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Abstract

We show that a transitively reduced digraph has a confluent upward drawing if
and only if its reachability relation has order dimension at most two. In this case,
we construct a confluent upward drawing with O(n2) features, in an O(n)×O(n)
grid in O(n2) time. For the digraphs representing series-parallel partial orders we
show how to construct a drawing with O(n) features in an O(n)×O(n) grid in
O(n) time from a series-parallel decomposition of the partial order. Our drawings
are optimal in the number of confluent junctions they use.
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1 Introduction
One of the most important aspects of a graph drawing is that it should be readable: it
should convey the structure of the graph in a clear and concise way. Ease of under-
standing is difficult to quantify, so various proxies for readability have been proposed;
one of the most prominent is the number of edge crossings. That is, we should min-
imize the number of edge crossings in our drawing (a planar drawing, if possible, is
ideal), since crossings make drawings harder to read. Another measure of readability
is the total amount of ink required by the drawing [1]. This measure can be formulated
in terms of Tufte’s “data-ink ratio” [22, 35], according to which a large proportion of
the ink on any infographic should be devoted to information. Thus given two different
ways to present information, we should choose the more succinct and crossing-free
presentation.

Figure 1: Conventional and confluent drawings of K5,5.

Confluent drawing [9, 11–13, 18, 20, 33] is a style of graph drawing in which mul-
tiple edges are combined into shared tracks, and two vertices are considered to be
adjacent if a smooth path connects them in these tracks (Figure 1). This style was
introduced to reduce crossings, and in many cases it will also improve the ink require-
ment by representing dense subgraphs concisely. However, it has had a limited impact
to date, as there are only a few specialized graph classes for which we can either guar-
antee the existence of a confluent drawing or test for confluence efficiently. A closely
related graph drawing technique, edge bundling [14, 19], differs from confluence in
emphasizing the visualization of high level graph structure, but does not necessarily
seek to reduce the number of edge crossings.

Hasse diagrams are a type of upward drawing of transitively reduced directed
acyclic graphs (DAGs) that have been used since the late 19th century to visualize par-
tially ordered sets. To maximize the readability of Hasse diagrams, as with other types
of graph drawing, we would like to draw them without crossings. Thus upward planar
graphs (DAGs that can be drawn so that all edges go upwards and no edges cross) have
been an important thread of research in graph drawing. A DAG is upward planar if and
only if it is a subgraph of a planar st-graph, i.e. a planar DAG with one source and one
sink, both on the outer face [8]. Testing upward planarity is NP-complete [16] but for
DAGs with a single source or a single sink it may be tested efficiently [4,21]. However,
many DAGs (even planar DAGs such as the one in Figure 2) are not upward planar.

In this paper, we bring these threads together by finding efficient algorithms for
upward confluent drawing of transitively reduced DAGs. We show that a graph has
an upward confluent drawing if and only if it represents a partial order P with order
dimension at most two, and that these drawings correspond to two-dimensional lattices
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Figure 2: A simple DAG P (left) that is not upward planar, although its underlying
graph is planar. Its Dedekind–MacNeille completion (middle) is upward planar, with
an added element (shaded). Replacing that element with a junction creates an upward
confluent drawing of P (right).

containing P. We construct the smallest lattice containing P (its Dedekind–MacNeille
completion) in worst-case-optimal time, and draw it confluently in area O(n2), using
as few confluent junctions as possible. For series-parallel partial orders, the time and
number of junctions can be reduced to linear.

Summarizing, we have the following new results:

• We characterize the transitively reduced digraphs with confluent upward draw-
ings: they are the digraphs whose reachability relation has order dimension at
most two.

• We construct a confluent upward drawing for any transitively reduced digraph
that has one, by constructing the Dedekind–MacNeille completion of the reacha-
bility poset and creating confluent junctions corresponding to the added elements
in the completion. Our drawings have O(n2) junctions and track segments and
can be embedded into an O(n)×O(n) grid in O(n2) time. The number of junc-
tions is the minimum possible for any confluent upward drawing of the given
digraph.

• For transitively reduced graphs and the corresponding series-parallel partial or-
ders, we show how to construct a confluent drawing with O(n) elements in an
O(n)×O(n) grid in O(n) time given a series-parallel decomposition of the partial
order.

2 Preliminaries

2.1 Posets and Lattices
Here we review some basic definitions and notation concerning posets and lattices. For
more, see e.g. [5, 34]. A partially ordered set (partial order, or poset) P = (V,≤) is a
set V with a reflexive, antisymmetric, and transitive binary relation ≤. We adopt the
convention that n = |V | unless otherwise stated. We also use a < b to denote that a≤ b
and a 6= b. We say that a covers b in P if b< a and @x∈P such that b< x< a. Elements
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a,b ∈ P are comparable if a≤ b or b≤ a; otherwise, we write a||b to indicate that they
are incomparable. A total order or linear order is a partial order in which every pair
of elements in P is comparable. If R is a set of linear orders Ri, we can define a poset P
as the intersection of R: that is, a≤ b in P if and only if a≤ b in every linear order Ri.
If P can be defined from R in this way, then R is called a realizer of P. Every partial
order P has a realizer; the dimension dim(P) is the smallest number of linear orders in
a realizer of P.

If X ⊆ P is any subset of P, then an element a ∈ P is called a lower bound of X if it
is less than or equal to every element of X . Similarly, an element b is called an upper
bound of X if it is greater than or equal to every element of X . If X has a lower bound a
that belongs to X itself, then a is the (unique) least element in X , and similarly if X has
an upper bound b that belongs to X then b is the (unique) greatest element in X . If the
set A of lower bounds of X has a greatest element a, then a is the greatest lower bound
or infimum of X , and similarly if the set B of upper bounds of X has a lowest element
b then b is the least upper bound or supremum of X . If P itself has an infimum or a
supremum, these elements are typically denoted by 0 and 1 respectively. If P contains
both an infimum and a supremum, it is said to be bounded.

A poset L is a lattice if for every pair of elements x and y in L the set {x,y} has both
an infimum and a supremum. In this context, the supremum of {x,y} is called the meet
of x and y and denoted x∧ y, and similarly the infimum is called the join and denoted
x∨ y. A lattice L is complete if every subset of L has an infimum and supremum in L.
Every finite lattice is complete and bounded.

2.2 Hasse Diagrams and Upward Planarity
Every poset P = (V,≤) can be represented by a directed acyclic graph G which has
a vertex for each element in P and an edge uv for each pair (u,v) with u ≤ v in P.
However, when we draw a poset it is more common to draw a different DAG, the
transitive reduction G′ of G, in which there is an edge from u to v in G′ if and only if v
covers u in P. A Hasse diagram of P is an upward drawing of G′, meaning that the y
coordinate of the head of each edge is greater than the y coordinate of the tail of each
edge, and each edge is a y-monotone curve, so that the drawing “flows” upward from
smaller elements to larger elements. In a Hasse diagram, we do not need to explicitly
draw the edges as directed edges: the direction of an edge is represented implicitly by
the relative position of its endpoints. There is an upward path from a to b in a Hasse
diagram of P if and only if a ≤ b. A poset is planar if it has a Hasse diagram that is
upward planar, i.e. its transitive reduction has an upward drawing in which none of the
edges intersect except at a shared vertex.

A finite lattice is planar if and only if its transitive reduction is a planar st-graph,
a DAG which contains exactly one source s and one sink t both of which belong to
the outer face of an upward planar drawing [32]. More generally, any DAG is upward
planar if and only if it is a subgraph of a planar st-graph [8]. In the other direction,
every planar finite bounded poset must be a lattice [3,5,23]. Hence, a two-dimensional
bounded poset that is not a lattice (such as the one on the left of Figure 2) cannot
have an upward planar drawing, and that planarity (a crossing-free drawing) and two-
dimensionality (realization by a pair of linear orders) are distinct for non-lattice posets.
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2.3 Lattice Completion of a Poset

The Dedekind–MacNeille completion of a poset P (also called the normal completion
or the completion) is the smallest complete lattice containing P [26]. Its construction
is based on Dedekind’s construction of the real numbers as Dedekind cuts of rational
numbers. For any subset X of P, let X− and X+ denote the set of lower bounds and
upper bounds of X respectively. A cut of P is a pair A,B ⊆ P such that A+ = B and
A = B−; the completion of P has these cuts as its elements. The completion is partially
ordered by set containment: if (A,B) and (C,D) are cuts, then (A,B) ≤ (C,D) if and
only if A⊆C and B⊇ D. The element of the completion corresponding to an element
x of P is the cut ({x}−,{x}+), and the new elements added to P to make it into a lattice
come from cuts (A,B) for which A∩B = /0. The completion automatically has the same
dimension as the partial order from which it was constructed [31].

Ganter and Kuznetsov [15] give a stepwise algorithm for constructing the com-
pletion of P. Given a poset P and its completion L they show how to complete a
one-element extension of P in time O(|L| · |P| ·ω(P)), where ω(P) denotes the width
of P. To compute the completion of a large poset, they begin with a single-element
poset (whose completion is trivial) and use this subroutine to add elements one at a
time; therefore, the total time is O(|L| · |P|2 ·ω(P)). Nourine and Raynaud [30] give an
algorithm with running time O((|P|+ |B|) · |B| · |L|) where B is a basis of P (a set of
subsets of P which generate L). As part of our drawing algorithm, we improve these
results in the case of two-dimensional posets: we show for such sets how to construct
the completion in time O(|P|2), optimal in the worst case since (as we also show) there
exist two-dimensional posets whose completion has a quadratic number of elements.

2.4 Confluent Drawing

Confluent drawing [9,11–13,18,20,33]is a technique for drawing non-planar diagrams
without crossings by merging together groups of edges and drawing them as tracks that,
like train tracks, meet smoothly at junction points but do not cross. A confluent drawing
consists of a set of labeled points (vertices and junctions) and curves (track segments)
in the Euclidean plane, such that the two endpoints of each track segment are vertices
or junctions, such that no two track segments intersect except at a shared endpoint, and
such that all track segments that meet at a junction share a common tangent line at that
point. The graph represented by a confluent drawing has as its vertices the vertices of
the drawing; two vertices u and v are adjacent if and only if there is a smooth curve in
the plane from u to v that is a union of track segments and that does not pass through
any other vertex. (Some papers on confluence require that this curve also be non-self-
intersecting but that requirement is irrelevant for upward drawings since monotone
curves cannot self-intersect.) An undirected graph G is confluent if and only if there
exists a confluent drawing that represents it.

We define a confluent diagram of a poset to be a drawing of its transitive reduction
in a way that is both confluent and upwards. In other words, if G is a directed acyclic
graph representing a poset P, then we define a confluent diagram of P to be an upward
confluent drawing of the transitive reduction of G in which all tracks are oriented up-
wards (monotonic in the y direction), and therefore all smooth curves passing through
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the tracks are similarly oriented. For each pair of elements a,b∈ P, the drawing should
have a smooth track from a upwards to b if and only if a is covered by b. We also
require that for each source there exists an unbounded y-monotone curve downwards
that does not cross the diagram – that is, that each source can be seen from below – and
symmetrically that each sink can be seen from above. In the application to visualiza-
tion of partial orders, this is a natural restriction as it makes the minimal and maximal
elements easy to find in the drawing.

3 Drawing Posets of Dimension Two

Let G be a poset with dimension at most two. We now describe an O(n2) algorithm
to embed a confluent diagram of P in an O(n)×O(n) grid. That is, we will generate
an upward confluent drawing of the transitive reduction of a DAG representing P such
that each vertex in the drawing has integer coordinates.

Our algorithm has three phases. In the first phase, we embed the elements of P in
a (2n+1)× (2n+1) grid. Recall that since P has dimension two, it is realized by two
linear orders, which correspond to two different total orderings of the same n elements
in P. Thus, the first steps of our algorithm are:

1. (a) Find two linear orders L1 and L2 that realize P. This can be done in O(n2)
time from any graph whose transitive closure is P by Algorithm 1 of Ma
and Spinrad [25].

(b) For each element p of P, having position i in L1 and j in L2 with 1≤ i, j≤ n,
place a vertex representing p in the grid with coordinates (2i,2 j).

After this step, the even rows and columns in the grid each contain exactly one element
of P, and the dominance relationship of these points corresponds to the order of the
elements in P. Recall that for two elements p and q in the plane, p dominates q if and
only if pi ≥ qi for each coordinate i and p 6= q.

In the second phase, we insert additional points representing elements of the com-
pletion of P; these completion nodes correspond to confluent junctions in the confluent
diagram of P. We defer to Section 4 the proof that the dominance order on the points
generated in the first two phases gives the completion of P.

2. For each pair of odd indices (i, j) ∈ [3,2n−1]2, insert a junction in the grid with
coordinates (i, j) if all of the following four conditions hold:

• The poset point with x-coordinate i−1 has y-coordinate less than j−1.

• The point with x-coordinate i+1 has y-coordinate greater than j+1.

• The point with y-coordinate j−1 has x-coordinate less than i−1.

• The point with y-coordinate j+1 has x-coordinate greater than i+1.

In addition if P does not already have a least or a greatest element, then insert
invisible points at (1,1) and (2n+1,2n+1) respectively.
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Figure 3: Example of our algorithm. Left: Input poset P. Middle: Grid embedding with
added points and dominance pairs. Right: Completion points replaced by confluent
junctions and rotated 45◦.

In the third phase, we generate the segments of the confluent diagram. These seg-
ments correspond to direct dominance pairs of points from the first two phases. It is
possible to find all dominance pairs in a set of N points in time O(N logN + k) [17]
where k is the number of dominance pairs, but in our case N may be too large, so this
would only lead to an O(n2 logn) time bound. Instead, we leverage the fact that the
vertices are embedded in an O(n)×O(n) grid, and use the following O(n2 + k) time
method to generate dominance pairs using a stack-based algorithm related to Graham
scan within each row. We prove later that the diagram is planar and therefore that the
number k of dominance pairs is O(n2).

3. For each column c we maintain a value tc, the topmost element seen so far in
column c. Initialize each tc to None.

Then, for each row r from 1 to 2n+1:

(a) Initialize an empty stack S.

(b) For each column c from 1 to 2n+1:

i. If there is a vertex or junction p at (r,c), add an edge from every ele-
ment of S to p, add an edge from tc to p (if tc is is not None), and set
tc to p.

ii. If tc is is not None, pop all items from S whose row number is less than
or equal to the row number of tc, and push tc onto S.

Thus we have computed the coordinates of all elements, confluent junctions, and
edges in the confluent diagram. When we render the drawing, we rotate it 45◦ counter-
clockwise to make it upward confluent (Figure 3).
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Figure 4: A 100-element partially ordered set, the intersection of two random permuta-
tions, drawn as a conventional Hasse diagram with crossings (left), and as a confluent
Hasse diagram (right).

Examples of non-confluent and confluent drawings of the same 100-element set are
shown in Figure 4. Our Python implementation renders the confluent track segments
as cubic Bézier curves with control points at a small fixed distance directly above and
below each confluent junction. Two such curves cannot cross each other: for pairs of
edges that do not share an endpoint, this follows from the fact that the convex hulls of
the control points are disjoint and that the curves lie within the convex hulls, while for
pairs of curves that share an endpoint it follows from the fact that the two curves are
images of each other under an affine transformation of the plane and that (for pairs of
edges sharing an endpoint) the direction that any point on the curve is translated by this
affine transformation is transverse to the tangent direction of the curve at that point.

If the input is provided as a realizer rather than as a graph, and its completion has
few elements, then it is possible to construct the diagram more efficiently. To do so,
construct for each odd-indexed row or column of the integer grid an axis-parallel line
segment that passes through a grid point if and only if that point meets two of the four
conditions for adding a junction in phase two of our algorithm. The junctions can be
recovered as the intersections of these line segments, and we may compute the edges
of the diagram using an output-sensitive algorithm for dominance pairs. By using
integer searching data structures the total time for this algorithm may be reduced to
O((n+ k) log logn), where k is the number of confluent junctions; we omit the details.

4 Algorithm Correctness and Minimality
In this section we prove that the algorithm of Section 3 is correct and has optimal
running time. Our analysis also shows that a poset P has a confluent diagram if and
only if it has dimension at most two.
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Lemma 1 (Baker, Fishburn and Roberts [3]) Let P be a bounded finite planar poset.
Then P is a lattice and has dimension at most 2.

Lemma 2 Let P be a finite poset with a confluent Hasse diagram D. Then dim(P)≤ 2,
and there exists a two-dimensional lattice C containing P such that the elements of
C \P (other than the top and bottom element, if they do not belong to P) correspond
one-for-one with the confluent junctions of D.

Proof: Replace the confluent junctions of D with vertices, and re-interpret the confluent
segments as edges between these vertices. If there is more than one minimal vertex of
P, add a vertex below all minimal vertices, connected to the minimal vertices by upward
edges, and similarly if there is more than one maximal vertex of P, add a vertex above
all maximal vertices connected to them by edges. The modified drawing is st-planar
and hence by Lemma 1 represents a lattice, which clearly contains P. �

Lemma 3 Let P be a finite poset with order dimension at most two, let C be the com-
pletion of P, and let S be the set of elements of C \P (other than the top and bottom
element, if P itself is not bounded). Then the elements of S coincide with the junction
points added in phase 2 of our algorithm, and the dominance ordering on these points
coincides with the lattice ordering in C.

Proof: In one direction, let p be a junction point added in phase 2 of our algorithm,
and p− and p+ be the sets of points from phase 1 that are dominated by p and that
dominate p respectively. Then it follows from the four conditions according to which
phase 2 adds a point that (p−, p+) forms a cut in P. The equivalence of the dominance
and lattice orderings on pairs consisting of a junction point and a point from P follows
immediately, and the same equivalence for pairs of junction points is also easy to verify.

In the other direction, we must show that we add a junction point for every element
of S, that is, every cut (L,U) where L has more than one maximal element and U has
more than one minimal element. Let i be one less than the minimum x-coordinate of
a point in U , and let j be one less than the minimum y-coordinate; then (because the
coordinates of points in P are their positions in the two orderings of a realizer) the
set L of points dominated by every point in U equals the set of points below and to
the left of (i, j). Two of the four conditions of phase 2 are automatically met at (i, j):
the points with x-coordinate i+ 1 and with y-coordinate j + 1 are both in U and are
distinct because U has more than one minimal point. The other two conditions must
also be met, for if they were not then the point violating the condition would dominate
L, contradicting the fact that all points that dominate L belong to U . �

Theorem 1 A given partial order P has a confluent diagram if and only if dim(P)≤ 2.
If P has a confluent diagram, the algorithm of Section 3 computes a valid confluent
diagram of P, and embeds that diagram in a O(n)×O(n) grid in worst case optimal
O(n2) time. The number of confluent junctions in the drawing is the minimum possible
for any confluent diagram of P.

Proof: If a poset P has dimension three or more, then so does any lattice containing it,
and by Lemma 1 and Lemma 2 there can be no confluent diagram of P. Otherwise, we
may assume that P has dimension at most two.
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Figure 5: A poset P with O(n) elements and dimension 2 whose completion has size
Ω(n2). On the left is the normal Hasse diagram, and on the right is the confluent
version as drawn by our algorithm. The two permutations L1 and L2 generating P
are the identity and the permutation (3n,3n−2, . . . ,n;4n+1,n−1,4n,n−2, . . . ,3n+
2,0;3n+1,3n−1, . . . ,n+1).

By Lemma 3, the dominance ordering on the points computed by our algorithm
coincides (except possibly for the removal of the top and bottom elements) with the
completion of P. In this set of points, there can be no crossing pairs of dominance re-
lations, for if the edges (L1,U1)–(L2,U2) and (L3,U3)–(L4,U4) crossed (where (Li,Ui)
is a cut either added in the completion or corresponding to an original point of P) then
(L1 ∪L3,U2 ∪U4) would also be a cut whose point would lie between the other four
points, contradicting the assumption that these edges represent minimal dominance
pairs. Therefore, the diagram constructed by our algorithm is planar, and by Lemma 1
it must represent a lattice superset of P. The added elements belong to the completion,
so the diagram must represent a subset of the completion, and since the completion has
no proper lattice subsets it must represent the completion itself. The completion gives
the minimum number of added elements (and therefore, by Lemma 2, the minimum
number of junctions) of any diagram for P.

Our algorithm spends O(n2) time in its first two phases as it iterates over O(n2)
grid cells spending constant time per cell. In the third phase, it uses constant time
per edge and by planarity there are O(n2) edges, so the time is again O(n2). This time
bound is optimal since (as shown in Figure 5) there exist two-dimensional posets whose
completion has Ω(n2) elements. �

Although our method produces drawings in a grid of linear dimensions, it may be
possible in some cases to compact our drawings into a smaller grid. An algorithm of de
la Higuera and Nourine [7] may be used to find the smallest grid into which a drawing
produced by our algorithm can be compacted.

Subsequent to our work, a different embedding into lattices has been applied by
Czédli [6] to characterize the partial orders of dimension two as being the posets with
quasiplanar Hasse diagrams, diagrams in which each incomparable elements has one
element on a consistent side of all maximal chains through the other element. The
lattices into which Czédli embeds a partial order are semimodular, a property that does
not hold for all two-dimensional lattices. Therefore, unlike the Dedekind–MacNeille
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completion that we use, these lattices do not have a minimal number of elements: a
non-semimodular two-dimensional lattice will be drawn with no additional confluent
junctions by our algorithm, but will be augmented by additional elements in the method
of Czédli.

5 Confluent Drawings of Series-Parallel Posets
A series-parallel partial order is a poset that can be built up from single elements by
two simple composition operations:

• The series composition P;Q of posets P and Q is the order on the set P∪Q in
which p≤ q for every p ∈ P and q ∈ Q.

• The parallel composition P||Q is the order on P∪Q in which p||q for every p∈P
and q ∈ Q.

Pairs of elements that are both from P or both from Q retain their ordering in the
larger set.

Series-parallel partial orders are attractive because many important computational
problems can be solved more easily in them than in more general posets, and because
they have applications to a wide variety of problems including scheduling [29], con-
currency [24], data mining [27], networking [2], and more (see [28]).

Figure 6: A series-parallel poset.

Series-parallel partial orders can be represented naturally by a binary tree, known
as a decomposition tree of the order. The leaves of the tree correspond to single ele-
ment sets and the internal nodes of the tree correspond to series or parallel composi-
tion operations. As the following theorem shows, given a decomposition tree T for a
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Figure 7: Series and parallel composition operations on two drawings A and B.
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Figure 8: Series composition A;B has a confluent junction if and only if A has no
unique upper bound and B has no unique lower bound.

series-parallel partial order P, we can draw the confluent diagram of P in linear time
by traversing T , performing the corresponding composition operations, and inserting
confluent junctions when necessary.

Theorem 2 Let P be a series-parallel partial order, given as its decomposition tree.
Then a confluent diagram of P with a linear number of junctions can be drawn in an
O(n)×O(n) grid in linear time.

Proof: We traverse the decomposition tree in post-order, recursively finding embed-
dings for each subtree. For each tree node, we do the following:

1. If the node is a leaf, then we embed the corresponding element in a single grid
cell

2. Otherwise, if the node is a series or parallel node, then we translate the grid
embeddings of its two children so that their bounding boxes meet corner to corner
(Figure 7).

3. For a series composition A;B we also insert a confluent junction at the shared
corner of A and B if and only if A has more than one maximal element and B has
more than one minimal element (Figure 8).

By using a linked list of the maximal and minimal nodes for the current subtrees,
we can perform these operations in time proportional to the number of leaves in the
decomposition tree. Therefore the total time is linear. The size of the grid will be
proportional to the size of the decomposition tree, i.e., O(n)×O(n) �
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Figure 9: Ink used by each cubic bezier segment is approximated by the straight-line
path through its control points.

6 Experiments

As a proof of concept for our method, we implemented it and tested how well it per-
forms, in terms of the number of edges or confluent segments drawn and the ink usage
of our drawings.

In our experiments, we consider drawing two classes of partial orders separately,
first, the special case of series-parallel partial orders and second, all two-dimensional
partial orders. We consider several different sizes, and for each size and class we
generate graphs of that class and size uniformly at random. We calculate the number
of edges and total edge length (ink) in the traditional Hasse diagram and confluent
Hasse diagram corresponding to each graph. In the traditional Hasse diagram, each
edge is drawn as a straight line between two vertices. In the confluent diagram, an
“edge” between two vertices may go through multiple confluent junctions, and multiple
“edges” may reuse the same curve incident to a junction. Thus, we count the number
of edges in the confluent diagram as the number of confluent segments; we define a
confluent segment as a curve between endpoints, where each endpoint is either a vertex
or a confluent junction. Each segment is drawn as a cubic bezier curve, but for practical
reasons we approximate its length as the length of the three line segments through its
control points (Figure 9). Note that this measure will never underestimate the ink used
by any edge in our confluent diagram. Because of the quadratic growth in the output
complexity of some of our drawings, we limited our experiments to graphs of at most
2048 vertices. For each of the smaller graph sizes, 10,000 permutations were generated
uniformly at random. For the larger sizes, we only generated 1000, because of the long
run-times, and the low variance of the results.

In Figure 10 and Figure 11, we compare the average edge count and average ink
used for traditional and confluent Hasse diagrams of series-parallel partial orders. The
result is that confluent drawings are consistently better than the traditional Hasse dia-
gram in both number of edges and ink used for this class of inputs.

In Figures 12 and 13, we compare the average edge count and average ink used for
traditional and confluent Hasse diagrams of two-dimensional partial orders. The result
fpr these inputs is that on average the confluent Hasse diagram uses substantially less
ink than the traditional Hasse despite the fact that it contains many more edges. Thus,
although the confluent Hasse diagram is more complex to render it is also dramatically
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easier to read.
The reason random two-dimensional partial orders use more edges in a conflu-

ent drawing than in a traditional Hasse diagram is that they have a large number of
confluent junctions. As we show below, for two-dimensional partial orders generated
uniformly at random, the expected number of edges in a Hasse diagram is Θ(n logn),
but the expected number of confluent junctions in a confluent diagram is Θ(n2). The
large number of confluent junctions necessarily implies a drawing with a large number
of edges. However, each confluent junction reduces the visual clutter of at least one
edge crossing. Thus, while a large number of junctions indicates a drawing with a large
number of edges, it also indicates a drawing that is substantially easier to read than the
corresponding traditional Hasse diagram.

Graph Generation Input graphs were sampled uniformly at random from the set of
all input graphs for each given size and type (two-dimensional or series-parallel partial
orders).

We generate each two-dimensional partial order of size n by generating a permuta-
tion on n elements uniformly at random. Each permutation π maps the set of elements
Ln = [1,n] in sorted order to some other order π(Ln). Thus, we have a pair of linear
orders Ln,π(Ln) which define a partial order, since each two-dimensional partial order
is realized by pair of linear orders, and by relabeling the elements, any pair of size n
linear orders corresponds to Ln and some permutation of Ln.

The set of series-parallel partial orders is a subset of the two-dimensional partial
orders. Thus, we generate each series-parallel partial order by sampling uniformly at
random from only those permutations that correspond to a series-parallel partial order.
Such a permutation can be decomposed uniquely into series and parallel compositions
with the constraint that the left argument of each series decomposition is parallel (or
an atom) and the left argument of each parallel decomposition is series (or an atom).
By means of this decomposition, we may count the number of permutations whose
outer composition operation is series (so that the Hasse diagram is connected) by the
recurrence relation

Cn =Cn−1 +
n−2

∑
i=1

2CiCn−i.

The numbers generated by this recurrence are called the little Schroeder numbers. Here
i is the size of the left argument of the outer series composition, n− i is the size of its
right argument, and the factor of 2 accounts for the choice of whether to use a series
or parallel composition in the right argument. When the right argument has only one
element (i.e., when n− i = 1), this choice is irrelevant, so the term for i = n−1 omits
the factor of two and is pulled out of the sum as Cn−1. Our algorithm for generating a
random order chooses a random integer in the range from 0 to Cn−1, compares it to the
partial sums of the terms on the right hand side of the recurrence to determine which
value of i to use, and returns the concatenation of two randomly generated permutations
of sizes i and n− i (with the first of these two permutations always reversed so that its
outer composition operation is parallel rather than series, and the second reversed with
probability 1/2).
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Expected edge count. Eckhardt et al. [10] show that the expected number of edges
in a transitively reduced digraph is Θ(n logn) in a random graph model where each
edge is included in the graph with probability p. Our model for generating the graphs
is somewhat different, but leads to the same asymptotic bound. There is a clear bijec-
tion between any permutation on n elements and a two-dimensional partial order of n
elements. Thus, we generate a permutation uniformly at random, which corresponds
exactly to a two-dimensional partial order. Under this model each element in the partial
order has a pair of coordinates equal to the index and value of the corresponding ele-
ment in the permutation. There is an edge (u,v) in the Hasse diagram if and only if ver-
tex v covers vertex u. That is, v dominates u (u.index < v.index and u.value < v.value),
and there is no third vertex z such that z dominates u and v dominates z.

Let ek be the element with index k in column k. For each element e j+k in indices
j+ k, j ∈ [1,n− k], e j covers ek if it is the successor of ek among the j+1 elements in
indices [k,k+ j] ordered by value. Thus, the probability that e j+k covers ek is 1/( j+1).

Let Ck denote the number of elements which cover element en−k.

E[Ck] =
k

∑
j=1

1
j+1

=
k+1

∑
i=2

1
i
=

k+1

∑
i=1

1
i
−1 = Hk+1−1

Thus, by linearity of expectation, the expected number of edges in a traditional
drawing of a random two-dimensional partial order is

n−1

∑
k=0

E[Ck] =
n−1

∑
k=0

Hk+1−1 =
n

∑
k=1

Hk−1 = Θ(n logn)

Expected number of confluent junctions. Note that each even row and each even
column in [2,2n] in the grid contains exactly one point. Let x j denote the x-coordinate
of the poset point with y-coordinate j and let yi denote the y coordinate of the poset
point with x-coordinate i. Let px

j = (x j, j) be the unique point with y-coordinate j, and
let py

i = (i,yi) be the unique point with x-coordinate i.
Since we generated the coordinates of the vertices uniformly at random, we can

view the y coordinates of the vertices as n uniformly random samples sk without re-
placement from the integer range [1,n]. Thus, the kth vertex in the graph is at position
2k,y2k, given by the value of the kth sample sk = y2k.

Now consider the probability that a point in a particular row j has a certain x coor-
dinate x j = i:

Pr(x j = i) = Pr(yi = j)

That is, the point in row j has x-coordinate i if and only if the unique point in column i
(the i

2 th sample) has y-coordinate j. Hence, given that p j 6= qi, the values x j and yi are
independent.

By construction, for each odd (i, j) in [3,2n−1] there exists a confluent junction at
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position (i, j) if and only if all of the following conditions hold:

yi−1 < j−1 (1a)
yi+1 > j+1 (1b)
x j−1 < i−1 (1c)
x j+1 > i+1 (1d)

Note that since all the coordinates are integers, we can equivalently state these condi-
tions as follows

yi−1 < j and yi−1 6= j−1 (2a)
yi+1 > j and yi+1 6= j+1 (2b)
x j−1 < i and x j−1 6= i−1 (2c)
x j+1 > i and x j+1 6= i+1 (2d)

Moreover, the inequality constraint in equation 2a is satisfied if and only if the
inequality constraint in equation 2c is satisfied, since there is exactly one vertex in
each even row and column. Likewise, the inequality constraints in equations 2b and 2d
are equivalent. Hence, we need only keep one of the inequality constraints from each
pair of equations, and the inequality constraints can be equivalently stated: px

j−1 6= py
i−1

and px
j+1 6= py

i+1.
Thus, there exists a junction at (i, j) if and only if

x j−1 < i < x j+1 and
yi−1 < j < yi+1 and

px
j−1 6= py

i−1 and

px
j+1 6= py

i+1

That is, the three x-coordinates must be in a specific order, the three y-coordinates must
be in a specific order, and there is a 1/n fraction of forbidden coordinates in each of
the inequality constraints.

Let i and j be chosen independently and uniformly at random. Then, the probability
that (i, j) has a confluent junction is

Pr
(

px
j−1 6= py

i−1

)
·Pr

(
px

j+1 6= py
i+1 | px

j−1 6= py
i−1

)
·Pr

(
x j−1 < i < x j+1 | px

j−1 6= py
i−1, px

j+1 6= py
i+1

)
·Pr

(
yi−1 < j < yi+1 | px

j−1 6= py
i−1, px

j+1 6= py
i+1,x j−1 < i < x j+1

)
= (1− 1

n
)2 · 1

6
· 1

6

Thus, by linearity of expectation, the total expected number of confluent junctions
over the whole grid, in a confluent drawing of a random two-dimensional partial order,
is Θ(n2).
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Figure 10: A log-log box plot of the ratio of the number of edges in a traditional
Hasse diagram to the number of edges in a confluent Hasse diagram as a function of
the number of vertices in upward drawings of series-parallel partial orders. The ratio is
normalized by dividing by logn.
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Figure 11: A log-log box plot of the ratio of the ink used in a traditional Hasse diagram
to the ink used in a confluent Hasse diagram as a function of the number of vertices in
upward drawings of series-parallel partial orders. The ratio is normalized by dividing
by logn.
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Figure 12: A log-log box plot of the ratio of the number edges in a confluent Hasse
diagram to the number of edges in a traditional Hasse diagram as a function of the
number of vertices in upward drawings of two-dimensional partial orders. The ratio is
normalized by dividing by logn.
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Figure 13: A log-log box plot of the ratio of the ink used in a traditional Hasse
diagram to the ink used in a confluent Hasse diagram as a function of the number of
vertices in upward drawings of two-dimensional partial orders. The ratio is normalized
by dividing by logn.
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7 Conclusions
We have designed, analyzed, and implemented an algorithm for drawing confluent
Hasse diagrams using a minimum number of confluent junctions. We experimentally
verified that confluent diagrams consistently use less ink than the corresponding tra-
ditional Hasse diagrams of both two-dimensional and series-parallel partial orders.
Confluent diagrams of series-parallel partial orders also use fewer edges. Confluent
diagrams of two-dimensional partial orders often use substantially more edges than the
corresponding traditional Hasse diagram. However, the larger number of edges used is
required by the larger number of confluent junctions required to address all the edge
crossings in these graphs. The result is a drawing with more edges but substantially
less visual clutter.

Upward planarity may be tested even for non-st-planar graphs that have only one
source or one sink; can similar conditions be extended to the case of upward confluent
drawings? Can we efficiently find upward planar drawings of graphs that are not tran-
sitively reduced? If a partially ordered set must be drawn with crossings, can we use
confluence in a principled way to keep the number of crossings small? We leave these
questions to future research.
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