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Abstract

Scale-free networks are usually defined as the ones that have power-
law degree distributions. Since many of real world networks such as the
World Wide Web, the Internet, citation networks, biological networks, and
so on, have this property in common, scale-free networks have attracted
interests of researchers so far. They also revealed that such networks have
some typical properties such as high cluster coefficient and small diame-
ter as well, and a lot of network models have been proposed to explain
those properties. Recently, it is reported that the following new prop-
erties about self-similar structures of a real world network are observed
[Uno and Oguri, FAW and AAIM, 2011]. For a special kind of cliques in
a network, 1. the size distributions of these cliques show a power-law, 2.
the degree distribution of the network after contracting these cliques show
a power-law, and 3. by regarding the contracted network as the original,
1 and 2 are observed repeatedly. In this paper, we propose a new network
model constructed by a ‘clique expansion’ procedure, and show that it
can explain this ‘hierarchical structure of cliques’.
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1 Introduction

Cluster structures have been observed on many real world networks. A com-
munity structure that is often seen in large web networks is one of the typical
examples of such cluster structures, but it seems to have some specific structural
property. In order to analyze this property, Uno et al. [17] adopted “isolated
cliques” and investigated the distribution and the structure of isolated cliques
in some large web networks. An isolated clique (of size k) [9] is a clique con-
sisting of k nodes that does not have more than k edges to its outside (see the
next section for the precise definition). That is, an isolated clique is, while it is
maximally dense in its inside, sparsely connected to its outside. Furthermore,
there is an efficient algorithm [9] that can extract all of isolated cliques from
a given graph. Uno et al. used this algorithm to analyze an undirected graph
(which we call a “webgraph” here) representing some web network links, and
they found some interesting properties that are summarized as follows.

Observation 1. The size distribution of isolated cliques in the webgraph fol-
lows a power-law distribution with an exponent that is larger than the exponent
for the degree distribution.

Observation 2. Contract each isolated clique to one node and obtain a reduced
graph. Then the degree distribution of this reduced graph follows the power-
law with almost the same exponent as the degree distribution of the original
graph. Furthermore, the reduced graph has again many isolated cliques whose
size distribution follows almost the same power-law as the isolated clique size
distribution of the original graph.

Observation 3. This contraction can be conducted for several times (at least
five times) until the number of isolated cliques becomes very small. Then in
these reduced graphs, more or less almost the same degree distribution and
isolated clique size distribution can be observed (Figure 1).

We may call this observed structure hierarchical clique structure. Let us
also call the final reduced graph that has almost no isolated cliques a prime
network. Although many scale-free network models have been proposed to ex-
plain networks in the real world, e.g., [2, 11], most of them can only generate
graphs without large cliques (not to mention, isolated cliques). There some
clique based models [7, 5, 19], these models can generate k-trees which only
contains size k + 1 cliques for some fixed parameter k, and cannot explain the
size distribution of cliques. Up until now, no models have been proposed for
the hierarchical clique structure. Recently, a different type of some hierarchical
structure, called a fractal property, has been also studied by Song et al. [15].
They observed the power-law degree distribution on the reduced graph obtained
by contracting randomly and greedily chosen connected subgraph. They also
proposed a model to represent this fractal property [16], which generates a tree
so has neither cliques nor hierarchical clique structure. On the other hand, it
may be possible that this hierarchical clique structure and the structure of a
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Figure 1: The size distribution of isolated cliques on the reduced graph. ic0i
shows the size distribution of 1-isolated cliques on the ith graphs obtained by
the contraction procedure.

prime network are independent. The purpose of this paper is to provide some
model or method for adding the hierarchical clique structure to any given scale-
free network. Thus, for example, we may use the BA model by Barabási and
Albert [4] as a prime network model, and based on it a network with the hier-
archical clique structure can be constructed by our method.

For explaining some of the features of our method, we introduce some basic
notations (see the next section for their precise definitions). For a given graph
W , its reduced graph C(W ) is a graph obtained by contracting all isolated cliques
of W into one vertex, where the contraction is made as shown in Figure 2.

Figure 2: Examples of the contraction of an isolated clique.

Let W 0 denote the original webgraph and define W 1 = C(W 0), W 2 =
C(W 1), . . . , and so on. Uno et al. [17] observed that W i follows almost the
same power-law degree and isolated clique size distributions as W 0 for several
times (at least three times).

Now our method is, roughly speaking, to use some randomized procedure
to create G′ from a given graph G so that (i) both G and G′ follow the same
degree distribution, and (ii) G′ contains isolated cliques whose size distribution
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follows the power-law distribution with exponent that is about +1 larger than
the one for the degree distribution (of G). We will give precise definition of
this procedure, E(), which satisfy the above properties. Let E(G) to denote the
result of the procedure, applied to G. Consider a graph G0 that is obtained
by any model for scale-free networks (where we may assume that no isolated
clique exists in G0), and define G1 = E(G), G2 = E(G1), . . . , to Gt for some
sufficiently large t. Then we show that the graph W 0 , Gt has the desired
property; that is, each W i that is obtained from this W 0 by the contraction
follows the same power-law degree and isolated clique size distributions as W 0.

Technically an interesting point in our analysis is that C(·) is not necessarily
the inverse of E(·). Thus, the fact that W i has the desired degree and isolated
clique size distributions is not immediate from the above properties (i) and (ii)
of E(·).

The organization of this paper is as follows. In the rest of this section, we
give some previous and related work. We give basic definitions of graphs, scale-
free property and basic notations in Section 2. We explain our model precisely
in Section 3, and give analysis in Section 4. Finally, we conclude the paper
giving some future topics in Section 5.

Related Work

Various kinds of community structures have been introduced and investigated
in the literature. Web mining using complete bipartite graph (CBG) has been
investigated by Kleinberg [10]. They assumed that web communities contain
at least one CBG which is called the core of the community. Reddy and Kit-
suregawa [12] relaxed the criteria of existence of a community by defining a
dense bipartite graph structure. They investigated a community hierarchy of
the World Wide Web extracting all dense bipartite graphs found in the World
Wide Web.

Many other models than mentioned above have been presented so far, there
were only few mathematical analysis of the size distribution of communities for
these models. Recently, a different type of some hierarchical structure, called the
fractal property, has been also studied by Song et al. [15]. They observed that
the power-law degree distribution on the reduced graph obtained by contracting
randomly and greedily chosen connected subgraph. They also proposed a model
to represent this fractal property [16] and they analysed a minimal model which
generates a tree, thus it has neither cliques nor hierarchical clique structures.

Up until now, o models have been proposed for the hierarchical clique struc-
ture. Some clique based models had been presented [7, 5, 19]. All models in
[7, 5, 19] generate k-trees for some fixed parameter k. A k-tree contains size
k + 1 cliques only, so these models cannot explain the hierarchical clique struc-
ture either.
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2 Preliminaries

Throughout this paper, we consider only simple undirected graphs without mul-
tiple edges and self loops, and we denote a graph as G = (V,E), where V is
a set of vertices and E is a set of unordered pairs e = {u, v} of V denoting
edges. For any graph G = (V,E), let V [G] = V and E[G] = E denoting the set
of vertices and edges respectively. For any vertex v ∈ V , a vertex u is called
adjacent to v if there is an edge {u, v} in E. The neighborhood of a vertex v is
a set NG(v) = {u ∈ V [G] | {u, v} ∈ E[G]}, i.e., the set of adjacent vertices of v
in G. The degree of v is |NG(v)|, which is denoted by dG(v) and the maximum
degree of G is maxv∈V dG(v) and denoted by ∆. A graph G′ = (V ′, E′) is called
a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ (V ′ × V ′) ∩ E. A subgraph of G
is called a clique if every pair of vertices in this subgraph has an edge between
them. A clique C is called c-isolated if the number of outgoing edges from V (C)
to V \V (C) is less than c|V (C)|. Although finding large cliques in a graph is in-
tractable, finding isolated cliques is not so hard. Furthermore, 1-isolated clique
can be enumerated in linear time [9], and it is investigated in [17].

In the following analysis, we assume that the graph is connected. We consider
contraction and expansion procedures, and both procedures do not change the
connectivity of the graph. Thus, if a given graph is not connected, we can apply
our model separately to each of the connected component. By this assumption,
we can also assume that all 1-isolated cliques are disjoint. Two 1-isolated cliques
overlap only when they share 1 or k − 1 vertices. In both of these cases, there
is no edge which connects vertex in those cliques and vertex on the outside of
those cliques. If there are overlaps among two or more 1-isolated cliques, these
overlaps can exist as an isolated component consisting themselves. In Figure 3,
we present an example of two size k cliques shares k − 1 vertices (the case of
k = 4). Thus, we can assume that 1-isolated cliques are disjoint without loss of
generality and the contraction procedure can be uniquely defined. We consider
a process of contracting an isolated clique of G into one vertex. We use C(G) to
denote a reduced graph obtained from G by contracting all isolated cliques in
G.

Figure 3: Overlapping two isolated cliques of size 4.

The scale-free property is considered as one of the basic properties char-
acterizing real world large graphs. We say that G is ‘scale-free’ if its degree
distribution follows power-law, i.e., a distribution proportional to k−γ for some
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constant γ. Let us make these notions more precise for our discussion. The de-
gree distribution of G is a sequence {nk

n
}k≥1, where nk is the number of vertices

with degree k and nk

n
is the ratio of them among all vertices in G. Then we say

that G’s degree distribution follows a power-law if nk/n = Θ(k−γ) for some γ,
that is, there are some constants c1 and c2 such that c1k

−γ ≤ nk/n ≤ c2k
−γ

for all 1 ≤ k ≤ ∆. In this paper, we extend this notion to isolated clique size
distributions. The isolated clique size distribution of G is a sequence {ms

m
}s≥1,

where ms is the number of isolated cliques of s vertices and m is the total num-
ber of isolated cliques. We say that G’s isolated clique size follows a power-law
if the sequence {ms

m
}s≥1 satisfies ms/m = Θ(s−γ) for some γ.

It does not make sense for discussing the above properties for any fixed finite
graph G. Thus, in this paper, we will consider a family of graphs consisting of
infinite number of graphs defined in a certain way and discuss power-law prop-
erties with constants c1 and c2 that are independent from k and the choice of
a graph in the family. Thus, when claiming for example that G’s degree distri-
bution follows a power-law with some exponent γ, we formally imply that its
degree sequence {nk/n}k≥1 satisfies nk/n = Θ(k−γ) under some fixed constants
c1 and c2 for all graphs in our assumed graph family.

In this paper, we consider a random process to generate graphs. To deal
with degree distribution of such random graphs, we consider the expected degree

distribution. We consider a sequence of
{

E[Nk]
E[N ]

}

k≥1
instead of

{

nk

n

}

k≥1
, where

E[Nk] is the expected number of vertices with degree k and E[N ] is the expected
number of vertices in G. In other words, it is the ratio of the expected number
of vertices with degree k in G.

3 Model

The main idea of our model is as follows. Let G0 be a prime scale-free graph
generated by a certain scale-free model, e.g., BA model, which cannot generate
graphs with cliques. Consider that a vertex in G0 is either a “node” that
represents a contracted 1-isolated clique or a “(simple) vertex”, otherwise. We
decide whether a vertex in G0 is a “node” or a simple vertex randomly. We
replace each node by an isolated clique whose size is the same as the degree of
the original node as shown in the Figure 4. We call this replacement expansion
and call this isolated clique expanded clique. Then we regard these new vertices
in the isolated clique could be “nodes” or vertices, so, we decide them recursively.
In order to technically simplify our analyses and discussions, we here change the
definition of c-isolated cliques. A clique C is called c-isolated if the number of
outgoing edges from V (C) to V \V (C) is less than or equals to c|V (C)|. In
this paper, we consider only 1-isolated cliques, so we simply call them isolated
cliques. Note that we can obtain almost similar results even if we used the
original definition of the isolated clique.

In our model, all vertices in expanded clique has one outgoing edge, which
also implies the number of outgoing edges from the expanded clique equals to
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the size of the number of vertices in the clique. However, the requirement of
the isolated clique is the number of outgoing edges is less than or equals to the
number of vertices in the clique. We adopt simpler model since all vertices in
expanded clique have one outgoing edge, those vertices have the same degree as
the original node, that makes the analysis much simpler.

Figure 4: Replacing a “node” of degree 4 by an isolated clique of 4 nodes.

We now explain this idea precisely. Let G0 = (V 0, E0) and a parameter
µ0 be inputs of our model. Let us assume G0 is a prime scale-free graph, i.e.,
G0 contains no isolated cliques and its degree distribution follows a power-law.
From a given graph G0, we expand it to Gi recursively and randomly. For
Gi = (V i, Ei) (i ≥ 0), consider two subsets U i and Ai of V i such that Ai ⊆
U i ⊆ V i, where Ai denotes a set of “nodes” which are regarded as contracted
isolated cliques, and U i denotes a set of candidates of being “nodes”. At the
first step, all vertices of G0 are candidate, i.e., U0 = V 0. First, decide a set
of “nodes” Ai ⊆ U i randomly. Consider a vertex v in U i with degree k. We
choose v into Ai with probability pk = µ0

k
where µ0 is a parameter in the input.

It is independent to the choice of other vertices. We choose pk = µ0

k
since it

makes the expected number of vertices in one expansion (pkk = µ0) constant,
independent of k. We also discuss about the case that we set pk = µ0

ka , (a > 1)
in Section 4.

Second, for each v ∈ Ai, let Cv be a clique of size k = dGi(v). Let us define
Gi+1 = (V i+1, Ei+1) and U i+1 as follows.

V i+1 = V i −Ai +
⋃

v∈Ai

V [Cv],

Ei+1 =
{

{u, v} ∈ Ei | u, v ∈ (V i −Ai)
}

+
⋃

v∈Ai

(E[Cv] ∪ {{uj, vj} | (∗)}) ,

((∗) : {u1, . . . , ud
Gi (v)} = NGi(v) and {v1, . . . , vd

Gi (v)} = V [Cv].)

U i+1 =
⋃

v∈Ai

V [Cv].

Let us denote the above expansion procedure by a function E(·), i.e., (Gi+1, U i+1) =
E(Gi, U i) for any i ≥ 0. In this paper, we always set U0 = V 0, so the obtained
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G0 G1 G2 G3

H0H1H2H3

Figure 5: Expansion procedure is not necessarily inverse of the contraction.

(G1, U1), (G2, U2), . . . is a sequence of random graphs. We omit U i and simply
write them as Gi = E(Gi−1) if no confusion arises.

As shown in Figure5, C() may not be an inverse function of E(). In Figure5,
Gi+1 = E(Gi) for i = 0, 1, 2, and let H0 = G3, Hi+1 = C(Hi) for i = 0, 1, 2. We
here have G2 6= H1(= C(E(G2))).

When At = ∅ for some t, we let H = Gt be an output of our model. We
choose the parameter µ0 as µ0 < 1, since otherwise, t may become infinite
with positive probability. (The recursive procedure will not stop with positive
probability.) This can be obtained by the classical analysis of the branching
processes. (See next section or a literature e.g. [3].)

4 Analysis

In the following analysis, we focus on a vertex with degree k. The number of
vertices expanded from one vertex obeys the following branching process (as
known as Galton-Watson process) starting with one node. Many detailed anal-
ysis has been done for the branching process in the literature (see e.g. [3, 6]).Our
expansion procedure can be expressed as the following branching process. (i)
start from a single node that is set open; (ii) at each step, on each open node,
the decision of “expansion” is made with probability pk independently; (iii)
those decided not to expand are set closed, and those decided to expand are
also set closed after adding new k children that are set open; and (iv) repeat
(ii) and (iii) until no open node exists. Let T denote a tree generated by this
expansion process. We also call T a tree representation of the expansion. We
present an example of a tree representation of an expansion in Figure 6. Note
that we should consider the forest {Tv}v∈V 0 , a set of trees starting from each
node v ∈ V 0, for the analysis of the number of nodes or the number of isolated
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cliques. However, we will focus on one tree since each tree is created indepen-
dently at random and the number of total nodes or isolated cliques are the sum
of them in each tree. In our expansion procedure, we say that vertices in Cv are
expanded from v. When u is expanded from w and w is expanded from v, we
say u is expanded from v. In this case, v is an ancestral node of u in the tree
representation of the expansion.

It is well known that if pkk < 1, then T is finite with probability 1. We
defined µ0 < 1 and thus pkk = µ0 < 1 in our model, so our expansion procedure
generates a finite tree with probability 1.

The initial node is called a root node and a node with no child node is called
a leaf node. For each node v of T , we define its height h(v) and level l(v)
inductively as follows.

h(v) =

{

0, if v is a root node, and

h(v′) + 1 where v′ is the parent node of v;

l(v) =

{

0, if v is a leaf node, and

max{l(v1), . . . , l(vk)}+ 1 where v1, . . . , vk are child nodes of v.

The height of a tree is the maximum height of nodes in T and note that the
height of a tree equals the level of the root node of the tree.

An example of a tree representation of an expansion procedure and corre-
sponding height and level of nodes are shown in Figure 6. Let H0 = H and
H1 = C(H0), H2 = C(H1), . . ., and so on. As shown in Figure 6, we can easily
obtain the following observation.

Observation 4. Consider any node v in G0, and consider a subgraph of Gt

which is expanded from v. On the tree representation of the expansion from v,
the number of leaves (which has level 0) is the number of nodes in a subgraph
of Gt(= H0) expanded from v. For l ≥ 1, the number of nodes in the tree with
level l represents the number of isolated cliques in a subgraph of H l−1 expanded
from v. The number of nodes in the tree with height i represents the number
of nodes in a subgraph of Gi expanded from v.

So, we will analyse the number of nodes with level l for any l ≥ 0 in this
section. For any l ≥ 0, define the following values:

M(l) = the expected number of level l nodes in T ,

q(l) = Pr[T has a node of level l] = Pr[the height of T ≥ l]

P (l) = Pr[the height of T is l] = Pr[the level of the root of T is l]

4.1 Degree distribution of H

Let Vk be a set of vertices with degree k in G0 and let nk = |Vk|. Nk denotes the
number of vertices with degree k in H(= Gt) and for any v ∈ V [G0], Lv denotes
the number of vertices in the subgraph of H , expanded from v. Since for any
vertices with degree k in H , there exists v ∈ Vk in G, such that it is expanded
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G0 G1 G2 G3

1

1 2

level 3

1

1 2

3

1

1 2

3

1

1 2

3

1

1 2

3

H0H1H2H3

Height 0

Height 1

Height 2

Height 3

Figure 6: A tree representation of an expansion, the height and level, and the
contraction.

from v ∈ Vk. Thus, we have Nk =
∑

v∈Vk
Lv. Note that H is created by a

random expansion process, Nk and Lv can be considered as random variables.

The distribution of Lv is well studied in the literature, e.g., [8, 6]. We can
obtain the probability generating function (p.g.f.) of Lv as follows. Let g(z)
be the p.g.f. of the number of children of one node; g(z) = 1 − pk + pkz

k. Let
g0(z) = z, g1(z) = g(z) and gi(z) = g(gi−1(z)) for i > 1. Then, we have [8, 6];

Theorem 1. The p.g.f. of the number of nodes with height i on T is gi(z) for
any i ≥ 0.

Proof: Let Zi be the number of nodes with height i on T , Z0 = 1, and let
g(i)(z) be the p.g.f. of Zi for i = 0, 1, . . .. Firstly, g(0)(z) = z and g(1)(z) = g(z).
Under the condition of Zi = n, the distribution of Zi+1 can be represented as
the sum of the number of children of n nodes. So it has the p.g.f. (g(z))

n
for
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any n = 0, 1, . . .. Accordingly, the p.g.f. of Zi+1 is;

g(i+1)(z) =

∞
∑

n=0

Pr[Zi = n]
(

g(i)(z)
)n

= g(i)(g(z)) i = 0, 1, . . . .

Since g(1)(z) = g(z) = g1(z), we can obtain g(i)(z) = gi(z) for any i = 1, . . . by
induction. �

It is hard to obtain the closed-form of gi(z), however, we can obtain the
expected value of Zi, i.e. g

′
i(1).

Lemma 1. Let g1(z) = g(z) = 1− pk + pkz
k and gi(z) = g(gi−1(z)) for i ≥ 1.

The expected number of nodes with height i, E[Zi], is;

E[Zi] = g′i(1) = µi
0

where µ0 = pkk.

Proof: At first, we have g′(1) = pkk = µ1
0. By induction, we have

g′i(1) = g′(gi−1(1))g
′
i−1(1) = g′(1)g′i−1(1) = µ0µ

i−1
0 = µi

0.

�

So, the expected total number of nodes on T is
∑

i≥0 µ
i
0 = 1

1−µ0
. Since T is a

full k-ary tree (such that every inner node has exactly k children), the expected

number of leaves is
(

1 + µ0

1−µ0

(

1− 1
k

)

)

. See Appendix for the derivation.

From above, we can obtain the following Theorem.

Theorem 2. The expected number of vertices with degree k in H is;

E[Nk] =

(

1 +
µ0

1− µ0

(

1−
1

k

))

nk.

Since we assumed that the tree is finite, we can obtain another simple proof for
the expected number of leaves. For further analysis in the later of this section,
we show the another proof here.

Proof: By observation 4, the expected number of leaves expanded from v is
M(0), i.e. E[Lv] = M(0). If v0 is not expanded, then the number of leaves is 1,
and this occurs with probability 1− pk. Otherwise, the number of leaf nodes is
the sum of the number of leaf nodes in subtrees under k child nodes. Thus, we
have

M(0) = pk · kM(0) + (1 − pk) · 1.

Hence

M(0) =
1− pk
1− pkk

=

(

1 +
µ0

1− µ0

(

1−
1

k

))

.

Since E[Nk] =
∑

v∈Vk
E[Lv] = |Vk|M(0), the expected number of vertices with

degree k in H is;

E[Nk] =

(

1 +
µ0

1− µ0

(

1−
1

k

))

nk.
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�

Here, let N denote the total number of nodes in H to consider the degree
distribution of H . Since N is the sum of the Nk for all k,

E[N ] =

∆
∑

k=1

E[Nk] = n+
µ0

1− µ0

(

n−
∆
∑

k=1

nk

k

)

=

(

1 +
µ0C

1− µ0

)

n,

where C is a constant satisfying C = 1−
∑∆

k=1

nk

k

n
.

Since the number of vertices in H is proportional to n, Theorem 2 gives the
following ratio of the expectation of number of nodes with degree k;

E[Nk]

E[N ]
=

(

1 + µ0

1−µ0

(

1− 1
k

)

)

nk

(

1 + µ0C
1−µ0

)

n
.

Let c1 and c2 be

c1 =
1 + µ0

2(1−µ0)

1 + µ0C
1−µ0

, c2 =
1 + µ0

(1−µ0)

1 + µ0C
1−µ0

.

Then we obtained

c1
nk

n
≤

E[Nk]

E[N ]
≤ c2

nk

n
.

Corollary 1. If the input graph G0 has the power-law degree distribution with
exponent γ, nk/n = Θ(k−γ), the expected degree distribution of H also follows
the power-law distribution, i.e., E[Nk]/E[N ] = Θ(k−γ).

4.2 Degree and isolated clique size distributions of H i

In this section, we analyze the expected degree distribution and the expected
number of isolated cliques in Hi. We must note that the contraction procedure
C(·) is not an inverse procedure of the expansion E(·). It is easy to observe the
fact by an example of the Figure 6.

Let us denote the number of isolated cliques of size k in Hi by Mk(H
i),

and the number of vertices with degree k in Hi by Nk(H
i). First, we have the

following obvious bound.

Theorem 3. Let C′
1 = 1 and C′

2 = 1 + µ0

1−µ0
. Then, for any i,

C′
1nk ≤ E[Nk(H

i)] ≤ C′
2nk.

Proof: It is clear that C′
1nk = Nk(G

0) ≤ E[Nk(H
i)] ≤ E[Nk(H

0)] ≤ C′
2nk. �

Corollary 2. Consider an input graph G0 has a power-law degree distribution
with exponent γ, nk

n
= Θ(k−γ), and G0 has no isolated cliques. Then the

expected degree distribution of Hi also follows the power-law distribution with
exponent γ.
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For the expected number of isolated cliques of size k in Hi, we have the
following bounds.

Theorem 4. Let C1 and C2 be C1 = 1 − µ0 and C2 = 1
1−µ0

. Then for any
0 ≤ i,

C1µ
i+1
0

nk

k
< E[Mk(H

i)] < C2µ
i+1
0

nk

k
.

Proof: As mentioned in Observation 4, we will consider the distribution of the
number of nodes which has level i. In the literature, e.g., [6], the distribution
of the number of nodes with height i is mentioned. However, the analysis of
the distribution of the number of nodes which has level i has not been provided
before.

Let us remind the reader some definitions for the analysis.

M(l) = the expected number of level l nodes in T ,

q(l) = Pr[the level of the roof of T ≥ l],

P (l) = Pr[the level of the root of T is l].

The expected number of isolated cliques expanded from one vertex and on
Hi equals to M(i + 1), so the total number of isolated cliques of size k is
E[Mk(H

i)] = nkM(i+ 1).
Same as the proof of Theorem 2, we will consider M(l) as follows. We use

P (l) to denote the probability that the root has level l, i.e. the depth of T is
l. Clearly, this contributes P (l) to M(l). Then consider the other case. Since
M(l) is 0 for l ≥ 1 if the root was not expanded; thus, consider the situation
that the root was expanded (which occurs with probability pk). Let v1, . . . , vk
denote the child nodes of the root and let T1, . . . , Tk denote the trees rooted by
these nodes. Each Ti follows the same probability distribution as T ; thus, we
may use M(l) for the expected number of level l nodes of Ti. Since the number
of nodes on the tree T is finite, hence we have

M(l) = P (l) + pkkM(l)

and

M(l) =
P (l)

1− pkk
=

P (l)

1− µ0
. (1)

Before considering P (l), we note some basic equations of P (l) and q(l).

P (l) = q(l)− q(l + 1) (for l ≥ 0) (2)

q(l) = pk

{

1− (1− q(l − 1))
k
}

(for l ≥ 1) (3)

q(l) < µ0 q(l − 1) (for l ≥ 1). (4)

Equation (4) was derived from Equation (3) as follows;

q(l) = pk

{

1− (1− q(l − 1))
k
}

< pk {1− (1− kq(l − 1))} = µ0 q(l − 1).

From now on, we consider the upper and lower bound for P (l).
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Lemma 2. We have P (0) = 1− pk and P (1) = pk(1− pk)
k = µ0

k
(1− µ0

k
)k. For

any l > 1, we have

P (l) <
µl
0

k

(

1−
µ0

k

)k

.

Proof: By definition, P (0) and P (1) are the probability that the root node
has level 0 and 1 respectively, so we immediately have P (0) = 1 − pk and
P (1) = pk(1− pk)

k. For any 0 < x < y < 1, it is easy to show that

(1− x)k − (1− kx) < (1 − y)k − (1− ky).

Equation (4) implies q(l) < q(l − 1), so we have

P (l) = q(l)− q(l + 1) = pk

[{

1− (1− q(l − 1))
k
}

−
{

1− (1− q(l))
k
}]

< pk [{1− (1− kq(l − 1))} − {1− (1− kq(l))}]

= pkk (q(l − 1)− q(l)) = µ0P (l − 1).

Hence we obtained P (l) < µl−1
0 P (1) =

µl

0

k
(1 − µ0

k
)k. �

To analyse the lower bound of P (l), we need to consider the upper and lower
bound of q(l).

Lemma 3. For q(l) , we have the following upper bound;

q(l) <
µl
0

k
.

Proof:
First, q(1) = pk = µ0

k
. By equation (4) and induction hypothesis,

q(l) < µ0 q(l − 1) ≤ µ0

(

µl−1
0

k

)

=
µl
0

k
.

�

The lower bound of q(l) was well studied in the literature. The q(l) satisfies
the following relationships with the p.g.f. gl(z);

1− q(l) = Pr[the level of the root node < l]

= Pr[the number of nodes with height l is 0]

= Pr[Zl = 0] = gl(0).

However, as mentioned above, the closed-form of gl(z) is hard to obtain. In
[1], Agresti used a fractional linear generating function (f.l.g.f.) to obtain a
good upper/lower bound of gl(z). We can use their results and obtain the lower
bound of q(l).

Lemma 4. The lower bound of q(l) is;

q(l) >
µl
0

k
(1 − µ0).
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Proof: For any p.g.f. g(z), let U(z) be any p.g.f. satisfying g(z) ≤ U(z) for
0 ≤ z ≤ 1. Then, Seneta[13] showed that;

Lemma 5. ([13], Lemma A)

gl(z) ≤ Ul(z), for any 0 ≤ z ≤ 1, l ≥ 1,

where Ul(z) = U(Ul−1(z)), U1(z) = U(z).

Proof: Since Ul(z) is a p.g.f. so it is an increasing function and g(z) is also a
p.g.f. so it satisfies 0 ≤ g(z) ≤ 1 for any 0 ≤ z ≤ 1. Then we have;

gl(z) = gl−1(g(z))

≤ Ul−1(g(z)) by induction;

≤ Ul−1(U(z)) Ul−1(z) is increasing;

= Ul(z).

�(Lemma 5)
So, if we have some U(z), then we can obtain the lower bound of q(l) as

follows;

1− q(l) = Pr[The level of the root < l]

= Pr[The number of nodes with height l = 0]

= gl(0)

≤ Ul(0).

For U(z), Agresti used the following fractional linear generating function;

Lemma 6. ([1], Lemma 3 (i)) Let U(z) as

U(z) = 1− pk +
pkz

k − (k − 1)z
.

Then, U(z) satisfies g(z) ≤ U(z) for any 0 ≤ z ≤ 1.

Proof:

g(z) = 1− pk + pkz
k ≤ 1− pk +

pkz

k − (k − 1)z
for 0 ≤ z ≤ 1,

which holds if and only if

t(z) = 1− kzk−1 + (k − 1)zk = 1− zk − k(1− z)zk−1 ≥ 0 for 0 ≤ z ≤ 1.

Now t(1) = 0 and

t′(z) = −kzk−1 − k(k − 1)zk−2(1 − z) + kzk−1

= −k(k − 1)zk−2(1− z) ≤ 0 (for 0 ≤ z ≤ 1).

So, t(z) ≥ 0 and thus g(z) ≤ U(z) for 0 ≤ z ≤ 1. �(Lemma 6)
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Since U(z) is a f.l.g.f., we can easily obtain the closed form of Ul(z). The
lth iterate of U(z) is;

Ul(z) = 1 +
µl
0(1− µ0)(z − 1)

(k − 1)
(

µl
0 − 1

)

z +
(

k − µ0 − (k − 1)µl
0

) .

We give the derivation of this closed form in Appendix.

1− q(l) ≤ Ul(0) = 1−
µl
0(1 − µ0)

k − µ0 − (k − 1)µl
0

< 1−
µl
0(1− µ0)

k
,

and hence

q(l) >
µl
0

k
(1 − µ0).

�(Lemma 4)
By Lemma 3 and Lemma 4, q(l) can be represented as

q(l) =
µl
0

k
(1− µ0) + ǫl,

where 0 < ǫl <
µ
l+1
0

k
. Since q(l) < µ0q(l − 1),

µl
0

k
(1 − µ0) + ǫl = q(l) < µ0q(l − 1) = µ0

(

µl−1
0

k
(1 − µ0) + ǫl−1

)

.

So, ǫl < µ0ǫl−1 < ǫl−1. Thus, by ǫl − ǫl+1 > 0,

ǫl − ǫl+1 = q(l)− q(l + 1)−

{

µl
0

k
(1− µ0)−

µl+1
0

k
(1− µ0)

}

> 0. (5)

By equation 5, we obtain the lower bound of P (l);

P (l) = q(l)− q(l + 1) >

{

µl
0

k
(1 − µ0)−

µl+1
0

k
(1− µ0)

}

=
µl
0

k
(1− µ0)

2. (6)

By equation (1), (6) and Lemma 2,

µl
0

k
(1− µ0) < M(l) <

µl
0

k

(

1−
µ0

k

)k 1

1− µ0
<

µl
0

k

1

1− µ0
.

Now letting C1 = 1− µ0 and C2 = 1
1−µ0

,

C1µ
i+1
0

nk

k
< E[Mk(H

i)] < C2µ
i+1
0

nk

k
.

This concludes the proof of Theorem 4. �
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By Theorem 4, the expected number of isolated cliques in Hi is proportional
to µi+1

0
nk

k
for any size k. The total number of isolated cliques in Hi is also

proportional to µi+1
0

∑

k>1
nk

k
. The ratio of the isolated clique of size k among

all isolated cliques in Hi can be written as

C1µ
i+1
0

nk

k
C2µ

i+1
0

∑

k>1
nk

k

<
E[Mk(H

i)]

E[
∑

j≥1 Mk(Hj)]
<

C2µ
i+1
0

nk

k
C1µ

i+1
0

∑

k>1
nk

k

.

∑

k>1
nk

k
can be considered as a constant independent from k, so let M =

∑

k>1
nk

k
, c′1 = C1

C2M
and c′2 = C2

C1M
. Finally, we have

c′1
nk

k
<

E[Mk(H
i)]

E[
∑

j≥1 Mk(Hj)]
< c′2

nk

k
.

Corollary 3. Consider an input graph G0 has a power-law degree distribution
with exponent γ, nk

n
= Θ(k−γ), and G0 has no isolated cliques. Then the

expected size distribution of isolated cliques in Hi also follows the power-law
distribution with exponent γ + 1.

We here consider the case pk = µ0

ka for some a > 1. Let ν = pkk = µ0

ka−1 , since
ν < 1, we can derive the same analysis as the above such that µ0 is replaced by
ν. Then, the equation in Theorem 4 becomes;

C1ν
i+1nk

k
< E[Mk(H

i)] < C2ν
i+1nk

k
.

This equation is;

C1µ
i+1
0

nk

k(a−1)i+a
< E[Mk(H

i)] < C2µ
i+1
0

nk

k(a−1)i+a
.

In this case, the power law exponent of the size distribution of isolated cliques
are different for each i.

5 Concluding Remarks

In this paper, we proposed a new model to explain the hierarchical clique struc-
ture and its scale-free properties. Our model provides a graph with the similar
properties to the ones that are observed in the World Wide Web.

However, our model generates a special kind of isolated cliques such that each
member of the clique has exactly one outgoing edge. It is possible to consider
some modifications of our model to this problem, randomly connect outgoing
edges of the isolated cliques for example. In our model, we used some other
model to generate a prime network (G0). If we use a single vertex or a clique
as a prime network, it generates a regular graph in our current model. We are
trying to make more general model which can generate graphs with scale-free
property and the hierarchical clique structure from one node or one clique. In
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our model, we set µ0 < 1 to let the output graph finite, we will try to study the
distribution for the case of µ0 ≥ 1.

Uno et al. also investigates the hierarchical structure of isolated stars [17, 18],
we also apply our approach to them.
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Appendix

Number of leaves in a full k-ary tree

Let T be a full k-ary tree. We here derive the relation between number of the
leaf nodes and the number of total nodes of T .

Let Nleaf be a number of leaves of T , let Ninner be a number of inner nodes
of T , and let Nall be a number of total nodes of T .

Each inner node has exactly k children, we have 1 + kNinner = Nall. Thus,
Ninner =

Nall−1
k

. So we obtain

Nleaf = Nall −Ninner = 1 + (k − 1)Ninner = 1+ (k − 1)
Nall − 1

k
.

If the expected number of total nodes is 1
1−µ0

, the expected number of leaf node
is;

1 + (k − 1)

1
1−µ0

− 1

k
= 1 +

µ0

1− µ0

(

1−
1

k

)

.

lth iteration of U(z)

We here derive the lth iteration of U(z). Let us recall our definition of U(z),
that is,

U(z) = 1− pk +
pkz

k − (k − 1)z
=

(k − 1− µ0)z − (k − µ0)

(k − 1)z − k
.

Also recall that its lth iterationUl(z) is defined inductively by Ul(z) = U(Ul−1(z))
for l > 1 and U1(z) = U(z).

To derive Ul(z), we use a linear function L(z) = az+b and f(z) = L−1 (U(L(z))).
Due to the following lemma, for evaluating Ul(z), it suffices to get good a and
b such that fl(z) is easily calculated.

Lemma 7.

Ul(z) = L(fl(L
−1(z))).

Proof: By f(z) = L−1 (U(L(z))), we have U(z) = L(f(L−1(z))). Then we
prove the lemma by induction. We already have it for l = 1. Let us assume
that Ul(z) = L(fl(L

−1(z))). Then we have

Ul+1(z) = U(Ul(z)) = L(f(L−1(Ul(z))))

= L(f(L−1(L(fl(L
−1(z)))))) = L(f(fl(L

−1(z))))

= L(fl+1(L
−1(z))).

�
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Let a = 1−µ0

k−1 and b = 1; then we have

f(z) = L−1 (U(L(z))) =
1

a
(U(az + 1)− 1)

=
a(k − 1− µ0)z + (k − 1− µ0)− (k − µ0)− {a(k − 1)z + (k − 1)− k}

a {a(k − 1)z + (k − 1)− k}

=
a(k − 1− µ0)z − 1− a(k − 1)z + 1

a {a(k − 1)z − 1}

=
−µ0z

a(k − 1)z − 1
=

−µ0z

(1− µ0)z − 1
(by a = 1−µ0

k−1 )

=
z

(

1− 1
µ0

)

z + 1
µ0

.

Lemma 8. Let K = 1
µ0
. Then we have

fl(z) =
z

K l + (1−K l) z
.

Proof: For l = 1, we have

f1(z) =
z

1
µ0

+
(

1− 1
µ0

)

z
=

z

K + (1−K) z
,

and the lemma holds. For l ≥ 1, we prove by induction as follows:

fl+1(z) =
fl(z)

K + (1−K) fl(z)
=

z
Kl+(1−Kl)z

K + (1−K) z
Kl+(1−Kl)z

=
z

K l+1 + (1−K l)Kz + (1−K)z
=

z

K l+1 + (1−K l+1) z

�

We now have the closed form of fl(z). That is,

fl(z) =
z

K l + (1−K l) z
=

z
(

1
µ0

)l

+

(

1−
(

1
µ0

)l
)

z

=
µl
0

(

1−z
z

)

+ µl
0

.

By using Lemma 7, we obtain the closed form of Ul(z) as follows:

Ul(z) = L(fl(L
−1(z))) = a

(

fl

(

z − 1

a

))

+ 1

= a
µl
0

(

a+1−z
z−1

)

+ µl
0

+ 1

= 1 +
aµl

0z − aµl
0

(

µl
0 − 1

)

z +
(

a+ 1− µl
0

)

= 1 +
µl
0(1− µ0)(z − 1)

(k − 1)
(

µl
0 − 1

)

z +
(

k − µ0 − (k − 1)µl
0

) .
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