edge is crossed at most k times (see, e.g., [9, 11, 16,
20]), while in k-quasi planar drawings, no k pairwise crossing edges exist (see,
e.g., [1, 8, 23]), and finally in large angle crossing drawings, any two crossing
edges form a large angle (refer to [12]). Besides this theoretical research, many
proposals come from information visualization, like edge bundling (see [26] for
a survey) or confluent drawings (see, e.g., [10, 17]).

Previous Work. Recently a new layout style was investigated to avoid cross-
ings in a straight-line drawing of a non-planar graph, the resulting drawings
were called Partial Edge Drawings (PEDs) [3, 4]. The idea of PEDs is to sub-
divide each segment representing an edge into 3 parts and to drop the middle
part, relying on the remaining parts called stubs. The beginning of PEDs is
dated in 1995, when Becker et al. [2] used stubs the first time to focus on vi-
sualizing networked data and not the network itself. They wanted to extract
information about overloaded connections between switches and drew the width
of edges relative to the severeness of overload, producing a drawing where the
underlying network was barely visible. The solution was to draw just a fraction
(roughly 10%) of each edge, transforming the drawing into a PED. Later Burch
et al. [6] investigated the usefulness of PEDs in a user study regarding directed
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graphs, observing that certain tasks were answered faster and with less errors
when the graphs were drawn as PEDs compared to the straight-line model. A
similar approach was re-invented by Rusu et al. [22] by just breaking the edges
at their crossing points, inspired by the principles of Gestalt [19], that people
intuitively try to complete gaps in drawings.

The first formal definition of the PED model (for straight-line drawings) is
given in [4], where different types of PEDs are considered. In its easiest form,
a PED only requires the stubs to be crossing free. A PED is homogeneous
(HPED), if the ratio of the stub length over the edge length is the same over
all the edges, and it is symmetric (SPED), if the two stubs of each edge have
the same length. In [3], Bruckdorfer et al. concentrated on SHPEDs, where the
length of each stub is a quarter of the total edge length, and proved the existence
of SHPEDs for some complete bipartite graphs, k-circulant graphs and graphs
with bandwidth k, as well as the non-existence of a SHPED for complete graphs
with more than 196 vertices.

Contribution. In this paper we extend PEDs to orthogonal drawings in two
dimensions with exactly one bend per edge, called 1-bend drawings. Indeed,
orthogonal drawing is a central concept in graph drawing (see [7, 18] as a refer-
ence), and we see as a natural question to ask how the techniques and results for
PEDs carry over to orthogonal drawings. Also, restricting to 1-bend drawings
is the first step before extending the model to orthogonal drawings with more
than one bend per edge. In a 1-bend drawing vertices are represented as points
with integer coordinates and edges as chains of two orthogonal (axis-aligned)
segments, hence, each vertex can have degree at most 4, (∆G ≤ 4). A charac-
terization of the graphs that can be drawn orthogonally with one bend per edge
has been recently presented by Felsner, Kaufmann and Valtr in [14], where they
adopted the general position model, i.e., no two points can share a coordinate.
Indeed, these drawings are also bend minimal, since each edge is represented
exactly by one segment parallel to each coordinate axis. In this paper we also
adopt the general position model.

Observe that we cannot directly extend the SHPED model from straight-
line drawings to 1-bend drawings, since bent edges might lead to ambiguous
interpretations. In particular, it would be unclear how long one should follow a
vertical stub or a horizontal stub to reach the bend, see Figure 2. Therefore, we
introduce the new model 1-bend Orthogonal Partial Edge Drawing, or simply
1-bend OPED, where for every edge in a 1-bend drawing we erase the longer
segment (we actually draw it as a thin dotted segment). Figure 1(a) illustrates a
1-bend drawing of the 4-dimensional hypercube, while Figure 1(b) illustrates a
1-bend OPED of the same graph. Similarly as for straight-line PEDs, we define
two further properties, homogeneity and symmetry. Formal definitions for 1-
bend homogeneous orthogonal PEDs (1-bend HOPED) and for 1-bend symmetric
and homogeneous orthogonal PEDs (1-bend SHOPED) are given in Section 2.

The remainder of the paper is organized as follows. Preliminaries and formal
definitions are given in Section 2. We present the main results of the paper in



114 Bruckdorfer, Kaufmann, Montecchiani 1-Bend Partial Edge Drawings

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) A 1-bend drawing of a graph with four edges when applying the
SHPED model of straight-line drawings, i.e. half of the edge is removed in such
a way that a quarter of the edge remains incident to an end-vertex and a quarter
to the other end-vertex. It is ambiguous which vertices are connected, since (b),
(c) and (d) are different graphs that can be extracted from (a) according to the
SHPED model of straight-line drawings. Such an ambiguity can be resolved by
using the new definitions for 1-bend SHOPEDs introduced in Section 2. Indeed,
(d), (e) and (f) are unique 1-bend SHOPEDs of the graphs (d), (b) and (c), resp.

Section 3 to Section 5. In particular, in Section 3 we show that every graph
that admits a 1-bend drawing also admits a 1-bend OPED as well as a 1-bend
HOPED. Furthermore, in Section 4 we prove that all graphs with maximum de-
gree 3 admit a 1-bend SHOPED. In Section 5 we consider graphs with maximum
degree 4 and prove that the 2-circulant graphs that admit a 1-bend drawing also
admit a 1-bend SHOPED, while there is a graph with maximum degree 4 that
does not admit a 1-bend SHOPED. Conclusions and future work are discussed
in Section 6.

2 Preliminaries and Definitions

Felsner et al. [14] showed that any graph G = (V,E) with ∆G ≤ 4 has a 1-
bend drawing if and only if |E(S)| ≤ 2|S| − 2 for all S ⊂ V . The necessity
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Figure 3: (a) K4 has no planar 1-bend drawing, (b) but admits a 1-bend OPED,
(c) a 1-bend HOPED and also (d) a 1-bend SHOPED. Observe that in (b) and
(c) the bend point is part of the stubs, while in (d) it is not.

of this density condition for each induced subgraph of G comes from the clear
observation that in any 1-bend drawing there must be a topmost vertex without
any vertex towards the top, a bottommost vertex without any vertex towards
the bottom, and similarly for the left and right directions. Notice that, 4-regular
graphs cannot guarantee such a condition, hence, Felsner et al. [14] placed one
vertex at a point at ∞. Since we consider only the Euclidean plane, we will
remove this vertex from the graph.

Let Γ be a 1-bend drawing of a graph G. The bounding box R of Γ is the
minimum axis-aligned rectangle containing the drawing. Let v be a vertex of G.
We denote the four possible anchor points for an edge incident to v by north,
south, west and east ports of v. Also, we denote the x- and y-coordinates of v
in Γ by x(v) and y(v), respectively. Let e be an edge of G, the segments parallel
to the x-axis and to the y-axis in the chain of segments representing e in Γ are
called horizontal and vertical segments, respectively, and denoted by eh and ev,
respectively. The length of a segment s is denoted by |s|.

Let sve ⊆ ev, respectively she ⊆ eh be subsegments (the stubs of e), so that
(ev∪eh)−(sve∪she ) is connected. In what follows we introduce three variations of
our model for orthogonal partial edge drawings. Each variation is defined as an
orthogonal 1-bend drawing (short: 1-bend drawing) in general position, where
for every edge e, the two segments ev and eh are replaced by their stubs sve and
she (defined above) and no two stubs cross. Furthermore, instead of completely
erasing the non-drawn parts, we draw them by thin dotted segments, which help
the user to follow the edge correctly. This is just a visualization tool to support
the reader, since the graph extracted from the drawing is already unique.

We define a 1-bend Orthogonal Partial Edge Drawing, or simply 1-bend
OPED, as a 1-bend drawing in general position where for every edge e, we
remove the longer segment and the remaining (shorter) segments do not cross.
That is, if |eh| > |ev|, then we have she = ∅ and sve = ev, and otherwise in
case of |eh| ≤ |ev|, we have she = eh and sve = ∅. Since we adopt the general
position model, each vertical (horizontal) stub uniquely determines a horizontal
(vertical) line on which we can find its end-vertex.

An illustration of the 1-bend OPED is given in Figure 3(b).
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A 1-bend HOPED is a 1-bend drawing in general position where half of
each edge is dropped, while the shorter segment is always entirely drawn. More
precisely |sve |+|she | = (|ev|+|eh|)/2 is true for every edge e of G and, in addition,
we always draw the shorter segment of an edge completely (as in the 1-bend
OPED) and draw on the remaining segment (starting from the bend point or
from the end-vertex arbitrarily) as long as we need to reach half of the total edge
length (see Figure 3(c)). Therefore, the two stubs may be continuous, forming
a unique bent stub.

A 1-bend SHOPED is a 1-bend drawing in general position where we sym-
metrically remove half of the horizontal segment and half of the vertical segment
for each edge, i.e. 2|sve | = |ev| and 2|she | = |eh| for every edge e of G. The
dropped parts of ev and eh are connected by definition, i.e., they meet at the
bend point and the stubs sve and she are incident to the end vertices of e. An
illustration of the 1-bend SHOPED is given in Figure 3(d).

3 1-bend OPEDs and 1-bend HOPEDs

First we consider 1-bend OPEDs and begin with a simple observation. Every
graph that admits a 1-bend drawing also admits a 1-bend OPED: it is sufficient
to drop all the horizontal (vertical) segments of a 1-bend drawing after stretching
the drawing horizontally (vertically) by a factor equal to the length of the longest
vertical (horizontal) segment. If homogeneity is required, the technique we use
is slightly more difficult and it is presented in the following.

In the remainder of this section we consider 1-bend HOPEDs. We prove
that every graph that admits a 1-bend drawing also admits a 1-bend HOPED.
Namely, let G be a graph and Γ be a 1-bend drawing of G produced by the
algorithm described in [14], we modify the x-coordinates of the vertices of Γ so
that for each edge e of G, ev is always shorter than eh, and therefore sve = ev.
Then, we draw she always from right to left, as much as we need to reach half of
the edge length. Observe that, sve and she might be continuous, forming a unique
bent stub. If necessary, we further modify the x-coordinates of the vertices of
Γ so that each crossing involving she is repaired.

Theorem 1 Every n-vertex graph G with ∆G ≤ 4 that admits a 1-bend drawing
also admits a 1-bend HOPED.

Proof: We start by constructing a 1-bend drawing Γ of G = (V,E) by using
the technique in [14]. Recall that we adopt the general position model and
consider the total ordering of the edges of G defined as follows: e = (u, v) ≺
e′ = (w, z), if and only if max{x(u), x(v)} < max{x(w), x(z)} and v 6= z. The
only incomparable edges are those with common rightmost end-vertex. Then
we break the ties as follows. Let e = (u, v) and e′ = (w, v) be two edges with
common rightmost end-vertex, e ≺ e′, if and only if y(u) < y(w). We scan the
edges following the order ≺ described above. Namely, let e = (u, v) ∈ E and
assume v is the end-vertex of e placed at the point with largest x-coordinate.
Consider the point pv (if any) defined by the crossing involving eh with largest
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x-coordinate, denoted as xpv . Then, we shift v and all the vertices to the right
of v in the following way. For all w ∈ V with x(w) ≥ x(v):

x(w) = x(w) + max{δ, δ′}, (iff max{δ, δ′} > 0) , where

δ = x(u)− x(v) + |ev|+ 1,

δ′ = 2xpv
− x(u)− x(v)− |ev|+ 1, (δ′ = 0, if pv not exists).

Clearly δ > 0 if the vertical segment is at least as long as the horizontal
segment of an edge. Thus, the shift operation ensures that the vertical segment
is always shorter than the horizontal one (i.e., the vertical segment will be
drawn entirely). Similarly δ′ > 0 if the horizontal distance between u and
pv is at least as large as the horizontal distance between pv and v plus the
length of the vertical segment. In this case, drawing the vertical stub entirely
and the horizontal stub from right to left as much as necessary to reach half
of the total edge length would cross pv. Hence, the shift operation ensures
that all the crossings involving eh lie on its non-drawn part. It is easy to see
that each crossing has been considered exactly once (due to the total order
of the edges) and it has been repaired, i.e., it lies on the non-drawn part of
the involved horizontal segment. Also, each shift operation does not affect
previously repaired crossings. �

Conversely, in Section 5 we show that, if symmetry is also required, con-
structing a 1-bend SHOPED is not always possible.

4 1-bend SHOPEDs for graphs with maximum
degree 3

We prove that all graphs with maximum degree 3 admit 1-bend SHOPEDs.
Namely, we first present an efficient technique to construct 1-bend drawings for
biconnected graphs with maximum degree 3, which is of independent interest
since it is easy to implement and it has a small time complexity compared to
the technique in [14]. Then we show how to turn a 1-bend drawing constructed
by this technique into a 1-bend SHOPED. In the end, we extend our results to
connected graphs with maximum degree 3.

Lemma 1 Let G be a biconnected n-vertex graph with ∆G ≤ 3. We can con-
struct a 1-bend drawing Γ of G in O(n) time.

Proof: Given two vertices of G, s and t connected by an edge in G, an st-
numbering of G is a bijective function, V → {1, . . . , n}, such that s receives
number 1 (i.e., s = v1), t receives number n (i.e., t = vn) and every other
vertex, except for s and t, is adjacent to at least one lower-numbered and at
least one higher-numbered vertex [13]. Let {v1, . . . , vn} be an st-numbering of
G (with s = v1 and t = vn).
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Figure 4: (a) A 1-bend drawing of a 14-vertex biconnected cubic graph G de-
scribed in Construction 1 and 2. (b) The graph G∗ taken from (a) already
colored as described in Construction 1 (red edges are represented by dashed
segments, while blue edges by dashed-dotted segments).

We first construct a 1-bend drawing Γ′ of the subgraph G′ = (V ′ = V \
{s, t}, E(V ′)) and then add s and t in a proper way.

Construction 1.
We assign to vertex vi the coordinates x(vi) = i and y(vi) = i, i =

2, . . . , n − 1. We orient the edges e = (vi, vj) so that e goes from vi to vj ,
when 2 ≤ i < j ≤ n− 1. Notice that there are only two possible shapes for
the edges in Γ′. Namely, let e = (vi, vj), 2 ≤ i < j ≤ n − 1, be a directed
edge, it can either leave the east port of vi and enter the south port of vj
or leave the north port of vi and enter the west port of vj . In the first
case we call e a blue edge, while in the second case we say that e is a red
edge. We denote by EB (respectively ER) the set of blue (respectively red)
edges. Due to the properties of an st-numbering, each vertex has at most
two incoming edges and at most two outgoing edges. Furthermore, v2 has
only one incoming edge from s and vn−1 has only one outgoing edge to t.
We want to find a 2-coloring of the edges E(V ′) = ER ∪ EB such that the
following two properties hold:

1. ∀v ∈ V ′, the (at most) two incoming edges receive different colors.

2. ∀v ∈ V ′, the (at most) two outgoing edges receive different colors.

To this aim, we construct the following undirected graph G∗ from G′. For
each vertex v in G′ there will be two vertices v− and v+ in G∗. For each edge
e = (w, z) in G′ (oriented from w to z) there will be an edge e∗ = (w+, z−)
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in G∗. See Figure 4(b) for an illustration. Thus, G∗ is a (possibly not
connected) bipartite graph (clearly there are no cycles with odd length)
with maximum degree 2. Thus, each connected component is either a path
or a cycle. It follows that the edges of G∗ can be colored with two colors in
a straightforward way. Namely, let C be a component of G∗ with mC edges,
we define a total ordering of the edges of C, i.e., e1 ≺ e2 ≺ · · · ≺ emC

. If C is
a path such an ordering is directly defined by the order of its edges along the
path (rooted at an arbitrary end-vertex). If C is a cycle, we simply choose
an arbitrary edge to be the first one (e1) and remove it from C, the rest of
the order is defined by the remaining path. Finally, we color the edges as
follows, ei receives color cei = i mod 2, i = 1, . . . ,mC . Since there is a clear
one-to-one mapping between edges in G′ and edges in G∗, we can directly
color the edges of G′ with the colors assigned in G∗. Let e′ be an edge of G′

and let e∗ be the related edge in G∗, we assign to e′ the red color if ce∗ = 0
and the blue color if ce∗ = 1.

We prove now that such a coloring of the edges of G′ respects the prop-
erties 1 and 2 defined above. Let e′ and e′′ be two incoming (outgoing)
edges with respect to the same vertex v. By construction they will belong
to the same component C of G∗. If C is a path, then e′ and e′′ will always
appear consecutive in any possible order of the edges of C, thus, they will be
assigned different colors. If C is a cycle, they may not be consecutive only
in such an order where e′ is the first (last) one and e′′ is the last (first) one.
In this case, since mC is even, they will again receive two different colors.

Γ′ is now defined and we only need to place s and t to construct Γ.

Construction 2. (adding s and t)
We recall that s and t are connected by an edge, v2 has coordinates

(2, 2) and just one incoming edge from s, as well as vn−1 has coordinates
(n − 1, n − 1) and just one outgoing edge to t. Hence, they can be easily
connected to s and t, respectively, without causing crossings. Let vi, 2 < i <
n, be a possible third vertex connected to s and let vj , 1 < j < n− 1, be a
possible third vertex connected to t. We can skip the following consideration
for vi (respectively vj), if s (respectively t) has degree 2. We consider the
two free ports of vi and we can assume they are two consecutive ports. If
not, we can just toggle the color of one of the two edges incident to vi to
match this situation (the colors of the edges in the same component of this
edge in G∗ must be toggled accordingly). Thus, either the north or the south
port of vi is free, as well as either the west or the east port of vi is free. We
choose which port of vi to use after considering the free ports of vj . Consider
the two free ports of vj . Either one between the east or the west port is free
or, if both are occupied, then both the north and the south port will be free.
In total we have 4 possible cases.

1. If the east port of vj is free, then we set x(t) = x(vj) + 0.5 and y(t) = n.
While if the west port of vj is free, x(t) = x(vj)− 0.5 and y(t) = n. Also,
we can always assign to s the x-coordinate x(s) = 1.
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Figure 5: (a) A 1-bend drawing according to the case 1a of the proof of Lemma 1.
(b) A 1-bend drawing according to the case 2a of the proof of Lemma 1.

(a) If the north port of vi is free, then we set y(s)=y(vi) + 0.5, see
Figure 5(a).

(b) If the south port of vi is free, then we set y(s) = y(vi)− 0.5.

2. If the north port of vj is free, then we set x(t) = n and y(t) = y(vj) + 0.5.
While if the south port of vj is free, x(t) = n and y(t) = y(vj)−0.5. Also,
we can always assign to s the y-coordinate y(s) = 1.

(a) If the east port of vi is free, then we set x(s)=x(vi) + 0.5, see Fig-
ure 5(b).

(b) If the west port of vi is free, then we set x(s) = x(vi)− 0.5.

Notice that, before adding s and t, the vertices were placed in general
position, thus there could not be overlaps among edges and vertices. After
adding s and t, this property is still maintained due to the introduced frac-
tional coordinates (the grid unit must be halved to get integer coordinates).
An example of a 1-bend drawing constructed with this technique is presented
in Figure 4(a).

Finally, we observe that constructing an st-numbering of G takes O(n+m)
time [13], as well as placing vertices (including s and t), constructing G∗ and
coloring its edges. Thus, since m ≤ 1.5n, the algorithm runs in O(n) time. �

Theorem 2 Every biconnected n-vertex graph G with ∆G ≤ 3 admits a 1-bend
SHOPED. Furthermore, such a drawing can be constructed in O(n) time.

Proof: Let Γ be a 1-bend drawing of G constructed by Construction 1 and
Construction 2. We adopt the notation used in the proof of Lemma 1. Consider
again the subgraph G′ = (V ′ = V \ {s, t}, E(V ′)) and the induced subdrawing
Γ′. In Γ′ a red edge can be crossed only by red edges, as well as a blue edge
can be crossed only by blue edges. Indeed, red edges are all above the diagonal
formed by the vertices, while blue edges are all below this diagonal. If a crossing
is caused by two red edges, it can be repaired by shifting the rightmost endpoint
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Figure 6: (a) A 1-bend SHOPED constructed from the drawing in Figure 4(a)
(for the sake of readability only part of the drawing is shown). (b)-(c) Illustra-
tion of the technique described in the proof of Lemma 2 to attach the drawing
ΓCi to Γ when the east port (b) or the north port (c) of vj is free.

of the horizontal segment involved in the crossing, so that such a crossing will lie
(in a SHOPED) on the non-drawn part of this horizontal segment. In a similar
way, if the crossing is caused by two blue edges, it can be repaired by shifting
the topmost endpoint of the vertical segment involved in the crossing, so that
such a crossing will lie (in a SHOPED) on the non-drawn part of this vertical
segment. We will repair the crossings by assigning the vertices new coordinates.

Repair 3.
We assign new coordinates to the vertices v2 to vn−1 in the following way:

Let vi, 2 ≤ i ≤ n−1 : (x(vi), y(vi)) = (2i, 2i) are the new coordinates. After
that s, t are again placed according to Construction 2. To prove that all
crossings are repaired by the assignment of the new coordinates, we consider
the vertical segment of the edge between vi and vj , j < i. The length of the
stub on this segment is

y(vi)− y(vj)

2
≤ y(vi)− y(v2)

2
= y(vi−1)− 2 = y(vi)− y(vi−1)− 2.

Thus the horizontal segments incident to the vertices vj , j ≤ i− 1 are never
crossed by a vertical stub. To prove that vertical segments are never crossed
by horizontal stubs we use the same argument for the x-coordinates.

Finally, we need to repair the crossings caused by the outgoing edges of s
and by the incoming edges of t. We observe that edges (s, t), (s, v2),(vn−1, t)
are not crossed due to the placement of s, t, v2, vn−1 on the bounding box of the
drawing, see also Figure 5(a) and Figure 5(b). Thus, only the crossings affecting
(s, vi), 2 < i < n, and (vj , t), 1 < j < n− 1, must be repaired.
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Repair 4.
In case 1 of Construction 2, s is always placed 0.5 grid units above or

below vi, thus the vertical segment of the edge (s, vi) cannot be crossed. In
order to fix the crossings on the horizontal segment of (s, vi) it is enough to
shift s on the left, i.e., x(s) = x(s)− (x(vi)− x(v2))− 1. Similarly in case 2
of Construction 2, s is always placed 0.5 grid units to the left or to the right
of vi, thus the horizontal segment of the edge (s, vi) cannot be crossed. In
order to fix the crossings on the vertical segment of (s, vi) it is enough to
shift s to the bottom, i.e., y(s) = y(s) − (y(vi) − y(v2)) − 1. A symmetric
argument can be applied to fix the crossings on the edge (vj , t).

A 1-bend SHOPED constructed from the 1-bend drawing in Figure 4(a) is
shown in Figure 6(a). �

Next we explain how to extend the previous result to any connected graph
G with ∆G ≤ 3. Recall that a cut vertex is a vertex whose removal disconnects
G, while a bridge is an edge whose removal disconnects G. We observe for a
graph G with ∆G ≤ 3 that cut vertices are absent in G, if and only if bridges
are absent in G. Indeed using the fact that the graphs have maximum degree
at most 3, any bridge is incident to at least one cut vertex (and vice versa),
justifying the observation.

Lemma 2 Let G be a connected n-vertex graph with ∆G ≤ 3. We can construct
a 1-bend drawing Γ of G in O(n2) time.

Proof: We start by removing all the bridges of G, obtaining a set of k bicon-
nected components C = {C1, . . . , Ck}, where each component Ci ∈ C, 1 ≤ i ≤ k,
is either a single vertex or a graph such that ∆Ci ≤ 3. Next, we define a graph
T having one vertex ni for each component Ci of G and an edge (ni, nj), iff
Ci and Cj are connected by a bridge in G. Clearly T is a tree, since a cycle
in T would imply a biconnected component comprised by the cycle, inferring a
contradiction to the decomposition. Also there is at least one vertex nr in T
that represents a component Cr, which is either a single vertex or a biconnected
graph having two adjacent vertices not incident to any bridge. We choose nr to
be the root of T . In the following we describe an algorithm that takes as input
G and T and computes a 1-bend drawing Γ of G. We assume that a 1-bend
drawing ΓCi

of a component Ci ∈ C, 1 ≤ i ≤ k, is constructed as follows:

(a) If Ci is a biconnected graph with ∆Ci
≤ 3, then ΓCi

is always constructed
by Construction 1 and 2, where the two poles of the st-numbering will be
defined by this construction.

(b) If Ci is composed by a single vertex v, then ΓCi
is defined by placing v in

the origin and the definition of the two poles can be ignored.

We visit T from the root nr following a breadth first search (bfs) order as follows.
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Construction 5.
Root nr: Consider Cr, we construct a drawing ΓCr

of Cr, where in
case (a) (i.e., Cr is a biconnected graph with ∆Cr

≤ 3) the st-numbering is
defined so that s and t are two adjacent vertices in Cr that are not incident
to any bridge. Then we set Γ = ΓCr

.
Node ni, i 6= r: Assume ni is the next vertex of T according to the bfs

order. Let Γ be the drawing constructed so far. We first compute a 1-bend
drawing ΓCi

of Ci, where s = vi and t is an adjacent vertex of s if Ci is a
biconnected graph with ∆Cr

≤ 3 (case (a)). If Ci is composed by a single
vertex v, then v = vi (case (b)). Drawing ΓCi

is now attached to drawing Γ
as follows.

Attachment: Let nj be the parent of ni in T and let (vj , vi) be the
bridge in G that corresponds to the edge (nj , ni) in T . Consider the vertex
vj of Cj . If Cj is a biconnected graph with ∆Cj

≤ 3, then vj cannot be the
s pole in ΓCj

. Furthermore, in this case, since the degree of vj is 2 in Cj , vj
has either the east port or the north port free in Γ. If Cj consists of a single
vertex v = vj , then again vj has either the east port or the north port free
in Γ. We use this free port of vj to place the bridge e = (vj , vi) and connect
ΓCi

to Γ. In the first case we rotate ΓCi
such that vi is the southernmost

vertex and it can be connected by its south port, see Figure 6(b), while in
the second case we rotate ΓCi

such that vi is the westernmost vertex and it
can be connected by its west port, see Figure 6(c).

Before attaching the drawing ΓCi , we modify the current drawing Γ in
the following way. We assign new x-coordinates to all vertices v with x(v) >
x(vj) by setting x(v) = x(v)+|Ci|+1, and we assign new y-coordinates to all
vertices v with y(v) > y(vj) by setting y(v) = y(v) + |Ci|+ 1. Now we place
ΓCi

in this free area, i.e. for each vertex vCi
∈ Ci, x(vCi

) = x(vj)+xΓCi
(vCi

),
and y(vCi) = y(vj) + yΓCi

(vCi), where xΓCi
(vCi) and yΓCi

(vCi) are the x-
and y-coordinates of vCi

in ΓCi
, respectively. Then we connect vj with vi.

Notice that, by placing ΓCi
in this free area, no edges of Γ \ ΓCi

can cross
edges of ΓCi

.

Finally, we observe that finding the bridges of G can be done in linear
time [24]. Furthermore, constructing a 1-bend drawing ΓCi

for each component

Ci ∈ C takes O(|Ci|) time, thus, constructing Γ takes
∑k

i=1O(|Ci|) = O(n) time.
However, the time complexity of the technique is dominated by the shift oper-
ation required to add the drawing of each component to the current drawing,
which takes O(n2). �

By iteratively applying Repair 3 and 4 to drawings constructed by Construc-
tion 5 we can prove the next theorem.

Theorem 3 Every n-vertex graph G with ∆G ≤ 3 admits a 1-bend SHOPED.
Furthermore, such a drawing can be constructed in O(n2) time.

Proof: Let Γ be a 1-bend drawing of G constructed by Construction 5. We
adopt the notation used in the proof of Lemma 2 and we traverse T in the
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reversed bfs order defined in that proof. Also, we assume that a 1-bend drawing
ΓCi of a component Ci ∈ C, 1 ≤ i ≤ k, can be transformed into a 1-bend
SHOPED as follows. If Ci is a biconnected graph with ∆Ci

≤ 3, then ΓCi
is

repaired by Repair 3 and 4. If Ci is composed by a single vertex v, then ΓCi

does not need to be transformed into a 1-bend SHOPED.
Let ΓCi

be the 1-bend drawing of Ci. Let ΓCj
be the 1-bend drawing of

Cj , where nj is the parent of ni in T . Recall that no edges of Cj can cross
edges of Ci in Γ. First, we transform ΓCi

into a 1-bend SHOPED. Then, let
si = max{width(ΓCi), height(ΓCi)}, we assign new x-coordinates to all vertices
v of ΓCj with x(v) > x(vj) by setting x(v) = x(v)+si+1, and new y-coordinates
to all vertices v with y(v) ≥ y(vj) by setting y(v) = y(v) + si + 1.

The time complexity is dominated by the construction of Γ, which takes
O(n2) time, while repairing the components takes

∑k
i=1O(|Ci|) = O(n). �

5 1-bend SHOPEDs for graphs with maximum
degree 4

We first present a class of graphs with maximum degree 4, the 2-circulant graphs,
that admit a 1-bend SHOPED, and show afterwards that there is a graph that
does not admit a 1-bend SHOPED.

Recall that the k-circulant graph Ck
n with n > 2k vertices is the simple graph

whose vertex set is V = {v0, . . . , vn−1} and whose edge set is E = {(vi, vj) :
|j − i| ≤ k}. The specified index of a vertex is calculated modulo n. Notice
that, ∆Ck

n
= 4 implies k = 2, hence, each vertex has exactly two neighbors with

smaller indices and two neighbors with larger indices. Greater values of k are
not realizable when ∆(Ck

n) = 4. Extending the techniques in Section 4, we can
prove the next theorem.

Theorem 4 Every 2-circulant n-vertex graph that admit a 1-bend drawing also
admits a 1-bend SHOPED. Furthermore, such a drawing can be constructed in
O(n) time.

Proof: We start by observing that one vertex of a 2-circulant n-vertex graph,
vt ∈ V (0 ≤ t ≤ n − 1), has to be removed in order to match the necessary
density condition for 1-bend drawings, i.e. |E(S)| ≤ 2|S| − 2 for all S ⊂ V .
W.l.o.g., let t = 0, otherwise the vertices of C2

n can be easily renumbered so to
match this condition.

We first construct a 1-bend drawing Γ′ of G′ = (V ′ = V \ {vt=v0,v1, vn−1},
E(V ′)) adopting a similar strategy as in Construction 1. Namely, we assign to
vertex vi ∈ V ′ coordinates x(vi) = i and y(vi) = i, 2 ≤ i ≤ n− 2. Again, there
can be only two possible shapes of edges in Γ′ according to such a placement
of the vertices. Indeed, let e = (vi, vj), so that j = i + 1, i = 2, . . . , n − 3,
we call e a red edge, e ∈ ER ⊂ E(V ′), and we draw it so that it leaves the
north port of vi and enters the west port of vj . While, if e = (vi, vj), so that
j = i+ 2, i = 2, . . . , n− 4, we call e a blue edge, e ∈ EB ⊂ E(V ′), and we draw
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it so that it leaves the east port of vi and enters the south port of vj . Thus,
red edges are never crossed, while each blue edge receives at most two crossings
(one involving the vertical segment and one involving the horizontal segment).

To construct a 1-bend drawing Γ of G, the addition of v1 and vn−1 to Γ′ can
be managed by adopting the same strategy used to add s and t in Construction 2
Finally, we can apply Repair 3 and 4 (restricted to blue edges) to turn Γ into a
1-bend SHOPED. �

Now, we show that there exists a graph with maximum degree 4 that admits
a 1-bend drawing but not a 1-bend SHOPED. To this end, we need to introduce
some additional notation. Consider a 1-bend SHOPED Γ. We say that two
horizontal (vertical) stubs she , she′ (sve , sve′) overlap, if there exists a vertical
(horizontal) line l such that she ∩ l 6= ∅ and she′ ∩ l 6= ∅ (sve ∩ l 6= ∅ and sve′ ∩ l 6=
∅). Two horizontal (vertical) stubs overlap by u units if there are two vertical
(horizontal) lines l,l′ with the above property and such that their horizontal
(vertical) distance is u. Also, we call ≺x and ≺y the total vertex orderings
induced by the projection of the x- and y-coordinates of the vertices in Γ,
respectively (we remark that we adopt the general position model).

Recall from [14] (see also Section 2) that that any graph G = (V,E) with
∆G ≤ 4 has a 1-bend drawing if and only if |E(S)| ≤ 2|S|−2 for all S ⊂ V . This
necessary and sufficient condition is satisfied by any of the following three cases:
(i) there are four vertices of degree at most three; (ii) there are two vertices of
degree at most two; (iii) there are one vertex of degree at most two and two
vertices of degree at most three. Since a 4-regular graph cannot guarantee such
a condition, one vertex must be removed. Furthermore, if we are in case (i)
each side of the bounding box of any possible 1-bend drawing contains one of
the four vertices of degree three. In case (ii) the two vertices of degree two must
be placed at the opposite corners of the bounding box. While in case (iii) the
degree two vertex must be placed at one corner of the bounding box and the
other two vertices of degree three must be placed on the two opposite sides. We
call these vertices lying on the sides of the bounding box by external vertices.
All the other vertices must lie in the interior of the bounding box and we refer
to them as internal vertices.

Consider a graph G′ = (V ′, E′) so that V ′={v1, . . . , v6} and E′={(v1, v2),
(v2, v3), (v4, v5), (v5, v6)}, see Figure 7(a). We prove that there exist two total
vertex orderings ≺x,≺y such that in every 1-bend drawing of G′ at least two
stubs cross each other. Recall that ≺x and ≺y are orders, where the x- and
y-order of the vertices coincide with these two orderings.

Lemma 3 Graph G′ does not admit a 1-bend SHOPED so that v1 ≺x v3 ≺x

v4 ≺x v6 ≺x v5 ≺x v2 and v5 ≺y v2 ≺y v1 ≺y v3 ≺y v4 ≺y v6.

Proof: Let Γ′ be a 1-bend drawing of G′ respecting the properties defined in
the statement of this lemma (see Figure 7(a)), and consider the stubs (in the
1-bend SHOPED model) of the segments representing the edges of G′ in Γ′.
First, we observe that the two horizontal stubs shv1v2 and shv2v3 overlap, because
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Figure 7: (a) A drawing Γ′ of G′ that cannot be redrawn as a 1-bend SHOPED if
the vertical and horizontal order of the vertices cannot be changed. The relative
order of each pair of vertices in G′ can be constrained by the gadget in (b). (c)
An illustration of the graph G∗ as defined in the proof of Theorem 5. (d) A
graph G that admits no 1-bend SHOPED.

of v1 ≺x v3 ≺x v2, that is:

|shv1v2 |+ |shv2v3 | = |shv2v3 |+ |shv2v3 |+
1

2
[x(v3)− x(v1)]

By definition x(v2)− x(v3) = 2|shv2v3 |, which implies:

|shv1v2
|+ |shv2v3 | = x(v2)− x(v3) +

1

2
[x(v3)− x(v1)]

Since x(v3) − x(v1) ≥ 1, the two stubs must overlap by at least half of a grid
unit. In a similar way, the two vertical stubs svv4v5 , s

v
v5v6

overlap, because of
v5 ≺y v4 ≺y v6. Assume the stub svv5v6 does not cross the stub shv1v2

. Due to
the overlap between svv5v6 and svv4v5 , and since v3 ≺x v4 ≺x v5, it follows that
svv4v5 will cross either shv1v2 or shv2v3 , or svv5v6 will cross shv2v3 . �

In order to remove the assumption that the x-order and the y-order of the
vertices cannot be changed, we augment G′ adding new edges and vertices ob-
taining a new graph G, such that in every 1-bend drawing of G the x-order
and the y-order of the vertices in V ′ is the same up to rotation. Let K4 be the
complete graph with 4 vertices. Let K ′4 be a copy of K4 and let a, b, c, d (in
clockwise order traversing the bounding box) be its 4 vertices. We connect v1

to a and b and v3 to c and d. See also Figure 7(b). In a similar way we add one
more copy of K4 between v4 and v6. We call the subgraph induced by the pair
v1, v3 and its copy of K4 as K∗13, analogously we call K∗46 the subgraph induced
by the pair v4, v6 and its copy of K4. Furthermore, we add the edge (v3, v4) and
(v2, v5). Finally, we add the vertices v7 and v8 and the edges (v1, v7), (v5, v7)
and (v2, v8), (v6, v8). The final graph G is shown in Figure 7(d), it clearly admits
a 1-bend drawing.

Theorem 5 There exists a graph that does not admit a 1-bend SHOPED.
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v4

v6

K∗
46

(b)

Figure 8: An illustration of the case 1 (a) and 2 (b) in the proof of Theorem 5.
The red dash dotted edge indicates an edge, which cannot be drawn with 1
bend.

Proof: Consider the graph G shown in Figure 7(d). We will evaluate all the
possible configurations in terms of x-order and y-order for the vertices of G. For
every feasible configuration we will then apply Lemma 3 to prove that there is
no 1-bend SHOPED.

Let Γ be a 1-bend SHOPED of G. Consider the vertices v7 and v8, they
must be the external vertices of Γ and they must be placed at the corners of one
of the two diagonals of the bounding box R of Γ. Consider the bounding-box
R∗ of the subdrawing Γ∗ induced by the graph G∗ = (V ∗ = V \{v7, v8}, E(V ∗))
(see Figure 7(c)). Vertices v1, v2, v5, v6 must be the external vertices of Γ∗ and
they must lie one on each side of R∗. For the same reason, vertices v3, v4 are
internal vertices (as well as all the vertices in the two copies of K4) of Γ∗. Also,
consider the bounding-box R13 of the subdrawing Γ13 induced by the graph
K∗13. Vertices v1 and v3 must be the external vertices of Γ13 and must be placed
at the corners of one of the two diagonals of R13. W.l.o.g., let v7 be at the
top-left corner of R. Hence, either v1 is the westernmost vertex and v5 is the
northernmost vertex in Γ∗ or vice versa. Assume to be in the former case,
since the latter case can be proved with symmetric arguments. It follows that
v2 is either the southernmost or the easternmost vertex, while v6 is either the
easternmost or the southernmost vertex in Γ∗.

We start the analysis looking at the vertex v1. We already know that v1 ≺x

v3 and consider two possible cases for the relative y-order of these two vertices.

1. Assume v3 ≺y v1. In this case, since the only free port of v1 is the north
one, we have v1 ≺y v2. This implies that v2 cannot be the southernmost
vertex, but it must be the easternmost vertex and v6 the southernmost
instead. Hence, the edge (v2, v3) must leave the south port of v2 and enter
the east port of v3. It follows that the only free port of v3 is the south
one, and, due to the edge (v3, v4), v4 ≺y v3. Now consider two further
subcases, either v4 ≺x v3 or v3 ≺x v4. We prove by contradiction that
v3 ≺x v4.
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(a) Let v4 ≺x v3 (see Figure 8(a)), this implies that v6 ≺x v4. Consider
the edge (v5, v6). It must leave the west port of v6 and enter the south
port of v5. Also, consider the edge (v4, v5), it must leave the north
port of v4 and enter the east port of v5. Finally, consider the edge
(v2, v5), again it must leave the north port of v2 and enter the west
port of v5, thus, it must be bent at least three times, a contradiction.

(b) Let v3 ≺x v4, thus v4 ≺x v6. Consider the edge (v5, v6), it must leave
the east port of v6 and enter the south port of v5, thus v6 ≺x v5.
Also, consider the edge (v4, v5), it must leave the north port of v4

and enter the west port of v5. Finally, consider the edge (v2, v5), it
can be placed so that it leaves the east port of v5 and enters the north
port of v2. Notice that, v6 ≺y v4 ≺y v3 ≺y v1 ≺y v2 ≺y v5, as well
as v1 ≺x v3 ≺x v4 ≺x v6 ≺x v5 ≺x v2. Thus, by Lemma 3, there is
no 1-bend SHOPED for the subdrawing Γ′ induced by the subgraph
G′.

2. Assume v1 ≺y v3, as depicted in Figure 8(b). In this case, since the only
free port of v1 is the south one, we have v2 ≺y v1. Now consider the edge
(v2, v3), it must leave the north port of v2 and enter the east port of v3.
Also, consider the edge (v2, v5), it must leave the east port of v2 and enter
the south port of v5. This implies that v2 is the southernmost vertex and
v6 is the easternmost vertex. Thus, consider the edge (v5, v6), it must
leave the east port of v5 and enter and north port of v6. Now, since v4

must lie on the opposite extreme of the diagonal of R46 with respect to
v6, we have that v4 ≺y v6. Thus, since the edge (v4, v5) must use the
west port of v5 and the west or south port of v4, it must have at least
two bends, which implies that this configuration is not feasible and that
v3 ≺y v1.

�

6 Conclusion and Future Work

We defined a new layout style for orthogonal drawings with one bend per edge,
called 1-bend Orthogonal Partial Edge Drawing, extending the already existent
PED model for straight-line drawings. We studied those graphs that admit
such a representation when homogeneity or both symmetry and homogeneity
are required. In the former case, we proved that every graph that admits a 1-
bend drawing also admits a 1-bend HOPED. In the latter case, we proved that
all graphs with maximum degree 3 and the 2-circulant graphs that admit a 1-
bend drawing, also admit a 1-bend SHOPED. Furthermore we proved that there
is a graph with maximum degree 4 that does not admit a 1-bend SHOPED.

The complexity of the decision problem is still open, i.e., deciding whether
a graph with maximum degree 4 admits a 1-bend SHOPED. We formalized a
related question as an integer linear program (ILP), i.e. a test of a 1-bend
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drawing, whether it admits a 1-bend SHOPED inside a square of given size
without changing the relative horizontal and vertical order of the vertices, but
the complexity of this question is also still open. Also, it would be of interest
to study 1-bend SHOPEDs where a few crossings among stubs are allowed, so
to enlarge the family of graphs that admit these representations. To extend
our model, one may consider graphs with degree greater than 4, by following
similar approaches as in [15] for representing vertices, or orthogonal drawings
with more than one bend per edge.
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