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Abstract

Gene Ontology information related to the biological role of genes is
organized in a hierarchical manner that can be represented by a directed
acyclic graph (DAG). Space filling visualizations, such as the treemaps,
have the capacity to display thousands of items legibly in limited space via
a two-dimensional rectangular map. Treemaps have been used to visualize
the Gene Ontology by first transforming the DAG into a tree. However
this transformation has several undesirable effects such as producing trees
with a large number of nodes and scattering the rectangles associated with
the duplicates of a node around the display rectangle. In this paper we
introduce the problem of visualizing a DAG with space filling techniques
without converting it to a tree first, we present two special cases of the
problem, and we discuss complexity issues.

Submitted:
January 2008

Reviewed:
April 2008

Revised:
August 2008

Accepted:
December 2008

Final:
January 2009

Published:
November 2009

Article type:
Regular paper

Communicated by:
S.-H. Hong and T. Nishizeki

This work was supported in part by INFOBIOMED code: IST-2002-507585 and the Greek

General Secretariat for Research and Technology under Program “ARISTEIA”,

Code 1308/B1/3.3.1/317/12.04.2002.

E-mail addresses: tsiaras@ics.forth.gr (Vassilis Tsiaras) striant@ics.forth.gr (Sofia Triantafilou)

tollis@ics.forth.gr (Ioannis G. Tollis)

mailto:tsiaras@ics.forth.gr
mailto:striant@ics.forth.gr
mailto:tollis@ics.forth.gr


320 Tsiaras, Triantafilou, Tollis DAGmaps

1 Introduction

The Gene Ontology project (GO) [1], provides a controlled vocabulary to de-
scribe gene and gene product attributes in an organism. The GO is the union
of three ontologies, each representing a key concept in molecular biology: the
Molecular Function of gene products; their role in multi-step Biological Pro-
cesses; and their localization to Cellular Components. The building blocks of
the three ontologies are the terms which consist of a numerical identifier, a name
and a number of attributes such as a definition. The ontologies are continuously
updated but since they change very slowly their structure can be considered al-
most constant. At the time that this paper was written the three ontologies
contained 8464, 15841 and 2253 terms respectively. The ontologies are struc-
tured as a directed acyclic graph (DAG) where the set of vertices is the set
of terms and an edge is a relationship from a more specialized term to a less
specialized term. GO terms can be linked by five type of relationships: is a,
part of, regulates, positively regulates or negatively regulates.

Due to its huge size, visualizing the whole GO with the usual node-link
representation leads to visual clutter. The reason for this clutter is that, the
node-link representations do not make optimal use of the available space since
most of the pixels are used for the background. On the other hand, space filling
techniques make optimal use of the available space and have the capacity to show
thousands of items legibly. At the core of a space filling visualization is a layout
function that takes as arguments a list of k positive numbers {x1, x2, . . . , xk} and
a rectangle R and returns a partition of R into rectangles R1, R2, . . . , Rk, where
area(Ri) is proportional to xi. The number of possible partitions is huge and
finding a solution such as to minimize the size of the perimeters of the rectan-
gles is NP-complete [3]. Heuristic algorithms produce partitions with desirable
properties in reasonable time. For example, the squarified layout, introduced
by Bruls et al. [5], strives to produce rectangles with aspect ratio as close as
possible to one, where aspect ratio = max(width/height, height/width).

In the case of treemaps the nodes of a tree are visualized as rectangles whose
area is proportional to a numeric attribute of the nodes with the property that
the value of the attribute in a parent node is equal to the sum of the values of
its children nodes. The rectangle that represents the root of a tree is partitioned
into rectangles representing its children and the algorithm is repeated recursively
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Figure 1: A small subgraph of the GO DAG.
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for each node of the tree [4, 5, 15].
In a treemap the hierarchy structure is presented using several approaches

including the nested [10, 15], the cascaded [12, 13], and the cushion [18] presen-
tations.

Treemaps have been used to visualize compound graphs that contain both
hierarchical (rooted tree) relations and adjacency relations [9]. Space filling
techniques are used for the hierarchical or inclusion relations and lines or curves
for the adjacency relations.

In the context of GO, treemaps have been used to visualize microarray data,
where each gene transcript is assigned all possible paths that start from it and
terminate to the most general term (the “all” term) of GO [2]. Symeonidis et al.
[16] proposed to decompose the complete GO DAG into a tree by duplicating
the vertices with many incoming edges, and then to use a treemap algorithm to
visualize the tree (Figure 8). The duplication of a vertex however triggers the
duplication of all of its out-neighbors. Therefore the transformation of a DAG
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Figure 2: Transforming the GO DAG into a tree and then drawing it as a
treemap. The first five layers from the root are shown. The tree structure is
visualized via nesting. The multiple copies of the node “regulation of cellular
process” are shown with green background color. The color of nodes refers to
the relationship between a GO term and its parent GO term. We use white
color for is a relationship, light brown color for part of, gray color for regulates,
red color for positively regulates and blue color for negatively regulates. E.g.,
“metabolic process” is a “biological process” which is a “all”. Also “cell part”
is a “cellular component” and part of “cell”.
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into a tree leads to trees with (potentially exponentially) many more nodes
than the original DAG. At the time that this paper was written the initial GO
DAG had 26558 vertices, while the produced equivalent tree had 872460 nodes.
Another drawback of duplicating the vertices is that the rectangles associated
with the multiple replicas of a vertex are scattered around the display rectangle
(Figure 2).

In this paper we introduce the problem of drawing a DAG using space filling
techniques without converting it to a tree first. We consider several variations of
the problem, we present some characterizations of simple families of DAGs that
admit such a drawing, and provide complexity results for the general problem.

2 Problem Definition

2.1 Preliminaries

Suppose that G = (V,E) is a directed acyclic graph (DAG) with n = |V |
vertices and m = |E| edges. A path of length k from a vertex u to a vertex
w is a sequence v0, v1, v2, . . . , vk of vertices such that u = v0, w = vk, and
(vi−1, vi) ∈ E for i = 1, 2, . . . , k. There is always a zero-length path from u to
u. If there is a path p from u to w, we say that w is reachable from u via p and
we write u

p
; w.

A layering of G is a partition of V into subsets L1, L2, . . . , Lh, such that if
(u, v) ∈ E, where u ∈ Li and v ∈ Lj , then i > j. A DAG with a layering is
a layered DAG. The span of an edge (u, v) with u ∈ Li and v ∈ Lj is i − j.
The DAG is proper if no edge has a span greater than one. A DAG G can
be made proper by replacing each long edge (u, v) of span k > 1 with a path
u = v1, v2, . . . , vk = v, adding the dummy vertices v2, . . . , vk−1 [6].

If e = (u, v) ∈ E is a directed edge, we say that e is incident from u (or
outgoing from u) and incident to v (or incoming to v); vertex u is the origin of e
and vertex v is the destination of e. The origin of e is denoted by orig(e) and the
destination of e by dest(e). For every vertex u ∈ V , N+(u) = {v | (u, v) ∈ E}
and N−(u) = {v | (v, u) ∈ E} are the sets of out-neighbors and in-neighbors
of vertex u, respectively. Analogously, Γ+(u) = {e ∈ E | orig(e) = u} and
Γ−(u) = {e ∈ E | dest(e) = u} are the sets of edges incident from and to vertex
u, respectively. Finally, we denote the set of edges incident from the nodes of a
layer Li, i ∈ {2, . . . , h} by Ei (Ei = ∪u∈Li

Γ+(u)).

2.2 Drawing Constraints

Treemaps display a tree hierarchy via the inclusion invariant. Namely, the
drawing rectangle of any node (different from the root) is included within the
drawing rectangle of its parent. When the graph is a DAG, the above invariant
should be replaced by the invariant that the drawing rectangle of any vertex is
included within the union of the rectangles of its in-neighbors. Apart from this
invariant it is plausible to assume that the drawing rectangles of two vertices
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do not overlap when each node is not reachable from the other and that the
drawing rectangle of a vertex is covered by the drawing rectangles of its out-
neighbors. Another observation is that in DAGs an edge may be visualized as a
rectangle which is contained in the intersection of the origin and the destination
vertex rectangles.

Let Ru denote the drawing region of a vertex u ∈ V and similarly Re denote
the drawing region of an edge e ∈ E. Then the above invariant and assumptions
are summarized in Definition 1.

Definition 1 (DAGmap drawing) A DAGmap drawing of a DAG G = (V,E)
is a space filling visualization of G that satisfies the following drawing con-
straints:

B1. Every vertex is drawn as a rectangle (Ru is a rectangle for every u ∈ V ).

B2. The union of the rectangles of the sources of G is equal to the initial
drawing rectangle (R = ∪s∈SRs, where S ⊂ V is the set of sources of G).

B3. Every edge is drawn as a rectangle that has non-zero area and which is
contained in the intersection of the origin and destination vertex rectangles
(∀e = (u, v) ∈ E, Re is a rectangle, Re ⊂ Ru ∩Rv and area(Re) 6= 0).

B4. For every pair of edges e1 = (u1, v1), e2 = (u2, v2) ∈ E, e1 6= e2, such that
u1 is not reachable from v2 and u2 is not reachable from v1, the rectangles
Re1 and Re2 do not overlap (area(Re1 ∩Re2) = 0).

B5. The rectangle of every non-source vertex u ∈ V is equal to the union of
the rectangles of edges incident to u (Ru = ∪e∈Γ−(u)Re).

B6. The rectangle of every non-sink vertex u ∈ V is equal to the union of the
rectangles of edges incident from u (Ru = ∪e∈Γ+(u)Re).

From constraints B1-B6 it is trivial to prove that:

Proposition 1 In a DAGmap drawing of a DAG G the following hold:

a) The rectangle of every non-source vertex u ∈ V is contained in the union
of rectangles of its in-neighbors (Ru ⊂ ∪v∈N−(u)Rv).

b) The rectangle of every non-sink vertex u ∈ V is covered by the rectangles
of its out-neighbors (Ru ⊂ ∪v∈N+(u)Rv).

c) For every pair of vertices u, v ∈ V if there is no path from u to v and from
v to u then their rectangles Ru, Rv do not overlap (area(Ru ∩Rv) = 0).

The drawing rules of Definition 1 are quite general since they do not constrain
the area of the sink vertices, or how the area of a vertex is distributed to its
incoming edges. To simplify the analysis of the problem we constrain these two
parameters by making the following assumptions.
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Definition 2 (Additional drawing constraints)

A1. The sink vertices are drawn in equal area rectangles.

A2. The rectangles of the edges incident to a vertex have equal areas (For every
non-source vertex u and every e ∈ Γ−(u), area(Re) = area(Ru)

|Γ−(u)| ).

(a) Edge drawing (b) Drawing of parallel edges

Figure 3: An example where an edge rectangle is the intersection of the origin
and destination vertex rectangles. In the case of multigraphs, if there are k
parallel edges between an origin vertex and a destination vertex, the intersection
rectangle is arbitrarily partitioned into k equal area rectangles.

In real applications, we may choose to draw only vertex rectangles, only
edge rectangles, or both. We usually draw edge rectangles when the DAG has
multiple edges or when the edges carry out important information such as the
type of relationship between two vertices. See Figure 4 for an example.

Having defined the drawing rules, we can define the following problems:

1. Given a DAG G1, does G1 admit a DAGmap?

2. In case that the answer to the first problem is negative, what is the mini-
mum number of vertex duplications that are needed to transform G1 into
a DAG G2 that admits a DAGmap?

2.3 Examples and Counter-Examples of DAGs that Ad-
mit a DAGmap

Examples of DAGs that admit a DAGmap appear in Figure 5. From the counter-
example of Figure 6 we see that there are DAGs that do not admit a DAGmap
drawing. The DAG in Figure 6(a) cannot be drawn due to adjacency constraint
violation. The first-layer vertices e, f, g, h, i, j constrain the pairs of second-layer
vertices {a, b},{a, c},{a, d},{b, c},{b, d},{c, d} to be drawn in adjacent rectangles.
However we cannot have such a configuration. In this case in order to draw the
DAG we can either duplicate one of the vertices e, f, g, h, i, j or relax some of
constraints of Definition 1, as we did in Figure 6(b) where we relaxed constraint
B1. However, allowing the set of possible drawings of a vertex to include any
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simply connected region of the plane complicates the problem without offering a
guarantee that a DAG will admit a DAGmap. A counter-example, based on the
four color (map coloring) theorem, is a two-layer DAG having five second-layer
vertices and ten first-layer vertices (one sink for every pair of sources).

2.4 Vertex Duplication

Usually, a DAG encountered in practice does not admit a DAGmap. In this case
we should relax one or more of constraints B1-B6, A1-A2 or change the form
of the DAG. Symeonidis et al. [16] chose to transform the DAG into a forest of
trees by performing vertex duplications. An example of a vertex duplication is
shown in Figure 7, where after the creation of two replicas of vertex h the DAG
of Figure 6(a) is transformed into a new DAG which admits a drawing.
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organelle part
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Figure 4: In this example a subgraph of the GO DAG is drawn. The color
refers to the relationship between two GO terms. We use white color for is a
relationship and light brown color for part of relationship. The term “cellular
metabolic process” is a “cellular process” and is a “metabolic process”. The
term “cell part” is a “cellular component” and part of “cell”. (Compare the
visualization of “cell part” between this figure and Figure 2.)
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Figure 5: Examples of DAGs that admit DAGmaps.
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Figure 6: Example of a DAG that cannot have a drawing that satisfy all con-
straints B1-B6. However by relaxing constraint B1 the DAG admits a DAGmap.
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Figure 7: After the duplication of vertex h the DAG of Figure 6(a) is transformed
into a DAG that admits a DAGmap.

2.5 Exponential Increase in the Number of Vertices

Transforming a DAG G into a tree via vertex duplication (see Figure 8) guaran-
tees the admissibility of the drawing but may lead to an exponential increase in
the number of vertices. In a worst case scenario, DAG G has n vertices arranged
in n layers (Figure 9). For simplicity we use the same numbering for vertices
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Figure 8: Example of transforming a DAG into a tree and then drawing it as a
treemap.
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and for layers. DAG G has n · (n−1)/2 directed edges. There is a directed edge
from every vertex i to every vertex j with i > j. Suppose that G is transformed
into a tree having Tn nodes. Then the relation between n and Tn is:
T1 = 1 = 20 , T2 = 1 + T1 = 21 , T3 = 1 + T2 + T1 = 22

And by induction on n:
Tn = 1 + Tn−1 + Tn−2 + . . .+ T1 = Tn−1 + Tn−1 = 2 · Tn−1 = 2 · 2n−2 = 2n−1

4

3

2

1

Figure 9: A DAG with four vertices, having the structure described in the worst
case scenario.

3 Special Cases

We continue by considering two special cases. The first case is based on a
restricted form of DAGs, the second on a restricted form of DAGmaps.

3.1 Two Terminal Series Parallel Digraphs

A Two Terminal Series Parallel (TTSP) digraph is recursively defined as follows
[6, 17].

Definition 3 (Two Terminal Series Parallel digraphs)

i) A digraph consisting of two vertices joined by a single edge is TTSP (the
base graph);

ii) If G1 and G2 are TTSP digraphs, so is the digraph obtained by either of
the following operations:

a) Series composition: identify the sink of G1 with the source of G2.

b) Parallel composition: identify the source of G1 with the source of G2

and the sink of G1 with the sink of G2.

A TTSP digraph G is naturally associated with a rooted binary tree T , which is
called the decomposition tree (or parse tree) of G, and which provides informa-
tion on how the graph G is constructed using series and parallel compositions.
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(a) The base TTSP di-
graph
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(b) Series composition
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Figure 10: Recursive definition of a TTSP digraph.
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Figure 11: Given a TTSP digraph G, we construct its decomposition tree by
performing parallel and series reductions. Then we merge the adjacent P-nodes.

Definition 4 The decomposition tree T of a TTSP digraph G = (V,E) has
three types of nodes: S-nodes, P-nodes and Q-nodes. The leaves of T are Q-
nodes and represent base graphs of G. The internal nodes are either P-nodes or
S-nodes. T is defined recursively as follows:

i) If G is a base graph, then T consists of a single Q-node.

ii) If G is created by a parallel composition of TTSP digraphs G1 and G2, let
T1 and T2 be the decomposition trees of G1 and G2 respectively, then the
root of T is a P-node and has subtrees T1 and T2.

iii) If G is created by a series composition of TTSP digraphs G1 and G2,
where the sink of G1 is identified with the source of G2, let T1 and T2 be
the decomposition trees of G1 and G2, respectively, then the root of T is
an S-node and has left subtree T1 and right subtree T2.

The decomposition tree, which is not unique since several parallel compositions
may be combined in different ways and similarly several series compositions,
has O(m) nodes and can be computed in O(m) time as a by-product of the
series and parallel reduction steps of the TTSP recognition algorithm proposed
by Valdes et al. [17]. In order to use the decomposition tree as input to a
DAGmap drawing algorithm the neighboring P-nodes are merged to a single
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node such that the resulting tree may have P-nodes of out-degree larger than
two.

The TTSP recognition algorithm [17] maintains a list of vertices that initially
includes all vertices except the source and the sink. The algorithm proceeds by
removing any vertex v from this list and performing as many parallel reductions
on the edges incident to (from) it as it is possible before either leaving the vertex
with a single entering edge and a single exiting edge, or discovering that the
vertex still has at least two distinct in-neighbors or two distinct out-neighbors.
In the first alternative, the vertex is removed by a series reduction and the two
vertices adjacent to it added to the unsatisfied list if they are not there already.
This process is repeated until the unsatisfied list becomes empty, at which point
the same process is applied to the source and the sink (in order to eliminate
any multiple edges between them) before stopping. The unsatisfied list becomes
empty, either because all vertices (except source and sink) have been deleted by
series reductions or because every remaining vertex has two distinct in-neighbors
or two distinct out-neighbors. In the first case the DAG is TTSP; in the second
it is not.

The following algorithm finds a DAGmap drawing of a TTSP digraph.

Algorithm 1 TTSP DAGmap drawing
Input: TTSP digraph G and a rectangle R
Output: A DAGmap drawing of G

1. Construct the decomposition tree T of G [17] and merge the neighboring
P-nodes. In the resulting tree, P-nodes may have more than two children.

2. S-nodes of T are associated with vertices of G as follows. If an S-node is
created as a result of series reduction between two edges (v, u) and (u,w)
of G, then associate this S-node with vertex u of G. All vertices of G,
apart from the source and the sink, have a corresponding S-node in T .

3. Assign sizes to nodes of the decomposition tree T .

4. Assign rectangle R to the root node of T .

5. Let u be the current node of T and Ru the rectangle assigned to it.

6. If u is an S-node then

a) Let uL and uR be the left and right children of node u.

b) Assign rectangles RL = Ru and RR = Ru to nodes uL and uR
respectively.

c) Recursively repeat the procedure from step 5 for nodes uL and uR.

7. If u is a P-node then

a) Let u1, u2, . . . , uk be the children of u and let x1, x2, . . . , xk be their
sizes.
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b) Call a layout function with input the rectangle Ru and the sizes
x1, x2, . . . , xk to find a partition of Ru into rectangles R1, R2, . . . , Rk
where area(Ri) is proportional to xi.

c) for i = 1 : k

• assign rectangle Ri to node ui and recursively repeat the proce-
dure from step 5 for node ui.

8. When the above recursive procedure finishes, the rectangle assigned to a
Q-node of T is also assigned to the associated edge of G. The rectangle
assigned to an S-node of T is also assigned to the associated vertex of G.

9. Assign rectangle R to the source and sink of G.

10. Draw vertex and/or edge rectangles according to a priority criterion. 2

1 

42 3 

5 6 7 8 

9 10 

11

(a) A TTSP

1->11 1->11 1->31->2 1->4
2->1 3->6 3->7 4->83->5 4->10

5-> 8-7->6->
9->11 10->11

(b) A DAGmap drawing using a
layout that slices the rectangles
in the vertical direction

1->11
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2->11

3->6 3->7

4->8

3->5

4->10

5->9

8->10

7->96->9
9->11

10->11

(c) A DAGmap drawing using
the squarified layout proposed by
Bruls et al. [5]

Figure 12: Example of a TTSP digraph DAGmap drawing. Only edge rectangles
are shown. The hierarchy structure is shown via nesting. For an example where
only vertex rectangles are shown see Figure 13(i).

The tricky part of the algorithm is how to assign sizes to nodes of the
decomposition tree. If u is an internal node of the decomposition tree, and
u1, u2, . . . , uk are its children then the constraints are:

1. If u is an S-node then size(u) = size(u1) = size(u2).

2. If u is a P-node then size(u) = size(u1) + . . .+ size(uk).

These constraints are not sufficient for a unique solution, and there is some
freedom on the choice of the size of some leaf nodes. In the examples of Figure
12 the sizes were calculated using the additional assumption that if among the
children nodes of a P-node there are some Q-nodes then all have the same size.
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(i) Vertex 11

Figure 13: Step by step drawing of the DAG of Figure 12. The vertex rectan-
gles are shown with white color while the edge rectangles are shown with light
gray color. The nesting algorithm, used in this example, is slightly different
than the nesting algorithm used in Figure 12(c), since care was taken to draw
edge rectangles within the intersection of their origin and destination vertex
rectangles.

Lemma 1 Let G = (V,E) be a TTSP digraph and e1 = (u1, v1), e2 = (u2, v2)
be two edges of G. If there is no path in G from v1 to u2 and from v2 to u1 then
Algorithm 1 draws edges e1 and e2 in non overlapping rectangles.
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Proof: Let A = {w ∈ V | w p
; u1 and w

p
; u2}. Notice that A always contains

the source. Now, let a ∈ A be the vertex which has the maximum longest path
distance from the source among the vertices of A. We will show that vertex
a is uniquely defined. If u1 = u2, then a = u1 = u2. If u1 6= u2, suppose on
the contrary, that there are two vertices a1, a2 ∈ A, a1 6= a2 having the same
longest path distance from the source. There is no path from a1 to a2 or from
a2 to a1, since a1 and a2 have the same longest path distance from the source.
Then the subgraph of G formed by vertices and edges of the paths a1

p
; u1,

a1
p
; u2, a2

p
; u1 and a2

p
; u2 is homeomorphic to K2,2. We conclude that G

is not a TTSP digraph, which is a contradiction.
Similarly, let B = {w ∈ V | v1

p
; w and v2

p
; w}. Notice that B always

contains the sink. Now, let b ∈ B be the vertex which has the maximum longest
path distance to the sink among the vertices of B. Vertex b is unique. The
proof is similar to the one for vertex a.

Any path starting at a, terminating at b and containing edge e1 meets every
path starting at a, terminating at b and containing edge e2 only at the end
vertices a and b. Therefore edges e1 and e2 belong to two different TTSP
subgraphs among the k ≥ 2 digraphs G1, . . . , Gk (all subgraphs of G) that have
source a and sink b. If T1, . . . , Tk denote the decomposition trees of G1, . . . , Gk
and ρ1, . . . , ρk their roots, then the decomposition tree T of G contains a P-node
whose children are the nodes ρ1, . . . , ρk. The rectangle assigned to this P-node
is partitioned among its children by Algorithm 1. Therefore edges e1 and e2 are
drawn in non-overlapping rectangles. 2

Theorem 1 Every TTSP digraph admits a DAGmap drawing, which can be
computed in Θ(m) time.

Proof: We will show that the drawing produced by Algorithm 1 is compatible
with the constraints of Definition 1.

Algorithm 1 assigns a rectangle to every vertex and edge of G. Every edge
of G is assigned the rectangle of the associated Q-node of T . The source and
the sink of G are assigned the initial drawing rectangle. Now, suppose that u
is a vertex of G that is neither a source nor a sink. Then there is at least one
edge incident to u and at least one edge incident from u. The TTSP recognition
algorithm after performing a number of series and parallel reductions leaves
exactly one edge (v, u) incident to u and exactly one edge (u,w) incident from
u. Finally, the TTSP recognition algorithm removes node u by performing a
series reduction, in which edges (v, u) and (u,w) are substituted by edge (v, w).
The label of edge (v, w) is an S-node having as left subtree the label of edge
(v, u) and as right subtree the label of edge (u,w). This S-node of T is associated
with vertex u of G and the rectangle assigned to this S-node is also assigned to
vertex u.

Clearly, constraints B1 and B2 are satisfied. Next we will show that con-
straint B3 is satisfied. Let e = (u, v) be an edge of G. It is area(Re) 6= 0
since Algorithm 1 always divides a rectangle into non-trivial rectangles. If u is
the source of G then it is assigned the initial drawing rectangle and therefore
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Re ⊂ Ru. Similarly if v is the sink of G then Re ⊂ Rv. If u is not the source
of G then the TTSP recognition algorithm associates u with an S-node of T .
Edge e is represented by a Q-node which is located in the right subtree of the
tree rooted at this S-node. Similarly, if v is not the sink of G then edge e is
represented by a Q-node which is located in the left subtree of the tree rooted
at the S-node associated with vertex v. Algorithm 1 assigns the rectangle of an
S-node to the left and right subtrees rooted at the S-node. These rectangles may
be farther partitioned before Q-nodes of the subtrees are assigned rectangles.
Therefore, in all cases we have: Re ⊂ Ru and Re ⊂ Rv ⇒ Re ⊂ Ru ∩Rv.

Constraint B4 is satisfied due to Lemma 1. We will show that constraint B5
is satisfied by induction on the composition rules of TTSP digraphs. If G is a
base graph composed of two vertices connected by an edge then the rectangle of
the sink is equal to the rectangle of the edge and constraint B5 is satisfied. Now,
suppose that for two TTSP digraphs G1 and G2 constraint B5 is satisfied. Let
G be the TTSP digraph that is produced by identifying the sink of G1 with the
source of G2. The rectangle assigned to the source and the sink of G is equal to
the rectangles assigned to the source and sink vertices of G1 and G2. Using the
induction hypothesis, we conclude that the rectangle of every non-source vertex
of G is equal to the union of rectangles of its incoming edges.
Now, let G denotes the TTSP digraph that is produced by parallel composition
of G1 and G2. Rectangle Rs assigned to source s of G is partitioned into two
rectangles Rs1 and Rs2 . Rectangle Rs1 is assigned to source s1 of G1 and
rectangle Rs2 to source s2 of G2. Rectangle Rt of the sink t of G is partitioned
into two rectangles Rt1 and Rt2 assigned to sink t1 of G1 and to sink t2 of G2

respectively. It hold that Rt1 = Rs1 and Rt2 = Rs2 because the source and
sink rectangles of G1 (resp. G2) are equal. Then by the induction hypothesis,
constraint B5 holds for every non-source and non-sink vertices of G. It remains
to show that constraint B5 holds for sink t of G. The set of edges Γ−G(t) incident
to t of G is equal to the union of the sets of edges Γ−G1

(t1) and Γ−G2
(t2) incident

to t1 of G1 and to t2 of G2 respectively. Also Rt = Rt1 ∪ Rt2 and by the
induction hypothesis Rt1 (resp. Rt2) is equal to the union of the rectangles
of edges Γ−G1

(t1) (resp. Γ−G2
(t2)). Therefore Rt is equal to the union of the

rectangles of edges Γ−G(t) = Γ−G1
(t1) ∪ Γ−G2

(t2).
The proof that the constraint B6 is satisfied, is similar to the proof for constraint
B5. Therefore, all constraints of Definition 1 are satisfied.

The Θ(m) worst case time holds since the TTSP recognition algorithm runs
in Θ(m) time and the drawing algorithm performs one traversal of the decom-
position tree which has Θ(m) nodes. 2

3.2 One-Dimensional DAGmaps

We continue by restricting the ways in which the initial rectangle is partitioned;
namely we consider only vertical (or only horizontal) partitions.

Definition 5 A DAGmap is called one-dimensional if the rectangles represent-
ing the vertices and the edges of a DAG have their top and bottom (left and
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right) sides on the top and bottom (left and right) sides respectively of the ini-
tial drawing rectangle (i.e., the initial rectangle is sliced only along the vertical
(horizontal) direction). See Figure 12(b) for an example.

Since the height (resp. width) of all the rectangles is constant and equal to
the height (resp. width) of the initial drawing rectangle, the problem is one-
dimensional and the rectangles Rq can be represented by intervals Iq (Figure
14). Next we will define and study the problem of recognizing whether a DAG
admits a one-dimensional DAGmap.

a b
a b

c d e

a b
c d e

c d e

Figure 14: A one-dimensional DAGmap example.

Problem 1 (ONE-DIMENSIONAL DAGMAP)
INSTANCE: A DAG G.
QUESTION: Does G admit a one-dimensional DAGmap?

In this section we study a restricted version of the one-dimensional DAGmap
problem. We consider the case that a DAG G = (V,E) is layered with vertex
partition V = L1 ∪ . . .∪Lh, h > 1, such that the sources of G are in Lh and the
sinks of G are in L1. Without loss of generality we assume that the layering is
proper. To each vertex and edge of G we assign a rational number which is the
length of its drawing interval. If length(I) is the length of the initial interval
I then each sink vertex u ∈ L1 is assigned the number length(I)

|L1| , denoted by
size(u). The edges incident to a sink vertex u are assigned sizes according to
constraint A2 of Definition 2 (for each e ∈ Γ−(u), size(e) = size(u)

|Γ−(u)| ), the vertices
in L2 are assigned sizes using constraint B6 of Definition 1 (for each u ∈ L2,
size(u) =

∑
e∈Γ+(u) size(e)), and so on. After calculating sizes for vertices and

edges the following Lemma holds.

Lemma 2 If the sources of a proper layered DAG G = (L1 ∪ . . . ∪ Lh, E) are
in layer Lh, the sinks are in layer L1 and G has no isolated vertices then:
a)

∑
v∈Li

size(v) = length(I), i ∈ {1, . . . , h}, and
b)

∑
e∈Ei

size(e) = length(I) , i ∈ {2, . . . , h}

Proof: Initially size length(I)
|L1| is assigned to each sink and the size is propagated

toward the sources such that the size of a non-source vertex is equal to the sum
of sizes of its incoming edges and the size of a non-sink vertex is equal to the
sum of sizes of its outgoing edges. Since there are no sources in layers Li, i < h,
no sinks in layers Li, i > 1 and no isolated vertices it is straightforward to see
that a) and b) hold. 2



JGAA, 13(3) 319–347 (2009) 335

To proceed with our analysis we need some definitions. A drawing of a layered
graph G in the plane is a layered drawing if the vertices of every Li, 1 ≤ i ≤ h,
are placed on a horizontal line li = {(x, i) | x ∈ R}, and every edge (u, v) ∈ E,
u ∈ Li, v ∈ Lj , 1 ≤ j < i ≤ h, is drawn as a line segment between the lines
li and lj . A layered drawing of G is called layered planar if no two edges cross
except at common endpoints. A layered graph is layered planar if it has a
layered planar drawing.

A layered drawing of G determines for every Li, 1 ≤ i ≤ h, a total order
≤i on the vertices of Li given by the left to right order of the vertices on li.
A layered embedding consists of a permutation of the vertices of Li for every
i ∈ {1, . . . , h} with respect to a layered drawing. A layered embedding with
respect to a layered planar drawing is called layered planar.

Theorem 2 Let G = (V,E) be a proper layered DAG with vertex partition
V = L1 ∪ L2 ∪ . . . ∪ Lh, where h > 1, such that the sources are in Lh and the
sinks are in L1. DAG G admits a one-dimensional DAGmap if and only if it is
layered planar.

Proof: Suppose that G admits a one-dimensional DAGmap. Then, by Propo-
sition 1, there is a total ordering of the intervals of vertices in Li, i ∈ {1, . . . , h}.
The ordering of the intervals defines an ordering on the vertices of Li. Therefore
the one-dimensional DAGmap defines a layered embedding of G. We will show
that this embedding is layered planar. It suffices to show that between two con-
secutive layers Li and Li−1, i ∈ {2, . . . , h}, there are no edge crossings. For this,
suppose that two edges e1 = (u1, v1) and e2 = (u2, v2) cross. Then u1 <i u2 and
v1 >i−1 v2 or u1 >i u2 and v1 <i−1 v2. Without loss of generality we assume
that u1 <i u2 and v1 >i−1 v2. Then Iu1 < Iu2 and Iv1 > Iv2 . The contradiction
comes from the fact that we cannot have Ie1 ⊂ Iu1 ∩ Iv1 and Ie2 ⊂ Iu2 ∩ Iv2 ,
with length(Ie1) 6= 0 and length(Ie2) 6= 0 and length(Ie1 ∩ Ie2) = 0. We arrived
at contradiction because we assumed that two edges in Ei cross. Therefore the
embedding is layered planar.

Conversely, suppose that G is layered planar. Then G admits a planar
layered embedding. This embedding defines a total order on the vertices of each
layer Li, i ∈ {1, . . . , h} as well as on the edges between two layers since for
(u1, v1), (u2, v2) ∈ Ei, i ∈ {2, . . . , h}, it holds either u1 ≤i u2 and v1 ≤i−1 v2 or
u1 ≥i u2 and v1 ≥i−1 v2.

Now, suppose that we have calculated the size of vertex intervals and of edge
intervals for constructing a one-dimensional DAGmap of G. In a drawing, we
arrange the intervals {Iv | v ∈ Li}, i ∈ {1, . . . , h} according to the ordering of
vertices in Li. For i ∈ {1, . . . , h} the intervals {Iv | v ∈ Li} cover the initial
rectangle I and pairwise do not overlap. Therefore they constitute a partition
of I. Similarly the ordering of edges in Ei, i ∈ {2, . . . , h} defines an ordering
on the corresponding edge intervals {Ie | e ∈ Ei} which form a partition of I.
We will show that the size and orderings of vertices and edges of G define a
one-dimensional DAGmap of G by showing that the constraints of Definition 1
are satisfied. Clearly constraint B1 is satisfied.
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Constraint B2 is satisfied because
∑
v∈Lh

size(v) = length(I) (see Lemma 2).
For constraint B3 we have that every edge e = (u, v) ∈ E is drawn as an interval
Ie of non-zero length. It remains to show that Ie ⊂ Iu ∩ Iv. For this assume
that e ∈ Ei, i ∈ {2, . . . , h} and consider how the intervals of vertices in Li−1

are related to intervals of edges in Ei. Let v1, v2, . . . , vk be the vertices of Li−1

arranged in the order defined by the planar layered embedding of G. In the
ordering of edges in Ei the incoming edges of v1 come first. Therefore Iv1 =
∪e′∈Γ−(v1)Ie′ . Assuming that for 1 ≤ j ≤ l < k it holds that Ivj

= ∪e′∈Γ−(vj)Ie′

we will show that Ivl+1 = ∪e′∈Γ−(vl+1)Ie′ . The union ∪e′∈Γ−(vl+1)Ie′ is an in-
terval since the incoming edges of vertex vl+1 are consecutive in the ordering
of edges Ei. Additionally we have that intervals Ivl+1 and ∪e′∈Γ−(vl+1)Ie′ start
at the same point since Iv1 ∪ . . . ∪ Ivl

= (∪e′∈Γ−(v1)Ie′) ∪ . . . ∪ (∪e′∈Γ−(vl)Ie′)
and they have the same length since size(Ivl+1) =

∑
e′∈Γ−(vl+1) size(Ie′) =

size(∪e′∈Γ−(vl+1)Ie′). Therefore for every w ∈ Li−1 we have Iw = ∪e′∈Γ−(w)Ie′ .
Similarly we can show that for every w ∈ Li we have Iw = ∪e′∈Γ+(w)Ie′ . Finally
we have that Ie ⊂ Iu and Ie ⊂ Iv ⇒ Ie ⊂ Iu ∩ Iv.
From the above arguments it follows that constraints B5 and B6 are satisfied.
Constraint B4 is satisfied when two edges belong to the same edge set Ei,
i ∈ {2, . . . , h} since the set {Ie | e ∈ Ei} is a partition of interval I. Now, sup-
pose that e1 = (u1, v1) and e2 = (u2, v2) are two edges such that: a) v1 ∈ Li and
u2 ∈ Lj with i > j, b) there is no path from v1 to u2 and c) length(Ie1∩Ie2) 6= 0.
We will show that these assumptions lead to contradictions. We have: Ie1 ⊂ Iv1
and Ie2 ⊂ Iu2 . Therefore Ie1 ∩ Ie2 ⊂ Iv1 ∩ Iu2 ⇒ length(Iv1 ∩ Iu2) 6= 0. This
together with equation Iv1 = ∪e′∈Γ+(v1)Ie′ imply that there is an outgoing edge
o1 = (v1, w1) of vertex v1 such that its interval Io1 overlaps with interval Iu2 .
Therefore length(Io1 ∩ Iu2) 6= 0 ⇒ length(Iw1 ∩ Iu2) 6= 0. If w1 = u2 then
there is a path from v1 to u2, a contradiction. If w1 6= u2 then vertex w1 and
u2 do not belong to the same layer since length(Iw1 ∩ Iu2) 6= 0. Therefore
i − 1 > j. Continuing in this way we argue that there is an outgoing edge
o2 = (w1, w2) of vertex w1 such that its interval Io2 overlaps with interval Iu2 ,
and so on. This procedure terminates after a finite number of steps and leads
either to a path from v1 to u2 or to a vertex wl that belongs to layer Lj such that
length(Iwl

∩ Iu2) 6= 0. The first conclusion contradicts with the hypothesis that
there is no path from v1 to u2, while the second contradicts with the hypothesis
that the set {Iv | v ∈ Lj} is a partition of interval I. We arrive at contradictions
because we assumed that edge intervals Ie1 and Ie2 overlap although there is no
path from dest(e1) to orig(e2). Therefore constraint B4 is satisfied. 2

From the above theorem it follows that the ONE-DIMENSIONAL DAGMAP
problem is reduced to LAYER PLANARITY TEST. The later problem can be
decided in linear time. When the LAYER PLANARITY TEST algorithm in-
dicates that a layered graph G is layered planar then a planar embedding of G
can be obtained in linear time using algorithm LAYER PLANAR EMBED [11].
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Algorithm 2 ONE-DIMENSIONAL DAGMAP TEST
Input: a layered DAG G = (L1 ∪ . . . ∪ Lh, E) that is proper and has its

sources in layer Lh and its sinks in layer L1.
Output: “true” if G admits a one-dimensional DAGmap, and “false” otherwise.

1. return LAYER-PLANARITY-TEST(G) 2

Algorithm 3 ONE-DIMENSIONAL DAGMAP DRAW
Input: a planar layered DAG G = (L1 ∪ . . . ∪ Lh, E) that is proper and has

its sources in layer Lh and its sinks in layer L1, and a rectangle R.
Output: a DAGmap drawing of G.

1. Find a planar embedding ofG using algorithm LAYER-PLANAR-EMBED.

2. Assign sizes to vertices and edges of G.

3. Using the orderings and sizes of vertices and edges draw G. 2

Theorem 3 Every layered DAG G = (L1 ∪ . . .∪Lh, E), that is proper and has
its sources in layer Lh and its sinks in layer L1, can be recognized for whether
it admits a one-dimensional DAGmap or not in time O(m). If G admits a
one-dimensional DAGmap then a drawing of G can be produced in time O(n).

3.3 Minimization of Vertex Duplications in One-Dimensional
DAGmaps

Motivated by Algorithms 2 and 3 we pose the question of whether an h-layer
graph G1, that is proper and has its sources in layer Lh and its sinks in layer L1,
can be transformed into a planar h-layer DAG G2 by performing a minimum
number of vertex duplications. We will show that the problem of minimizing the
vertex duplications that are needed in order to convert G1 into G2 is NP-hard.

Problem 2 (DUPLICATIONS IN ONE-DIMENSIONAL DAGMAPS)
INSTANCE: A DAG G1 and an integer K.
QUESTION: Can G1 be transformed into a DAG G2 that admits a one-dimensional
DAGmap by duplicating at most K vertices?

When the input is restricted to two-layer DAGs where each first-layer vertex
has in-degree two, the above problem is related to TWO-LAYER PLANARIZA-
TION problem.

Definition 6 A caterpillar is a connected graph that has a path b called the
backbone such that all vertices of degree larger than one lie on b. The edges of
a caterpillar that are not on the backbone are the legs of the caterpillar.

Lemma 3 [7] A two-layer graph G = (L1 ∪ L2, E) is two-layer planar if and
only if it is a collection of disjoint caterpillars.
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Problem 3 (TWO-LAYER PLANARIZATION)
INSTANCE: A positive integer K and a two-layer graph G = (L1 ∪ L2, E).
QUESTION: Can G be made two-layer planar by deleting at most K edges?

Theorem 4 [7] The TWO-LAYER PLANARIZATION problem is NP-complete
and remains NP-complete when each vertex in L1 has degree two.

Theorem 5 The DUPLICATIONS IN ONE-DIMENSIONAL DAGMAPS prob-
lem is NP-complete and remains NP-complete even when the input is restricted
to simple two-layer DAGs where each first-layer vertex has in-degree two.

Proof: The problem belongs to NP since given K vertex duplications we can
check in linear time if the transformed DAG admits a one-dimensional DAGmap.
We will show that the problem is NP-hard by reducing the TWO-LAYER PLA-
NARIZATION problem to it. The reduction is trivial. Let G be a two-layer
DAG, where each first-layer vertex has in-degree two. If e = (u, v) is an edge of
G then deletion of the edge corresponds to duplication of vertex v. Conversely,
duplication of a vertex v corresponds to deletion of one of two edges that are
incident to v.

Suppose that the TWO-LAYER PLANARIZATION problem has a solu-
tion. Then there are K edges {e1, e2, . . . , eK} whose deletion leads to a graph
G2 that is two-layer planar. According to Lemma 3, the graph G2 is a col-
lection of disjoint caterpillars. Let {v1, v2, . . . , vK} be the first layer vertices
incident to edges {e1, e2, . . . , eK}. Now suppose that if instead of deleting
the edges {e1, e2, . . . , eK}, we duplicate the vertices {v1, v2, . . . , vK}, and let
{v′1, v′2, . . . , v′K} be the replicas of vertices {v1, v2, . . . , vK} which are attached
to edges {e1, e2, . . . , eK}. The new graph, call it G3, is a collection of disjoint
caterpillars. This is because if we ignore the edges {e1, e2, . . . , eK} and the
incident vertices {v′1, v′2, . . . , v′K}, graph G3 is equal to graph G2 which is a
collection of disjoint caterpillars. Then, since vertices {v′1, v′2, . . . , v′K} have de-
gree one the incident edges {e1, e2, . . . , eK} can be considered as legs attached
to the backbone of some caterpillar. This implies that G3 is a caterpillar and
from Lemma 3 it follows that G3 is two-layer planar. Then, from Theorem 2, it
follows that G3 admits a one-dimensional DAGmap.

Conversely, suppose that the DUPLICATIONS IN ONE-DIMENSIONAL
DAGMAPS problem has a solution and let {v1, v2, . . . , vK} be a set of K vertices
whose duplication leads to a DAG G3 that admits a DAGmap drawing. Ac-
cording to Theorem 2, DAG G3 is two-layer planar. DAG G3 remains two-layer
planar if we delete one of the two replicas of vertices {v1, v2, . . . , vK} together
with the incident edge. This corresponds to the deletion of K edges from the
initial graph G. Therefore the TWO-LAYER PLANARIZATION problem has
a solution.

We showed that the DUPLICATIONS IN ONE-DIMENSIONAL DAGMAPS
problem has a solution if and only if the TWO-LAYER PLANARIZATION
problem has a solution. Therefore the problem is NP-complete. 2
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4 The General Case

4.1 The Recognition Problem

Suppose that we have a layered DAG. Taking the vertices of a layer Lk isolated
from the rest of the DAG, the problem is similar to a floorplan problem where
the initial rectangle is dissected into nk = |Lk| soft rectangles, i.e., rectangles
whose area is fixed but their dimensions may vary. The number of possible
dissections (the solution space) is bounded below by Ω(nk!23n/n4

k) and above
by O(nk!25n/n4.5

k ) [14].
Considering two consecutive layers Lk+1 and Lk of a DAG, the layouts of

the two layers are constrained by the edges among the two layers, according
to the drawing rules. The combined solution space may be empty or contain a
number of solutions. We will show that deciding whether the solution space is
empty or not is NP-complete. We call this decision problem DAGMAP and we
define it as:

Problem 4 (DAGMAP)
INSTANCE: A DAG G.
QUESTION: Does G admit a DAGmap?

Our hardness result for DAGMAP is based on a transformation from the fol-
lowing decision problem.

Problem 5 (3-PARTITION)
INSTANCE: A multiset A of 3m positive integers A = {α1, α2, . . . , α3m} where
the αi’s are bounded above by a polynomial in m and Σ

4 < αi <
Σ
2 , where

Σ = 1
m (α1 + α2 + . . .+ α3m).

QUESTION: Can A be partitioned into m triples A1, A2, ..., Am such that each
triple has the same sum? Specifically each triple must sum to Σ.

3-PARTITION is strongly NP-complete since it remains NP-complete even when
representing the numbers in the input instance in unary [8]. The condition
Σ
4 < αi <

Σ
2 forces every set of αi’s summing to Σ to have size exactly 3.

Theorem 6 The DAGMAP problem is NP-complete even if we restrict it to
forests of two-layer DAGs.

Proof: Given a dissection of the initial drawing rectangle into |Lk| rectangles
for each layer Lk, k ∈ {1, . . . , h} of a DAG G, we can check in polynomial time if
these dissections correspond to a DAGmap drawing of G. Moreover, in the VLSI
layout literature, there are a few techniques for succinctly encoding the partition
of a rectangle into soft rectangles [14]. Therefore the DAGMAP problem belongs
to NP. Next we will show that DAGMAP is NP-hard. Given an instance A =
{α1, α2, . . . , α3m} of 3-PARTITION we will construct a forest of two-layer DAGs
that admits a DAGmap drawing if and only if the 3-PARTITION problem has
a solution.
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layer 2 layer 1 

αi vertices 

layer 2 

(a) DAG Gαi and one possible drawing of it

 

α1 α2 α3 α4 α5 α3m 

(b) An example of the mapping from integers αi
to rectangles of area αi

Figure 15: To each αi ∈ A we correspond a DAG Gαi
with αi + 1 vertices and

to Gαi
we correspond a drawing rectangle Rαi

of area αi.

Without loss of generality we assume that the first-layer vertices of a DAG
are drawn in unit area rectangles. For each αi ∈ A we consider a two-layer
DAG Gαi

which has one vertex in layer two and αi vertices in layer one. The
second-layer vertex is drawn as a rectangle, Rαi

, with area αi, but without any
constraint on the aspect ratio of its sides. The first-layer vertices are drawn
as unit area rectangles by slicing with parallel horizontal line segments the
rectangle of the second-layer vertex (Figure 15). The total area occupied by
rectangles Rαi

, i ∈ {1, 2, . . . , 3m} is α1 + α2 + . . .+ α3m = mΣ.
We want to draw rectangles Rαi , i ∈ {1, 2, . . . , 3m} on m equal and pairwise

isolated rectangular regions inside the initial rectangle R. To do this we consider
an additional DAG whose drawing leaves m empty rectangular regions (gaps),
each of area Σ. We call this additional DAG the enforcer, since its drawing en-
forces the previously defined 3m rectangles to be drawn inside the m gaps. The
shape of the enforcer is unique up to left, right, up or down orientation inside
the initial rectangle R (Figure 16). In the following, without loss of general-
ity, we assume that the shape of the enforcer is similar to the one of Figure 16(a).

Enforcer: The DAG used as enforcer (Figure 17) has 2m + 2 vertices on the
second layer, the vertices β and 1, 2, . . . , 2m + 1. Every odd numbered vertex
has Σ exclusive out-neighbors, while for the even numbered vertices there are
no exclusive out-neighbors. Therefore vertices 1, 3, . . . , 2m+1 have Σ more area
than vertices 2, 4, . . . , 2m. The role of vertex β and of first-layer vertices with
in-degree greater than one is to align rectangles R1, R2, . . . , R2m+1 and to force
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(a) One possible drawing

 

(b) Another possible drawing

Figure 16: The drawing of the enforcer leaves m gaps, each of area Σ.

 

β used for alignment  2m+1 2m 1 2 3 

2m+1’ γ 2m’ 1’ 2’ 3’ 

2m+1 vertices used for 
adjacency 

used for 
alignment 

used to complete Σ vertices 
the drawing 

Figure 17: The DAG used as enforcer in the proof.

rectangles Ri and Ri+1, i ∈ {1, 2, . . . , 2m} to be adjacent.
Each of the first-layer vertices 1′, 2′, . . . , (2m+1)′ has two in-neighbors. One

is vertex β and the other is the corresponding numbered second-layer vertex.
In the drawing rectangle Rβ is adjacent to all rectangles R1, R2, . . . , R2m+1.
Therefore rectangles R1, R2, . . . , R2m+1 should be drawn around the sides of
rectangle Rβ . Rectangle Rγ is drawn on top of rectangles R1, R2, . . . , R2m+1

and has zero area intersection with rectangle Rβ . Therefore it forces rectan-
gles R1, R2, . . . , R2m+1 to be drawn consecutively along one side of rectangle
Rβ . Additionally, since the area of rectangle Rγ is equally distributed among
rectangles R1, R2, . . . , R2m+1, it forces these rectangles to have the same width.
The second-layer vertices i and i + 1, i ∈ {1, 2, . . . , 2m} have a common out-
neighbor which constrains their rectangles to be adjacent. The second common
out-neighbor of vertices i and i+1, is used for completing the drawing. Also for
completing the drawing, vertex 1 has an exclusive out-neighbor and similarly
vertex 2m+1. To sum up, the first layer has (m+1)Σ+6m+4 vertices and there-
fore the total area occupied by the drawing of the enforcer is (m+ 1)Σ + 6m+ 4
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Layer 1 vertices Layer 2 vertices 
β 

2m+1’ 2m’ 1’ 4’ 2’ 3’ 5’ γ
1 2 3 2m 4 5 2m+1 

Σ  
vertices 

Figure 18: One possible drawing of the enforcer.

(a) Three rectangles

 
(b) One way to fill the gap (c) Another way to fill

the gap

Figure 19: An example of how three rectangles, of total area Σ, fill a gap.

(Figure 18). The total area occupied by the drawings of the enforcer and of
DAGs Gαi

, i ∈ {1, 2, . . . , 3m} is: ((m+1)Σ+6m+4)+mΣ = (2m+1)(Σ+3)+1.
Now suppose that the 3-PARTITION instance has a solution. Then the

elements of A can be partitioned into m triples A1, A2, . . . , Am such that each
triple has sum Σ. Then the rectangles that correspond to the elements of a
triple fit exactly into a gap of area Σ (Figure 19). Therefore the DAGMAP
problem has a solution.

Conversely, if the DAGMAP problem has a solution then the 3m rectangles
fill all the gaps. From the condition Σ

4 < αi <
Σ
2 on the 3-PARTITION numbers
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and therefore on the rectangle areas, a gap is filled by exactly three rectangles.
Therefore the 3m rectangles are partitioned into m triples each of total area Σ.
This partition is also a solution to the 3-PARTITION instance. The reduction
from the 3-PARTITION to DAGMAP uses a polynomial number of resources
since the numbers involved in 3-PARTITION are positive integers bounded by
a polynomial in m. Note that one can achieve the geometric construction using
simple geometric operations. 2

Theorem 7 The DAGMAP recognition problem remains NP-complete even if
the input is a two-layer DAG.

Proof: The reduction is similar to the one in Theorem 6. The differences are:

1. The enforcer and the 3m DAGs of Theorem 6 now form a single two-layer
DAG instead of a forest of DAGs.

2. The αi vertices have αi − 1 exclusive out-neighbors instead of αi.

3. Each of vertices 1, 3, . . . , 2m+ 1 has Σ− 1 exclusive out-neighbors instead
of Σ.

Vertices 1, 3, . . . , 2m+1 have Σ more area than vertices 2, 4, . . . , 2m. In a draw-
ing, rectangle Rδ is adjacent to each one of rectangles R1, R3, . . . , R2m+1, since
for i ∈ {1, 3, . . . , 2m+ 1}, vertices δ and i have one common out-neighbor (Fig-
ure 20). Their second common out-neighbor exists for completing the drawing.
Rectangles Rαi , i ∈ {1, 2, . . . , 3m} have area equal to αi and are adjacent to
rectangle Rδ, since each vertex αi and vertex δ have a common out-neighbor.
Their second common out-neighbor is used for completing the drawing. Simi-
larly, vertex δ has another (2m+1)(Σ−2)+1 exclusive out-neighbors. Therefore
the area of rectangle Rδ is (2m + 1)(Σ − 2) + 1 + 3m + (m + 1) = (2m + 1)Σ
and its horizontal and vertical sides have lengths 2m+ 1 and Σ respectively.

The adjacency relations between the second-layer vertices 1, 2, 3, . . . , 2m+1,
β and δ leads to a shape having m gaps, each one of area Σ (Figure 20). The
drawing position of rectangles Rαi , i ∈ {1, 2, . . . , 3m} is not fixed. The only
constraint is that they should be adjacent to rectangle Rδ. However, in order to
have a rectangular drawing, triples of rectangles Rαi

should fill the gaps. Since
rectangles Rαi

are adjacent to rectangle Rδ the only way that each of them is
drawn inside a gap is with vertical side of length Σ and horizontal side of length
αi

Σ . The first-layer vertices that are adjacent to vertex δ and to vertex αi have
a drawing with vertical side of length 2Σ and horizontal side of length 1

2Σ .
If the 3-PARTITION problem has a solution then triples of rectangles Rαi

,
i ∈ {1, 2, . . . , 3m} fit exactly into the gaps of the drawing and therefore the
DAG admits a DAGmap. Conversely, if the DAG admits a DAGmap then
rectangles Rαi , i ∈ {1, 2, . . . , 3m} fill all the gaps of the drawing. And since
exactly three rectangles can fill a gap, the solution of the DAGMAP instance
provides a partitioning of integers αi into m triples, each of size Σ. 2
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4.2 Minimization of Vertex Duplication

Problem 6 (DUPLICATIONS IN DAGMAPS)
INSTANCE: A DAG G1 and an integer K.
QUESTION: Can G1 be transformed into a DAG G2 that admits a DAGmap
by duplicating at most K vertices.

Comment: The problem DUPLICATIONS IN DAGMAPS is NP-hard since
its restriction for K = 0 is the problem DAGMAP, which is NP-complete.

5 Discussion

In this paper we introduced the problem of drawing a DAG using space filling
techniques. We defined the recognition and vertex duplication minimization
problems and we showed that in the general case they are NP-complete and
NP-hard respectively. We also considered two special cases by restricting the
form of the DAG and of the DAGmap respectively. We are currently investigat-
ing drawing heuristics based on relaxations of the drawing constraints and/or
restrictions on the form of DAGs. The results of this research will be pub-
lished in a subsequent paper concerning the application of these techniques to
hierarchically organized ontologies.
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Vertices that correspond to the 
elements of the multiset A 

1 2 3 2m 2m+1 α1 α3m β δ 
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(b) One possible drawing

Figure 20: The enforcer of the reduction in Theorem 7.
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