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Accelerated Bend Minimization
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Abstract

We present an O(n3/2) algorithm for minimizing the number of bends
in an orthogonal drawing of a plane graph. It has been posed as a long
standing open problem at Graph Drawing 2003, whether the bound of
O(n7/4√logn) shown by Garg and Tamassia in 1996 could be improved.
To answer this question, we show how to solve the uncapacitated min-cost
flow problem on a planar bidirected graph with bounded costs and face
sizes in O(n3/2) time.
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1 Introduction

A drawing of a planar graph is called orthogonal if all edges are non-crossing
axis-parallel polylines, i.e. sequences of finitely many horizontal and vertical
line segments. The intersection point of a vertical and a horizontal line segment
of an edge is a bend. Examples of orthogonal drawings can be found in Fig. 1.

(a) GD Contest 2008 [13] (b) Octahedron

Figure 1: Orthogonal drawings.

If a graph has an orthogonal drawing such that the vertices are drawn as
points then the degree of any vertex is at most four like in Fig. 1(b). We will
concentrate on this case in this paper. Biedl and Kant [3] gave a linear-time
algorithm for constructing an orthogonal drawing with at most two bends per
edge of a graph with degree at most four (except for the octahedron – see
Fig 1(b)). Bläsius et al. [4] showed that it can be decided in polynomial time
whether a planar graph has an embedding (i.e. a fixed cyclic ordering of the
incident edges around each vertex) that allows an orthogonal drawing with at
most one bend per edge. The problem of minimizing the number of bends in
an orthogonal drawing of a planar graph with maximum degree four is NP-
complete [18] if the embedding of the graph is not fixed. Bertolazzi et al. [2]
described a branch-and-bound approach for minimizing the number of bends
over all embeddings.

Tamassia [30] considered the bend-minimization problem on plane graphs,
i.e., on planar graphs with a fixed embedding and a fixed outer face. He showed
that the problem of minimizing the total number of bends in an orthogonal
drawing of a plane graph with degree at most four can be modeled by a min-
cost flow problem. There are also variations of the flow-based bend minimization
approach which include a restricted number of bends, vertices of degree higher
than four [16, 23, 31, 2] such as in Fig. 1(a), drawing clustered graphs [8, 25],
or interactive and dynamic graph drawing [10, 9].

Network flows are an important topic in combinatorial optimization and we
refer the interested reader to [1] and [29] for a general overview. Instead, we
concentrate on the special case of planar networks in this paper. To the best of
the authors’ knowledge, there have not been many direct contributions to com-
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pute planar min-cost flows in the past decades. One exception is a dedicated
analysis of an interior point method [22] restricted to linear programs arising
from min-cost flow problems on planar graphs by Imai and Iwano [21]. In 1990,
they proved a running time bound of O(n1.594

√
log n log(nγ)), where γ is an up-

per bound on the absolute values of costs and capacities. Much more progress
has been made on important special cases such as the shortest path problem and
the max flow problem, which may be used in general flow algorithms as sub-
routines to obtain a better running time when the input is restricted to planar
graphs. This includes the famous linear-time algorithm for planar shortest path
with non-negative lengths [20], near linear-time algorithms for shortest path
with real lengths [14, 24, 28], and for max s-t-flow [33, 5]. The latter problem
can be solved in linear time when s and t are on the same face because of its
equivalence to a shortest path problem with non-negative lengths in the dual
graph shown by Hassin [19]. This result has been extended to multiple sources
and sinks on the same face by Miller and Naor [27].

Garg and Tamassia [17] proved that a min-cost flow problem on a flow net-
work with n nodes, m arcs, and the minimum cost χ of a flow can be solved in
O(χ3/4m

√
log n) time and concluded that the bend minimization problem of an

embedded planar graph with degree at most four can be solved in O(n7/4
√

log n)
time. It was posed as an important open problem in graph drawing, whether
this run time could be improved [7, Problem 14].1

Our contribution

In this paper, we especially exploit the fact that the flow network is planar
and show how to solve the problem in O(n3/2) time. Our algorithm splits the
flow network using a cycle separator. To this end, the edges on the cycle are
contracted, which maintains planarity. The separator thereby shrinks to a cut
node that joins two components on which the min-cost flow problem can be
solved independently. The recursive solutions of the two parts are combined by
expanding the separator vertex by vertex and adjusting the flow between the
endpoints of the corresponding edge in each step.

In particular, we show that the uncapacitated min-cost flow problem on
a planar bidirected graph with bounded costs and face sizes can be solved
in O(n3/2) time. This result only relies on linear-time algorithms for finding
cycle separators [26], and for computing max s-t-flows in (s, t)-planar graphs
([19] combined with [20]). Note that our approach combined with a result on
multiple-source multiple-sink max flow in planar graphs [6] solves the bend-
minimization problem in O(n3/2 log n) time if we additionally wish to constrain
the number of bends on some edges and it yields an O(

√
χn log3 n) algorithm

for computing a flow of minimum-cost χ on a planar flow network with n nodes
and O(n) arcs.

1The result of [21] provides a better bound, but the algorithm is not combinatorial and its
correctness is hard to verify since not all details have been presented in the extended abstract.
In any case, we improve w.r.t. both.
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The paper is organized as follows. In Section 2, we define the min-cost flow
problem and briefly describe the flow model of Tamassia for bend-minimization.
In Section 3, we describe the primal-dual algorithm that generally solves the
min-cost flow problem. Our main result, based on the divide and conquer ap-
proach, that yields the O(n3/2) time algorithm is described in Section 4.

2 Bend Minimization and Flow Networks

Throughout this paper let G = (V,E) be a simple undirected connected plane
graph with n vertices of degree at most four and let F be the set of faces of a
planar embedding. We consider a directed multi-graph DG = (WG, AG) with
node set WG = V ∪F and arcs between adjacent faces and from the vertices to
their incident faces. Let DF be the subgraph of DG that is induced by the face
nodes only.

A min-cost flow network N consists of a directed (multi-)graph D = (W,A),
capacities u : A → Z≥0 ∪ {∞}, node demands b : W → Z, and arc costs
c : A → Z≥0. A map f : A → Z≥0 is a pseudo-flow on N if f(a) ≤ u(a) for
a ∈ A. A pseudo-flow f is a flow if the deficiency

bf (v) = b(v) +
∑

(w,v)∈A

f(w, v)−
∑

(v,w)∈A

f(v, w)

of each node v ∈ W is zero. The cost of a flow is c(f) =
∑
a∈A c(a)f(a). We

say that a flow problem is uncapacitated and with unit costs, respectively, if
u(a) =∞ and c(a) = 1, respectively, for all arcs a ∈ A.

The bend-minimization problem can be modeled by a min-cost flow network
NG = (DG, u, b, c) [30] with the following properties.

1. DF is planar, bidirected with infinite capacity and unit cost.

2. The degree of a face of DF is at most four.

3. A cycle separator of DF is a cycle separator of DG.

4. DG is planar and triangulated.

5. The minimum cost of a flow in NG is at most 2n+ 4 [3].

Readers to whom these properties sound familiar may safely skip the next
subsection, which contains a brief presentation of Tamassia’s approach [30].

Bend Minimization as Min-Cost Flow

In this section, we briefly describe the approach of Tamassia [30] for constructing
an orthogonal drawing of a plane graph with the minimum total number of
bends. The approach consists of two phases. In the first phase an orthogonal
representation is computed, which fixes the angle at each vertex between two



JGAA, 16(3) 635–650 (2012) 639

v1
v2

v3

v4
τ(v4, v3) = 2

τ(v3, v4) = 1

α(v3, v4) = 3

α(v4, v3) = 1

(a) orthogonal representation

v1(2) v2(1) v3(2)

v4(1)

ho(−8)

h1(0)

h2(1)

e

f(v3, ho)e = 2

f(h2, ho)e = 1

f(ho, h2)e = 2

f(v4, h2)e = 0
v5(2)

(b) min-cost flow network

Figure 2: Illustration of the approach of Tamassia [30] for solving the bend-
minimization problem. In b) the directed arcs indicate the flow network. All arcs
have infinite capacity, the bidirected blue arcs have cost one and the unidirected
red arcs have costs zero. The node demands are indicated in brackets.

consecutive adjacent edges on one hand and the number of right and left turns
on each edge on the other hand. In a second step an area efficient orthogonal grid
drawing is constructed from a feasible orthogonal representation. The second
step can be done in linear time using topological sorting [11, page 155].

The orthogonal representation associates four labels with each edge {v, w} ∈
E, two for each direction. The label 1 ≤ α(v, w) ≤ 4 is such that α(v, w) · π/2
denotes the angle at vertex v between {v, w} and the next incident edge of v
in counter-clockwise direction. The label τ(v, w) ≥ 0 denotes the number of
left-turns on {v, w} traversed from v to w. See Fig. 2(a), for an illustration.

Let the degree deg h of a face h be the number of its incident edges where
bridges count twice. Elementary geometry implies that there is an orthogonal
drawing that corresponds to some given labels α and τ if and only if they imply
that the sum of angles around a vertex is 2π and that the sum of angles around
an inner/outer face h is π · (deg h + number of bends ∓ 2). The latter can be
reformulated as ∑

(v,w)∈E(h)

(α(v, w) + τ(w, v)− τ(v, w)) = 2 deg h∓ 4

where E(h) denotes the arcs incident to the face h directed in counter-clockwise
direction. This yields a min-cost flow formulation for finding a feasible orthog-
onal representation with the minimum number of bends.

The bend minimization problem on G can be solved by the following min-
cost flow network NG. The node set of the directed graph DG is WG = V ∪ F
with b(v) = 4 − deg v, v ∈ V , b(h) = 4 − deg h if h ∈ F is an inner face
and b(ho) = −4 − deg ho for the outer face ho. For each edge e = {v, w} ∈
E with (v, w) ∈ E(h) and (w, v) ∈ E(g) the arc set AG contains the arcs
(v, h)e, (w, g)e with costs zero and (h, g)e, (g, h)e with costs one. All arcs have
infinite capacities. Note that the index e is only used to distinguish possible
multiple arcs. See Fig. 2(b), for an illustration.
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Now a min-cost flow f on NG corresponds to an orthogonal representation
with the minimum number of bends as follows. For each edge e = {v, w} ∈ E
with (v, w) ∈ E(h) and (w, v) ∈ E(g) set α(v, w) = f(v, h)e + 1 and τ(v, w) =
f(h, g)e.

3 The Primal-Dual Algorithm

In this section, we briefly describe the primal-dual algorithm [15] for solving the
min-cost flow problem.

Let N = (D = (W,A), u, b, c) be a min-cost flow network. An arc a ∈ A
is saturated by a pseudo-flow f if f(a) = u(a). A node potential is a function
π : W → Z. The residual network Nf,π = (Df = (W,Af ), uf , bf , cπ) of the
min-cost flow network N with respect to a pseudo-flow f : A → Z≥0, and a
node potential π : W → Z is defined as follows. For each arc a ∈ A with tail
v and head w the arc set Af contains a with cπ(a) := c(a) + π(v) − π(w) if
uf (a) := u(a) − f(a) > 0. Further, if f(a) > 0 then Af contains a reversed
copy −a from w to v with cπ(−a) = −(c(a) +π(v)−π(w)) and uf (−a) := f(a).
The costs cπ are called the reduced costs and uf are the residual capacities. The
node potential is valid if cπ(a) ≥ 0 for all a ∈ Af . The primal-dual algorithm
solves a min-cost flow problem utilizing the reduced cost optimality condition.

Lemma 1 ([1, Theorem 9.3]) A flow has minimum cost if and only if it ad-
mits a valid node potential.

The primal-dual algorithm works as follows on a min-cost flow network N =
(D = (W,A), u, b, c). First, the equivalent min-cost max flow network N st =
(Dst = (W ∪ {s, t}, Ast), u, c, s, t) is constructed, i.e. a super source s and a
super sink t are added to W . Note that in general this construction does not
preserve planarity. However, this is not relevant for the following lemmas. For
each node v ∈ W with b(v) > 0 an arc (s, v) with u(s, v) = b(v) and cost zero
is added to A. Further, for each node v ∈ W with b(v) < 0 an arc (v, t) with
u(v, t) = −b(v) and zero costs is added to A. The value of a flow in N st is
the sum of all flow values on the arcs incident to s. Note that N has a feasible
flow if and only if a maximum s-t-flow of N st saturates all arcs incident to s.
Further, let f be a maximum flow with minimum costs on N st. Restricting f
to A yields a min-cost flow on N .

The primal-dual algorithm now basically augments as much flow as possible
on shortest s-t-paths in the residual network. More precisely, the algorithm
starts with the node potential π = 0 and the pseudo flow f = 0. As long
as not all arcs incident to s are saturated, the algorithm adds the shortest-
path distances distf,π(s, v) in (Df , cπ) to π(v). Then it considers the admissible
network Do

f = (W ∪ {s, t}, Ao) with Ao = {a ∈ Astf ; cπ(a) = 0} and augments
f by an s-t-flow in (Do

f , uf ). See Algorithm 1 for a pseudocode.
In effect, the primal-dual algorithm augments a maximum s-t-flow in the

admissible network (Do
f , uf ) while the successive shortest-path algorithm aug-

ments flow only on one shortest s-t-path in each iteration, substituting Line 6
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Algorithm 1: Primal-Dual Algorithm

Input : min-cost flow network N = (D = (W,A), u, b, c).
Output: min-cost max flow f of N st with valid node potential π,

both initialized to 0
Primal-Dual(D,u, b, c)

while there is an s-t-path in Dst
f do

dist(s, .)← Single-Source-Shortest-Path(Dst
f , cπ, s);

for v ∈W ∪ {t} do
π(v)← π(v) + dist(s, v);

6 fo ←Max-Flow(Do
f , uf , s, t);

f ← f + fo;

return (f, π);

of Algorithm 1 by fixing a single s-t-path P in (Do
f , uf ) and by setting fo to

be min{uf (a) : a ∈ P} on P and zero otherwise. In Lemma 3, we discuss
combinations of these two methods.

To analyze the number of iterations, let fi and πi, respectively, be the flow
and potential, respectively, after the ith iteration of the primal-dual algorithm.
Further, let f0 = 0, π0 = 0 be the initial flow and potential. Recall that we
consider integer costs and capacities.

Lemma 2 We have the following properties.

1. πi(v) = distfi−1,π0
(s, v), v ∈W, i ≥ 1.

2. πi(t) < πi+1(t), i ≥ 1.

3. πi(t) ≥ i− 1.

4. i ≤ distfi,π0
(s, t).

Proof:

1. Let v ∈W . If there is no s-v-path in Dfi−1
, then

distfi−1,π0
(s, v) = distfi−1,πi−1

(s, v) =∞,

and, hence,

πi(v) = πi−1(v) + distfi−1,πi−1
(s, v) =∞.

Let now s = v0, . . . , v` = v be the nodes on a shortest s-v-path P in
(Dfi−1

, cπi−1
). This means for each arc (vj , vj+1) on P that

distfi−1,πi−1
(s, vj) + cπi−1

(vj , vj+1) = distfi−1,πi−1
(s, vj+1).
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Hence, it follows from the update-rule of the potentials that

cπi
(vj , vj+1) = c(vj , vj+1) + πi(vj)− πi(vj+1)

= cπi−1
(vj , vj+1) + distfi−1,πi−1

(s, vj)− distfi−1,πi−1
(s, vj+1)

= 0.

So we have that

distfi−1,π0
(s, v) =

∑̀
j=1

c(vj−1, vj) = πi(v)− πi(s)︸ ︷︷ ︸
0

+
∑̀
j=1

cπi
(vj−1, vj)︸ ︷︷ ︸

0

.

2. By definition, πi+1(t) = πi(t) + distfi,πi
(s, t). After augmenting a max-

imum s-t-flow on the arcs with zero reduced costs there is an s-t-cut
on which all arcs with zero reduced costs are saturated. Hence, the
residual network contains no s-t-path with zero reduced costs. Hence,
distfi,πi

(s, t) > 0.

3. πi(t) ≥ i− 1 follows immediately from π1(t) ≥ 0 and the previous item.

4. If there is no (i + 1)-st iteration, then i < ∞ = distfi,π0
(s, t). Other-

wise, combining the previous items, we obtain i ≤ πi(t) + 1 ≤ πi+1(t) =
distfi,π0

(s, t).

�

Lemma 3 Let i ≥ 1 be an integer. If there is a feasible flow on N of cost at
most χ then a min-cost flow can be computed by performing at most i iterations
of the primal-dual algorithm followed by at most χ/i iterations of the successive
shortest-path algorithm.

Proof: Let i ≥ 1. The statement is trivially true if the primal-dual algorithm
returns a feasible solution after at most i iterations. So assume that more than
i iterations are necessary. Let r := bfi(s) be the sum of the residual capacities
of the arcs leaving s after iteration i. Since in each of the following iterations
at least one unit of flow is sent to t it follows that the successive shortest-path
algorithm will finish within at most r iterations.

On the other hand, since there is a feasible flow on N , all arcs incident to
s have to be saturated at the end. Augmenting one unit of flow augments the
total cost of a flow by at least the original cost of a shortest s-t-path in the
residual network. Note that distance from s to t in the residual network cannot
decrease after an iteration. Hence, χ ≥ r · distfi,π0(s, t). By Lemma 2, we
have distfi,π0(s, t) ≥ i, hence χ ≥ r · i. Thus, at most r ≤ χ/i shortest-path
computations have to be performed after the ith iteration of the primal-dual
algorithm. �

Note that an iteration of the primal-dual algorithm augments the flow f by
at least the amount the successive shortest-path algorithm does. Hence, we can
bound the number of iterations of the pure primal-dual algorithm as follows.
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Corollary 1 Let i ≥ 1 be an integer. If there is a feasible flow on N of cost at
most χ then the primal-dual algorithm terminates after at most i+χ/i iterations.

Corollary 2 Let there be a feasible flow on N and let χ be the minimum cost of
a flow on N . Then the primal-dual algorithm terminates after at most 2 ·√χ+1
iterations.

Proof: If χ = 0 then the algorithm terminates after at most 1 iteration. Oth-
erwise, let i be such that i − 1 <

√
χ ≤ i. Then the total number of iterations

is bounded by i+ χ/i <
√
χ+ 1 + χ/

√
χ = 2

√
χ+ 1 iterations. �

In a network with n vertices and O(n) arcs the shortest-path problem can be
solved in O(n log n) time using the algorithm of Dijkstra [12], while the max flow
problem can be solved in O(n log3 n) time if the underlying network without s, t
is planar [6]. So we have the following first result.

Theorem 1 The primal-dual algorithm computes a flow with minimum cost
χ on a planar min-cost flow network with n nodes and with O(n) arcs in
O(
√
χn log3 n) time.

Since the number of bends in an orthogonal drawing and, hence, the cost
of the flow in the corresponding min-cost flow network is in O(n) [3], it follows
that the bend-minimization problem can be solved in O(n3/2 log3 n) time, even
if the number of bends on some edges is restricted. In the next section, we
give a divide and conquer approach that directly solves the uncapacitated bend
minimization problem utilizing only less recent results.

4 A Recursive Approach

In this section, we show how to utilize a planar separator theorem to recur-
sively solve the min-cost flow problem. To make our algorithm work, we need a
connected separator and so we make use of the cycle separator.

Let an assignment of non-negative weights to the vertices, faces, and edges
of a plane graph G be given that sum to one. A simple cycle C of G is a weighted
cycle separator of G if both, the weight of the interior of C and the weight of
the exterior of C do not exceed 2/3.

Miller [26] showed that every biconnected planar graph with n vertices and
face degree at most d has a simple cycle separator with at most 2

√
d · n vertices

unless there is a face with weight higher than 2/3. Moreover, such a cycle
separator can be constructed in linear time. Note that the min-cost flow problem
decomposes into independent subproblems for each biconnected component.

This yields the following recursive algorithm for constructing a min-cost flow
on a flow network N = (D = (W,A), u, b, c) where D is a plane digraph with
O(n) nodes and arcs.

First, we find a small cycle separator C : v1, . . . , v` of D. Let W1 be the set
of nodes in the interior of C and let W2 be the set of nodes in the exterior of
C. Let Ai be the set of arcs of A that are incident to at least one node of Wi.
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See Fig. 3(a) for an illustration. Let Di = (Wi ∪ {Ĉ}, Ai), i = 1, 2 be obtained
from the subgraph of D induced by Wi ∪ C by shrinking C to a single node Ĉ
maintaining all arcs betweenWi and C with their respective costs and capacities.
See Fig. 3(b) for an illustration. For a subset W ′ ⊂W let b(W ′) =

∑
v∈W ′ b(v).

W2 A2

C

W1 A1

(a) Cycle Separator

W1 A1

Ĉ

D1

D/C8

(b) Recursive Solution: b(Ĉ) = −b(W1)

Ĉ

D/C

(c) Merging: b(Ĉ) = b(C) = −b(W1) − b(W2)

Ĉ5

W1

W2

v6

D/C5

(d) Expanding: b(Ĉ5) =

5∑
i=1

b(vi)

Figure 3: Illustration of Algorithm 2. a) W1 and A1 denote the set of black
nodes and arcs inside the red cycle C, W2 and A2 the blue nodes and arcs
outside cycle C.

We now recursively solve the two min-cost flow problems

Ni = (Di, u|Ai
, {b|Wi

, b(Ĉ) = −b(Wi)}, c|Ai
), i = 1, 2

obtaining a flow f |Ai
with a valid node potential πi.

Note that Ni, i = 1, 2 has a feasible flow if N has a feasible flow: Let f be a
feasible flow on N . Clearly, f induces a flow on the graph D/C obtained from D
by shrinking C to a single node Ĉ with demand b(C). Note that D1 is obtained
from D/C by deleting W2 and all its incident arcs. Let f(C,W2) be the amount
of flow on the arcs from C to W2 minus the amount of flow from W2 to C. Then
f(C,W2) = b(W1) + b(C). So if we set b(Ĉ) = b(C)− f(C,W2) = −b(W1) then
f induces a flow on D1.



JGAA, 16(3) 635–650 (2012) 645

Algorithm 2: Recursive Min-Cost Flow

Input : min-cost flow network N = (D = (W,A), u, b, c) admitting a
flow.

Output: min-cost flow f on N and valid node potential π, both init. to 0.

1 Min-Cost-Flow(D,u, b, c)
2 (W1, C,W2)← CycleSeparator(D);
3 (f |Ai

, πi)←
Min-Cost-Flow((Wi ∪ {Ĉ}, Ai), u|Ai

, {b|Wi
,−b(Wi)}, c|Ai

);

4 π(Ĉ)← max{π1(Ĉ), π2(Ĉ)};
5 for v ∈Wi, i = 1, 2 do

6 π(v)← πi(v)− πi(Ĉ) + π(Ĉ);

7 Let C : v1, . . . , v`;
8 for i = `, . . . , 2 do

9 Expand vi setting π(vi)← π(Ĉ);
10 (f, π)← (f, π) + Primal-Dual((D/{v1, . . . , vi−1})f , uf , bf , cπ);

11 return (f, π);

To merge the two solutions, we first set π(Ĉ) = max{π1(Ĉ), π2(Ĉ)} adjusting
the potential in the respective components. See Algorithm 2, Lines 4-6. Now
we have a feasible flow with a valid node potential on D/C. See Fig. 3(c) for
an illustration. We now expand C vertex by vertex assigning the nodes on C
the current potential of Ĉ. More precisely, for 2 < i ≤ ` let D/Ci be obtained
from D by shrinking Ci = {v1, . . . , vi} to a single node Ĉi with demand b(Ci).
Assume that we have computed a flow f with a valid node potential π of D/Ci.
Expanding vi means extending f and π to D/Ci−1 by setting the flow on the arcs
between vi and Ci−1 to be zero and π(vi) = π(Ĉi−1) = π(Ĉi). See Fig. 3(d) for
an illustration. This yields a pseudo-flow with a valid node potential, however,
the deficiencies on vi and Ĉi−1 might be different from zero. To adjust the
deficiencies, we run the primal-dual algorithm on the residual network. This
yields a flow on N with a valid node potential and, hence, a min-cost flow on
D. The algorithm is summarized in Algorithm 2.

Note that the max flow within the primal-dual algorithm does only have
to be performed between vi and Ĉi−1. Hence, there is no need for neither a
super source nor a super sink and thus planarity is preserved. Moreover, vi and
Ĉi−1 lie on the same face. Such a max flow computation can be done in linear
time [19, 20]. The same holds for the shortest path computation [20] because
we maintain a valid node potential, i.e. non-negative reduced cost.

Theorem 2 The recursive min-cost flow algorithm described in Algorithm 2
computes a min-cost flow on a planar bidirected uncapacitated min-cost flow
network with n nodes, O(n) arcs, arc costs at most cmax, and face degrees at
most d in O(cmax

√
dn3/2) time.
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Proof: Let m be the number of arcs in the flow network. We may assume that
the network is connected and, hence, that m ∈ Θ(n). If the network is not
biconnected, we first use the cut nodes as separators in the recursive algorithm.
Since there is no expansion step, the combination of the recursive solutions of
the biconnected components takes only constant time.

So assume now that the network is biconnected. Let all arcs have weight 1/m
and let all faces and nodes have weight zero. Then the algorithm of Miller [26]
constructs in linear time a cycle separator C with O(

√
d · n) nodes such that

both, the interior and the exterior of C contain at most 2/3 ·m arcs. Let cmax

be the maximum cost of an arc. Note that when expanding vi then the only
sources and sinks are vi and Ĉi−1 and there is an arc between the two of them in
both directions with infinite capacity. Hence, the equivalent min-cost maxflow
network remains planar and in all residual networks the length of a shortest
path with respect to the original costs is at most cmax. Hence, the primal-dual
algorithm has to perform at most cmax max flow operations (Lemma 2) before
pushing the remaining deficiency directly over the arc incident to vi and Ĉi−1. It
follows that O(cmax

√
d · n) max flow computations between two adjacent nodes

of a planar graph have to be performed. Hence, each recursive step can be
performed in O(cmax

√
dn3/2) = O(cmax

√
dm3/2). Thus, the run time T (m)

fulfills the recursion

T (m) = T (m1) + T (m2) +O(cmax

√
dm3/2),

with m1 + m2 ≤ m and m1,m2 ≤ 2
3m. Thus, the total running time is in

O(cmax

√
dm3/2) = O(cmax

√
dn3/2). �

Note that Theorem 2 remains true if the arc costs are not bounded in general
and Algorithm 2 chooses separators that are not necessarily cycles but induce
connected bidirected subgraphs with arc costs at most cmax.

Corollary 3 The bend-minimization problem on a plane graph with degree at
most four and n vertices can be solved in O(n3/2) time.

Proof: Let G = (V,E) be a plane graph with n vertices and with degree at
most four and let NG = (DG = (V ∪F , AG), u, b, c) be the min-cost flow network
for the bend-minimization problem. Let m = |AG|. Note that m ∈ Θ(n).
For computing the cycle separator in the recursive min-cost flow algorithm, we
only consider the subgraph DF induced by the face nodes. Recall that DF is
bidirected and that this is sufficient for the expansion argument. We assign each
arc of DF the weight 1/m and each face h of DF the weight deg f/m while the
nodes obtain zero weight. Now the cycle separator of DF constructed by the
algorithm of Miller [26] is a cycle separator C of the whole graph with O(

√
n)

nodes such that both, the interior and the exterior of C contain at most 2/3 ·m
arcs. Moreover the arcs on C are bidirected uncapacitated and have unit cost.
Hence, each call of the primal-dual algorithm within Algorithm 2 performs one
max flow operation on two adjacent nodes and pushes the remaining deficiency
over the corresponding cycle arc. Hence, each recursive step and thus, the whole
algorithm can be performed in O(n3/2) time. �
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If we wish to constrain the number of bends on an edge artificially, we may
sacrifice a log-factor and use the result in [6] to obtain the following.

Theorem 3 A minimum flow on a planar min-cost flow network with n nodes
and with O(n) arcs can be computed in O(n3/2 log n) time provided that the total
cost χ of the flow is in O(n).

Proof: We prove more generally that a flow of minimum cost χ on a planar min-
cost flow network with m arcs can be computed in O(m3/2 logm+χ

√
m logm)

time.
First the graph is triangulated with arcs that have zero capacity. Within the

recursion, we do not expand the cycle separator node after node, but we expand
it at once. Let N̂ be the residual network at this stage of the algorithm. Observe
that the nodes with deficiency other than zero are all on a path. Hence, the
max flow problem within the primal-dual algorithm is solvable in O(m log2m)
time using the efficient implementation of [6].

Assume now that we perform
√
m/ logm times an ordinary iteration of the

primal-dual algorithm. Let χi, i = 1, 2 be the minimum costs of the two recursive
solutions and let χ3 = χ − χ1 − χ2 be the minimum cost of a flow in N̂ . By
Lemma 3, at most χ3/(

√
m/ logm) additional shortest path computations have

to be performed during the merge step, each of which can be done in linear
time [32].

Hence, similarly to the proof of Theorem 2, the run time T (m,χ) fulfills the
recursion

T (m,χ) = T (m1, χ1) + T (m2, χ2) +O(m3/2 logm+ χ3

√
m logm).

Inductively, it follows that T (m,χ) ∈ O(m3/2 logm + χ
√
m logm). Hence,

T (m,χ) ∈ O(n3/2 log n) if m ∈ O(n) and χ ∈ O(n). �

Corollary 4 The bend-minimization problem on a plane graph with degree at
most four and n vertices can be solved in O(n3/2 log n) time even if the number
of bends per edge is bounded by some upper bounds u : A→ Z≥0, provided that
the bounds still admit an orthogonal drawing with a linear number of bends.
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