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Abstract

This paper studies 3-D orthogonal grid drawings for graphs of arbi-
trary degree, in particular Kn, with vertices drawn as boxes. It estab-
lishes asymptotic lower bounds for the volume of the bounding box and
the number of bends of such drawings and exhibits a construction that
achieves these bounds. No edge route in this construction bends more
than three times. For drawings constrained to have at most k bends on
any edge route, simple constructions are given for k = 1 and k = 2. The
unconstrained construction handles the k ≥ 3 cases.
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1 Introduction

This paper offers upper and lower bounds for the volume and the total number
of bends in 3-D orthogonal grid drawings for graphs of arbitrary degree. In
particular, we study how the volume depends on the maximum number of bends
permitted per edge. All of our constructions have a total number of bends that
is asymptotically optimal, and one construction also exhibits asymptotically
optimal volume. To state the main results clearly, we first give some terminology
and the drawing conventions and volume measure used.

A grid point is a point in R3 whose coordinates are all integers. A grid box
is the set of all points (x, y, z) in R3 satisfying x0 ≤ x ≤ x1, y0 ≤ y ≤ y1 and
z0 ≤ z ≤ z1 for some integers x0, x1, y0, y1, z0, z1. A grid box is said to have
dimensions a×b×c whenever x1 = x0+a−1, y1 = y0+b−1, and z1 = z0 +c−1.
The volume of such a box is defined to be the number of grid points it contains,
namely abc. For example, a single grid point is a 1 × 1 × 1 box of volume 1.
The volume of a drawing is the volume of its bounding box, which is the smallest
volume grid box containing the drawing. Often we refer to the bounding box
as an X × Y × Z-grid.

Throughout this paper, a 3-D orthogonal grid drawing of a graph G = (V, E)
is a drawing that satisfies the following. Distinct vertices of V are represented
by disjoint grid boxes. While in general these boxes may be degenerate, i.e.,
they may have dimension 1 with respect to one or more coordinate directions,
such degeneracies can be avoided, as we describe later. An edge e = (v1, v2) of
E is drawn as a simple path that follows grid lines, possibly turning (“bending”)
at grid points; the endpoints of the path for e are grid points that are extremal
points for the boxes representing v1 and v2. The intermediate points along the
path for an edge do not belong to any vertex box, nor do they belong to any
other edge path. See Fig. 1. In what follows, graph theoretic terms such as
vertex are typically used to refer both to the graph theoretic object and to its
representation in a drawing.

Figure 1: Two boxes joined by a 4-bend edge.
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1.1 Focus of this paper

The focus of this paper is on establishing upper and lower bounds for the volume
and the number of bends of 3-D orthogonal grid drawings. In particular, we give
upper bounds on the volume that depend on the allowed maximum number of
bends per edge. More useful than upper and lower bounds would be an algorithm
that computes for an arbitrary input graph an embedding that minimizes volume
or number of bends. However, the problem of bend minimization or volume
minimization is apparently computationally intractable. See [8].

We exclusively study embeddings of the complete graph Kn for the following
reason. Any simple graph G on n vertices is a subgraph of the complete graph
Kn. Thus, a drawing of Kn immediately provides a drawing for G by deleting
irrelevant edges. Consequently, upper bounds for Kn yield upper bounds for all
other simple graphs on n vertices. Furthermore, no simple graph on n vertices
can yield larger lower bounds than Kn.

Since our focus is on bounds, our constructions are not designed with the
intention of giving attractive looking drawings. In particular, vertex boxes may
be degenerate as previously described. Such degeneracies may be easily removed
from a drawing by inserting extra axis-aligned planes of grid points. This in-
creases the volume of a drawing by a multiplicative constant and does not affect
the order of the upper bound.

The boxes produced by our upper bound constructions can be poorly pro-
portioned in two respects. The surface area can be large relative to the degree
of the vertex. Also, the vertex boxes can be far from cube-shaped. Algorithms
that proportion vertices better have recently been presented in [20], [1].

1.2 Relation to other work

The problem of embedding a graph in a rectangular grid has been addressed
in the context of VLSI design (see [16] for an overview). However, the objec-
tives of graph drawing and those of VLSI, while similar, are often prioritized
differently. For example, while bend (or “jog”) minimization within layers is an
issue in circuit layout design, apparently this cost measure does not have a high
priority (see [16, p. 222]). By contrast, in graph drawing, the notion that bend
minimization is important for diagram readability has been widely accepted
([21] provides some experimental evidence for this). Another difference between
graph drawing and VLSI is that in 3-D VLSI design one of the dimensions is
radically different from the other two: connections between layers (“vias”) are
undesirable, whereas bends within a layer (“jogs”) are of minor importance.
Also, one of the dimensions is usually restricted to a small number of layers.
In 3-D graph drawing there are no such differences between directions. With
advances in fabrication technology, it has become practical for VLSI design to
use more than two or three layers; hence our results may nevertheless be of
interest in that field.

In the field of graph drawing, for graphs drawn orthogonally in the 2-D grid,
early research mainly considered graphs of maximum degree 4 and represented
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vertices as single grid points. See for example [23], [2], [19]. More recently, 2-D
orthogonal grid drawings of higher degree graphs have been investigated, where
vertices have been drawn as rectangular boxes. See for example [12], [18], [3].

At present, there are few results on 3-D orthogonal grid drawings. Rosenberg
showed that any graph of maximum degree 6 can be embedded in a 3-D grid
of volume O(n3/2) and that this is asymptotically optimal [22]. No bounds on
the number of bends were given. Recently, Eades, Symvonis and Whitesides
gave a method for drawing graphs of maximum degree 6 in a grid of side-length
4
√

n, with vertices represented by single grid points and each edge having at
most 7 bends [9]. They also gave a simple method for drawing such graphs in
a grid of side-length 3n, creating at most 3 bends on each edge. This volume
was subsequently improved to at most 4.66n3 [20] and then to volume at most
2.37n3 [27]. For graphs with maximum degree 5, volume n3 and 2 bends per
edge suffice [27].

As for drawings with higher degree, only two papers are known to the au-
thors. Papakostas and Tollis showed how to draw graphs in a 3-D grid of volume
O(m3) ≤ O(n6) [20]. Very recently, Biedl [1] extended the techniques presented
here and showed how to draw graphs in a 3-D grid of volume O(n3). Neither
paper matches our upper bound volume of O(n2.5). However, both papers yield
constructions where vertex boxes have a more cube-like appearance. This sug-
gests a trade-off between cube-like appearance of of vertex boxes and volume.

1.3 Results of this paper

Our results concern volume and number of bends for 3-D orthogonal grid draw-
ings. Since we give upper and lower bounds, we first explain what functions are
being bounded, and then we state the results.

convention: From now on, the terms drawing and 3-D orthogonal grid drawing
are used interchangeably.

Let vol(n) denote the minimum, taken over all drawings of Kn, of the vol-
umes of the drawings. Here, there are no restrictions on these drawings of
Kn, other than that they are understood, by the above convention, to be 3-D
orthogonal grid drawings.

Similarly, let volk(n) denote the minimum, taken over all drawings of Kn

that have k or fewer bends on any edge, of the volumes of the drawings. Let
bend(n) denote the minimum, taken over all drawings of Kn, of the total number
of bends in the drawings.

main results: Our main results are that

• vol(n) ∈ Θ(n2.5);
• vol1(n) and vol2(n) ∈ O(n3);
• for k ≥ 3, volk(n) ∈ Θ(n2.5); and
• bend(n) ∈ Θ(n2).
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Note that for k ≥ 3, the upper and lower bounds on the volume match
(within a constant factor) when a maximum of k bends per edge is allowed.
The constructions of this paper have reasonably small constant factors for the
volume. Only for the k = 1 and k = 2 cases do the bounds on the volume not
match; in each of these cases we give an O(n3) volume drawing of Kn and leave
as an open problem whether this drawing indeed has asymptotically optimum
volume.

2 Lower Bounds

2.1 A lower bound on the volume

Recall that vol(n) is the minimum possible volume for a drawing of Kn. This
definition is valid since, as later sections show, every Kn has a drawing if edges
are allowed to bend. The main result of this section is to show that vol(n) is in
Ω(n2.5).

A z-line is a line that is parallel to the z-axis; y-lines and x-lines are defined
analogously. A (z = z0)-plane is a plane that is orthogonal to the z-axis and
intersects the z-axis at coordinate z0; (x = x0)-planes and (y = y0)-planes are
defined analogously.

Theorem 1 vol(n) ∈ Ω(n2.5). In fact, for any 0 < ε < 1
4
, we have vol(n) ≥

min{(1
4 − ε)n5/2, f(n)} where f(n) ∈ Θ(n3).

Proof: Consider a drawing of Kn in a grid of dimensions X × Y × Z. Let
0 < ε < 1

4 be given and choose 0 < δ < 1
4 so small that 1

4 (1 − 4δ)5/2 > 1
4 − ε.

We distinguish three cases.

Case 1: A line intersects many vertices
Assume that there exists a z-line intersecting at least 2δn vertices. Set

t = d2δne, and let v1, . . . , vt be any t of the vertices intersected by the z-line,
listed in order of occurrence along the line. Let z0 be a not necessarily integer
z-coordinate such that the (z=z0)-plane intersects none of these t vertices and
separates the first b t

2c of them from the remaining d t
2e. See the top left picture

in Fig. 2.
Since the b t

2
c·d t

2
e ≥ 1

4
t2−1 edges connecting these two groups must cross the

(z=z0)-plane, this plane must contain at least 1
4
t2 − 1 points having integer x-

and y-coordinates. Hence XY ≥ 1
4 t2 − 1. Also, Z ≥ t since the z-line intersects

at least t vertices. Thus XY Z ≥ 1
4 t3 − t ≥ 2δ3n3 − 2δn ∈ Θ(n3).

Case 2: A plane intersects many vertices
Assume now that no x-line, y-line or z-line intersects as many as 2δn vertices,

but that there exists a (z=z0)-plane intersecting at least (1− 2δ)n vertices.
A vertex is left of an (x=x0)-plane if all the points in its grid box have x-

coordinates less than x0. The notion of right of an (x=x0)-plane is analogous.
As an (x = x0)-plane is swept from smaller to larger values of x0, the y-line
determined by the intersection of this (x = x0)-plane with the (z = z0)-plane
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sweeps the (z = z0)-plane. At any time, this y-line intersects fewer than 2δn
vertices by assumption.

During the sweep by the (x=x0)-plane, an integer x∗ is encountered where,
for the last time, there are fewer than (1

2−2δ)n vertices left of the (x=x∗)-plane
and intersecting the (z = z0)-plane. See the top right picture in Fig. 2. Since
the y-line determined by the (x =x0)-plane intersects fewer than 2δn vertices,
and the (z = z0)-plane intersects at least (1 − 2δ)n vertices by assumption, at
least (1−2δ)n−(1

2
−2δ)n−2δn = (1

2
−2δ)n vertices intersect the (z=z0)-plane

and lie right of the (x = x∗)-plane. All these vertices also lie to the right of
(x=x∗+1

2)-plane.
By definition of x∗, the number of vertices that intersect the (z =z0)-plane

and that lie left of the (x=x∗+1)-plane is at least (1
2
− 2δ)n. All these vertices

also lie to the left of (x=x∗+ 1
2
)-plane.

There are at least (1
2 −2δ)2n2 edges between the vertices on the left and the

vertices on the right of the (x = x∗+ 1
2)-plane, so Y Z ≥ (1

2 − 2δ)2n2 = 1
4(1 −

4δ)2n2. Apply exactly the same argument in the y-direction to obtain XZ ≥
1
4 (1−4δ)2n2. Finally, note that XY ≥ (1−2δ)n ≥ (1−4δ)n, since the (z=z0)-
plane intersects (1 − 2δ)n vertices. Consequently, XY Z =

√
Y Z ·XZ ·XY ≥√

1
16

(1− 4δ)5n5 = 1
4
(1− 4δ)5/2n5/2 > (1

4
− ε)n5/2 by the choice of δ.

Case 3: No plane intersects many vertices
Assume now that no plane intersects as many as (1 − 2δ)n vertices. As an

(x = x0)-plane is swept from smaller to larger values of x0, by an argument
analogous to the one in Case 2 a value x∗ (not necessarily integral) will be
encountered for which at least δn vertices lie left of the (x = x∗)-plane and at
least δn vertices lie right of the (x=x∗)-plane. See the bottom picture in Fig. 2.
Consequently, the (x = x∗)-plane contains at least δ2n2 points with integer y-
and z-coordinates, and Y Z ≥ δ2n2. Since the same argument holds for the
other two directions, XY Z ≥ (δ2n2)3/2 = δ3n3 ∈ Θ(n3).

For all sufficiently large n, the bound given by Case 2 is the smallest of the
three; hence vol(n) ∈ Ω(n5/2). 2

2.2 A lower bound on the bends

Recall that bend(n) is the minimum possible number of bends for a drawing of
Kn. This definition is valid since, as later sections show, every Kn has a drawing
if edges are allowed to bend. The main result of this section is that bend(n) is
in Ω(n2).

To prove this result, we use the fact that there exist graphs that have no
0-bend 3-D orthogonal drawing [11]. We present here a simple proof of this fact.

If no bends are permitted in the drawing, then the edges correspond to axis-
parallel visibility lines between pairs of boxes. Such visibility representations
have been studied in 2-D by Wismath [26], [15] and by Tamassia and Tollis
[24], and in 3-D with 2-D objects in [4], [10], [11]. A 3-D orthogonal drawing
of a graph with no bends splits the edges into three classes, depending on the
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Figure 2: Cases 1,2,3 for the lower bound.

direction of visibility. Each class of edges forms a graph that has a visibility
representation using only one direction of visibility. Our lower bound result
depends on the fact that K56 has no such visibility representation, as shown in
[10].

Lemma 1 For all sufficiently large n, Kn has no bend-free 3-D orthogonal grid
drawing.

Proof: The 3-Ramsey number R(r, b, g) is the smallest number such that any
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arbitrary coloring of the edges of KR(r,b,g) with colors red, blue and green induces
either a red Kr , or a blue Kb, or a green Kg as a subgraph. This number exists
and is finite; see for example [13].

Assume Kn, n > R(56, 56, 56), is drawn without a bend. Color an edge red
if it is parallel to an x-line, green if it is parallel to a y-line, and blue if it is
parallel to a z-line. By the choice of n, we must have a monochromatic K56,
which contradicts the fact that K56 has no visibility representation using only
one direction of visibility. Therefore Kn must have a bend in any 3-D orthogonal
grid drawing. 2

Fekete and Meijer [11] independently proved this lemma. They were inter-
ested in obtaining good bounds for the minimum such n, and therefore gave a
longer proof to show that K184 requires a bend in any 3-D orthogonal drawing.

One consequence of this lemma is that bend(n) ∈ Ω(n2).

Theorem 2 bend(n) ∈ Ω(n2).

Proof: Let c be an integer (e.g., 184) such that any 3-D orthogonal grid drawing
of Kc has a bend. For n > c, the graph Kn contains

(
n
c

)
copies of a Kc. Each

of these copies must have a bend. Any edge of Kn belongs to exactly
(
n−2
c−2

)
of

these copies of Kc. Consequently, the number of edges with a bend must be at
least (

n
c

)
(
n−2
c−2

) =
n!

c!(n− c)!
(c− 2)!(n− c)!

(n− 2)!
=

n(n− 1)
c(c− 1)

≥ n2

c2

for n ≥ c. 2

3 Constructions

The lower bound of Section 2.1 provides a volumetric goal for layout strategies
for drawings with at most k bends per edge. This section presents a construction
that achieves this lower bound with a small constant factor. For the k = 1 case,
two strategies are described and then modified to give a drawing for the k = 2
case. A simple construction that realizes the Ω(n2.5) lower bound for volume is
described in Subsection 3.3. The construction generates at most 3 bends on any
edge and hence is valid for each k ≥ 3. Whether the lower bound is attainable
when k = 1 or 2 remains an open problem.

In each of the constructions, vertices are first placed as points in a 2-D
xy-plane. Next, all the edges are routed in the same xy-plane, with overlap
and crossings of edges temporarily permitted. Then a number Z of z-planes is
introduced, and edges are assigned to these planes so that no edges overlap or
cross. The vertices are stretched into segments of z-lines.

While the VLSI and MCM literature proposes many layout constructions of
similar flavor (see e.g. [14]), our work differs from those results in several aspects.
Our constructions provide proof techniques for obtaining upper bounds for Kn;
by contrast, the VLSI literature aims to provide usable layout heuristics and
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algorithms for arbitrary input graphs. Another important difference is that the
constraint on the maximum number of bends per edge that we study in this
paper is apparently not an issue for the VLSI and MCM technologies.

3.1 Drawings of O(n3) volume for k = 1

In this section, we describe two strategies to draw Kn with at most k = 1 bend
on any edge. For simplicity, we assume in the description of our constructions
that n is divisible by 4. When this is not the case, slightly modified constructions
yield the same asymptotic bounds.

The first layout scheme draws Kn in an n× n× n-grid. The second scheme
then makes two drawings of Kn/2 (without recursion) using the first scheme;
then it positions these drawings in an n

2 × n × n
2 -grid and supplies the edges

between the two parts.

3.1.1 Drawing Kn in an n× n× n-grid for k = 1

Enumerate the vertices as v1, . . . , vn. Place vertex vi at (i, i). Route edge
e = (vi, vj), where i < j, with one bend via (i, i), (i, j), (j, j). Note that no
vertex or part of an edge is placed at a point (x, y) with y < x.

Now partition the edges of Kn into n edge sets Ea
i , Eb

i , i = 1, . . . , n
2 , defined

as Ea
i = {(vi−l+1, vi+l)|l = 1, . . . , n

2
} and Eb

i ={(vi−l, vi+l)|l = 1, . . . , n
2
−1} (all

additions are modulo n). It is easy to check that these sets indeed partition the
edges of Kn, and that neither crossings nor overlaps occur either among edges
in Ea

i or among edges in Eb
i . Hence only n z-planes are needed. See Fig. 3.

Ea
1 Ea

2 Ea
3 Ea

4

Eb
1 Eb

2 Eb
3 Eb

4

Figure 3: The sets Ea
1 , . . . , Ea

4 and Eb
1, . . . , E

b
4 for K8.

This gives the following lemma.

Lemma 2 If n is even, there exists a drawing of Kn in an n× n× n-grid with
one bend per edge such that the points {(x, y, z)|y < x} are unused.
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Proof: Represent each vertex vj , i ≤ j ≤ n, as a line segment (hence a grid box)
with endpoints (j, j, 1) and (j, j, n). Route the edges in Ea

i , 1 ≤ i ≤ n/2, in the
(z = i)-plane as described above. Similarly, route the edges in Eb

i , 1 ≤ i ≤ n/2,
in the (z =n/2 + i)-plane. This gives a crossing-free drawing with the desired
properties. 2

Remark: Note that Ea
i and Eb

i can be drawn in the same plane by reflecting
the edges of Ea

i with respect to the diagonal line through the vertices. This
yields a drawing of Kn in an n× n× n

2 -grid. This strategy is closely related to
the pagenumber of a graph (see for example [6]), and in fact, may prove a useful
idea for drawing sparse graphs.

3.1.2 Drawing Kn in an n
2 × n× n

2 -grid for k = 1

Let K1 and K2 denote two drawings of Kn/2 with coordinates as described in
the proof of the previous lemma. Thus each drawing has an n

2 × n
2 × n

2 bounding
box and initially, K1 and K2 are superimposed. Rotate K2 and its bounding
box about the y-axis clockwise by 90 degrees (looking towards +∞). Then
rotate it about the x-axis by 180 degrees. In this rotated K2, vertex vj contains
the points {(x,−j, j)|1 ≤ x ≤ n

2 }. See Fig. 4.

y

z

x(0,0,0)

A C

D

F H

E

B

G

z

x

y

F

H

A
E

B

D

C
G

x

y

E

G C

DH

B

A
F

z

K1

y

x

K2

z

Figure 4: Rotate K2 twice: first by 90 degrees about the y-axis, and then by
180 degrees about the x-axis. Finally, we show the combination of K1 and the
rotated K2. The gray area is the area that contains edges of K2.

Each vertex vi in K1 sees each vertex vj in the rotated K2 along the y-line
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segment [(i, i, j), (i,−j, j)]. Therefore, these edges can be drawn as straight line
segments, thus producing a drawing of Kn. The unused (y = 0)-plane can be
deleted to give a drawing with dimensions X = Z = n

2 and Y = n.

Theorem 3 For a given n, let N ≥ n be the smallest number that is divisible
by 4. Kn can be drawn in an N

2 × N × N
2 -grid with at most one bend per edge

and total number of bends at most N2/4−N/2.

Proof: Draw KN as described above, ignoring the N −n vertices not belonging
to Kn, and their incident edges. The volume bounds follow directly from the
construction. There are N2/4 edges drawn without a bend, and all other edges
have one bend, so the total number of bends is at most N2/4−N/2. 2

Remark: Since N ≤ n + 3, our construction has a volume of 1
4
n3 + O(n2).

3.2 A smaller O(n3) volume drawing for k = 2

A similar strategy can be applied when a maximum of k = 2 bends on an edge is
allowed. For simplicity, we assume in the description of our constructions that
n is divisible by 4. When this is not the case, slightly modified constructions
yield the same asymptotic bounds.

We draw Kn with at most two bends per edge by first making two copies
of a drawing for Kn

2
(without recursion) and then placing them in a grid of

side-length n
2 and supplying the edges connecting the two parts.

3.2.1 Drawing in an n× n
2 × n-grid

Enumerate the vertices as {v1, . . . , vn} and place vi at (x, y) = (i, 1) in a 2-D
xy-plane. To route edge e = (vi, vj), where i < j, let y = d j−i

2
e and route e via

the points (i, 1), (i, y), (j, y), (j, 1), creating two bends if y > 1 and no bends if
y = 1.

Define the edge sets Ea
i and Eb

i as above. Again there are neither crossings
nor overlaps among edges in the same set and so n z-planes suffice. Since the
largest y-coordinate is dn−1

2
e, the bounding box has dimensions n × n

2
× n.

Ea
1 Ea

2 Ea
3 Ea

4

Eb
1 Eb

2 Eb
3 Eb

4

Figure 5: The edge sets of K8 drawn with at most two bends per edge.
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Lemma 3 If n is even, there exists a drawing of Kn in an n× n
2 ×n-grid, with

a total of n2 − 3n + 2 bends and at most two bends per edge, such that the line
segment (grid box) for vertex vi contains the points {(i, 1, z)|1 ≤ z ≤ n}.
Proof: Represent each vertex vj, i ≤ j ≤ n, as a line segment (hence a grid
box) with endpoints (j, 1, 1) and (j, 1, n). Route the edges in Ea

i , 1 ≤ i ≤
n/2, in the (z = i)-plane as described above. Similarly, route the edges in Eb

i ,
1 ≤ i ≤ n/2, in the (z = n/2 + i)-plane. This gives a crossing-free drawing
with the desired volume bounds. The edges (vi, vi+1) for i = 1, . . . , n − 1 are
drawn straight; all other edges have two bends, so the total number of bends is
2(n(n− 1)/2− (n− 1)) = n2 − 3n + 2. 2

3.2.2 Drawing in an n
2 × n

2 × n
2 -grid

Let K1 and K2 denote two drawings of Kn/2 with coordinates as described in
the proof of the previous lemma. Thus each drawing has an n

2
× n

4
× n

2
bounding

box and initially, K1 and K2 are superimposed. Rotate the bounding box of
K2 as described in Section 3.1.2 and Fig. 4. Then vertex vj of the rotated K2

contains the points {(x,−1, j)|1 ≤ x ≤ n
2 }. See Fig. 6.

K1

K2

x

y

z

Figure 6: The combination of K1, and the rotated K2 (we moved K2 farther
away for clarity).

Each vertex vi in K1 sees each vertex vj in the rotated K2 along the y-line
segment [(i, 1, j), (i,−1, j)]. Therefore, these edges can be drawn as straight
lines, thus producing a drawing of Kn. The unused (y=0)-plane can be deleted
to give a drawing with dimensions X = Y = Z = n

2 .

Theorem 4 For a given n, let N ≥ n be the smallest number that is divisible
by 4. Kn can be drawn in a N

2 × N
2 × N

2 -grid with at most two bends per edge
and total number of bends at most N2/2− 3N + 4.

Proof: Draw KN as described above, ignoring the N −n vertices not belonging
to Kn, and their incident edges. The volume bounds follow directly from the
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construction, and the bound on the number of bends follows from Lemma 3,
since we have at most 2((N

2
)2 − 3N

2
+ 2) bends. 2

Remark: Since N ≤ n + 3, our construction has a volume of 1
8
n3 + O(n2).

3.3 An O(n2.5) volume drawing for k = 3

In this section, we draw Kn with at most k = 3 bends on any edge and with
volume O(n2.5). Case 2 of the lower bound proof suggests what general form
such a drawing might take. For simplicity, we assume in the description of our
constructions that n = r2 for some integer r. When this is not the case, slightly
modified constructions yield the same asymptotic bounds.

Enumerate the vertices as ordered pairs (i, j), where 1 ≤ i ≤ r, 1 ≤ j ≤ r,
and place vertex (i, j) at (2i, 2j) in the 2-D xy-plane. Suppose edge e joins
vertex (i1, j1) and vertex (i2, j2). After possible renaming, we may assume that
i1 ≤ i2, and that if i1 = i2, then j1 > j2. Call e an L-edge if j1 > j2 and a
Γ-edge otherwise. Fig. 7 shows some L-edges.

Initially route each L-edge via the points (2i1, 2j1), (2i1+1, 2j1), (2i1+1, 2j2+
1), (2i2, 2j2 +1), (2i2, 2j2), thus with three bends. Route each Γ-edge via points
(2i1, 2j1), (2i1 + 1, 2j1), (2i1 + 1, 2j2 − 1), (2i2, 2j2 − 1), (2i2, 2j2).

Split the L-edges into r(r − 1) groups Edx,dy , with 0 ≤ dx ≤ r − 1 and
1 ≤ dy ≤ r − 1. Each group Edx,dy consists of those edges ((i1, j1), (i2, j2)) for
which i2 = i1 +dx and j2 = j1−dy. These groups cover all L-edges since i1 ≤ i2
and j1 > j2 for any L-edge.

Now split each group Edx,dy into at most dx + dy sets of edges as follows.
For p = 0, . . . , dx +dy −1, let Ep

dx,dy
be the edges in Edx,dy for which j2− i1 = p

modulo (dx+dy). In other words, the lower left “corners” of the L-edges in Ep
dx,dy

lie on diagonals that intersect the y-axis at the value 2p modulo (2dx + 2dy).
See Fig. 7. It is easy to check that no two edges in Ep

dx,dy
overlap or intersect

(except at endpoints), since the corners of the L’s are placed on a sequence of
diagonals; these diagonals have a vertical spacing of 2dx +2dy between adjacent
diagonals. Also, note that Ep

dx,dy
is non-empty only if p ≤ 2r − dx − dy.1

Assign a z-plane to each set Ep
dx,dy

to obtain a legal drawing of the L-edges.
Route the Γ-edges in an analogous fashion. This doubles the number of z-planes,
yielding a drawing of Kn in a grid with X = Y = 2r = 2

√
n. The Z dimension

is given by

2
r−1∑
dx=0

r−1∑
dy=1

min{dx + dy, 2r− dx − dy},

which is shown in the following technical lemma to be no greater than 4
3r3.

Lemma 4
∑r−1

dx=0

∑r−1
dy=1 min{dx + dy, 2r− dx − dy} < 2

3
r3.

1A java applet demonstrating the sets and their routings for K100 can be found at
http://www.cs.uleth.ca/∼wismath/ortho.html. VRML constructions of any graph can be
created with the OrthoPak software package available from the above Web site.
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2dx

2dy

2dx + 2dy

(0,0) x

y

(0,0) x

y

Figure 7: The edge sets E0
1,2 and E2

1,2.

Proof: We write the values of min{dx + dy, 2r− dx − dy} in the specified range
as the following r × (r − 1)-rectangle:

1
2
3

r-2
r-1

r-2
r-2

r-2
r-2

r-2
r-2

3
32

r-1
r-1

r-1
r-1

r-1
r-1

r-1

r
r

r
r

r
r

r
r

r-1
r-1

r-1
r-1

r-1
r-1

r-1
r-2

r-2
r-2

r-2
r-2

r-2 23
3

0 1 2 r-3 r-2 r-1

1
2
3
4

r-1
r-2

dy

dx

min{dx + dy, 2r− dx − dy}

The sum of the r − 1 lower diagonals is
∑r−1

k=1 k2. The sum of the r − 1 upper
diagonals is

∑r−1
k=1 k(k + 1). Hence the total sum is

r−1∑
k=1

k2 +
r−1∑
k=1

k(k + 1) = 2
r−1∑
k=1

k2 +
r−1∑
k=1

k =
(r − 1)r(2r − 1)

3
+

r(r − 1)
2

=
(r − 1)r(4r− 2 + 3)

6
=

4r3 − 3r2 − r

6
<

2
3
r3.

2

Theorem 5 For a given n, let r = d√n e and let N = r2. Then Kn can be
drawn in a 2r× 2r× 4

3
r3-grid with 3

2
N2 − 15

2
N + 6

√
N bends and at most three

bends per edge.

Proof: Draw KN as described above, ignoring the N −n vertices not belonging
to Kn, and their incident edges. The volume bounds follow directly from the
construction.

Every edge has three bends, except the 2r(r− 1) = 2N − 2
√

N edges where
dx = 0 and dy = 1, or dx = 1 and dy = 0, which can be drawn without
a bend. So the total number of bends is 3(N2/2 − N/2) − 3(2N − 2

√
N) =

3
2N2 − 15

2 N + 6
√

N . 2



T. Biedl et al., Orthogonal 3-D Graph Drawing , JGAA, 3(4) 63-79 (1999) 77

Remark: Since r = d√n e <
√

n+1, we have N ≤ n+2
√

n, so our construction
has a volume of 16

3
N2.5 = 16

3
n2.5 + O(n2.25).

4 Conclusions

This paper is one of the first to address volume and bend considerations for 3-D
orthogonal grid drawings of graphs. The focus has been on Kn, since it is the
most difficult graph on n vertices to draw in small volume or with restrictions
on bends. In particular, we have

• provided a method for drawing Kn with volume that is provably within a
constant factor (same constant for all n) of best possible in the case that
at most k bends per edge are allowed, where k ≥ 3;

• proved a lower bound of Ω(n2.5) and an upper bound of O(n3) on the
volume of drawings of Kn when k = 1 and k = 2;

• proved a lower bound of Ω(n2) on the number of bends, which is matched
by our constructions.

An open problem is to close the gap between the upper and lower bounds in
the k = 1 and k = 2 cases, where at most 1 and at most 2 bends on each edge
are permitted, respectively. Another interesting problem is to find upper and
lower bounds that depend not only on the number of vertices n but also on the
number of edges m.
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