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Abstract

Two-player win-lose games have a simple directed graph representa-

tion. Exploiting this, we develop graph theoretic techniques for finding

Nash equilibria in such games. In particular, we give a polynomial time

algorithm for finding a Nash equilibrium in a two-player win-lose game

whose graph representation is planar.
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1 Introduction

A win-lose game is a game in which the payoff to every player is either zero
or one. In this paper we consider two-player win-lose games. Here payoffs are
given by two m×n zero-one matrices A and B for players I and II, respectively.
If player I plays the pure strategy row ri, 1 ≤ i ≤ m, and player II plays the
pure strategy column cj , 1 ≤ j ≤ n, then player I receives the payoff aij and
player II receives bij .

Our interest in two-player win-lose games is motivated by recent ground-
breaking work regarding the complexity of finding Nash equilibria1. Specifically,
Daskalakis, Goldberg and Papadimitriou [8, 7] instigated a series of papers in-
vestigating the hardness of finding equilibria in k-player normal-form games.
The cumulation of this work was the result of Chen and Deng [2] showing that
the Nash equilibrium problem in two-player games is PPAD-complete. Further-
more, Abbott, Kane, and Valiant [1] showed that finding a Nash equilibrium in a
two-player win-lose game is as hard as in general games. In fact, a recent result
of Chen, Teng and Valiant [3] shows that even approximating Nash equilibria to
a logarithmic number of bits is hard. Codenotti and Stefankovic [5] show that
determining whether there are at least two Nash equilibria is NP-complete for
win-lose games.

So solving win-lose games is hard even in the two-player case. This im-
mediately leads to the following question: are there win-lose games for which
polynomial time algorithms exist for finding a Nash equilibrium? In particular,
what structural properties of a win-lose game are sufficient to guarantee the
existence of a polynomial time algorithm?

Interestingly, the structural properties that we are interested in may be
viewed as graph theoretic properties. To see this, observe that there is a very
simple bipartite digraph representation2 of a two-player win-lose game G. We
have one vertex for each pure strategy; that is, our digraph G has one vertex
for each row ri and one vertex for each column cj . We have an arc (ri, cj) if the
entry aij = 1; observe that in this case the pure strategy ri is a best response
for player I to the pure strategy cj . Similarly, we have an arc (cj , ri) if the entry
bij = 1.

Given this digraph representation, in order to design good algorithms for
finding equilibria, we need to answer the following questions:

(i) What combinatorial structures correspond to Nash equilibria?
(ii) Can we search for these combinatorial structures in an efficient
manner?

This paper, therefore, considers these two questions. Firstly, we present a
range of combinatorial structures that produce Nash equilibria. For example,

1Briefly: a mixed strategy for a player is a probability distribution over the set of pure

strategies for that player. A pure strategy is a best response to an opponents mixed strategy

if it maximises the player’s expected payoff. A pair of mixed strategies is a Nash equilibrium if

each pure strategy that is played with non-zero probability is a best response to the opponent’s

mixed strategy.
2This representation differs from the more complex strategy profile graph.
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one of the main structures we look for relates to induced cycles (see Section 2.2
for details). With regards to the second question, we show how to efficiently
find a Nash equilibria if the graph representation is planar. The key to this is
a proof that one of the desired combinatorial structures must arise in a planar
graph. A polynomial time algorithm then follows by applying basic network
connectivity algorithms and standard planar graph drawing techniques.

We remark that the restriction to planar graphs is a strong one. In particular,
it is certainly not clear that planarity is a common property amongst games.
However, we believe our approach is useful for three reasons. Firstly, it is crucial
to try to understand what games can be solved in polynomial time. There are
very few classes of games with polytime algorithms and so obtaining non-trivial
examples is an important task. Secondly, interpreting equilibria combinatorially
is of interest in its own right; moreover, this combinatorial viewpoint could also
have wider application. Thirdly, our basic approach will actually work on most
graphs. Specifically, for the approach to fail, a graph must not exhibit a relevant
combinatorial structure anywhere within it. Typically a graph will have such
structures; for example, a random graph will have one of the desired structures
with high probability.

1.1 Related Work

Independently of this work, Codenotti, Leoncini and Resta [4] also consider a
restricted subset of win-lose games. They show that in the case where the num-
ber of winning entries in each row and column of both payoff matrices is at most
two, a Nash can be found in polynomial (in fact linear) time. Their approach is
similar in flavour to ours; they also use structural results on a digraph computed
from the game, and rely on finding certain structures that correspond to Nash
equilibria. In particular, their definition of a “bump-free cycle” corresponds
almost exactly to undominated cycles in our paper (the only difference being
that the arrows in their representation have the opposite orientation to ours).
However, the techniques they use rely on the digraph having maximal indegree
and outdegree at most two, and do not carry over to the class of planar graphs.
The structures our algorithm searches for (induced undominated cycles) are not
guaranteed to exist in their case, and so their algorithm searches for a broader
class of structures.

2 Basic Operations and Combinatorial Struc-

tures

Take the digraph representation G, with vertex bipartition R ∪ C, of our game
G.
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2.1 A Reduction to Strongly Connected Digraphs

In this section we show that we can reduce our problem to searching for Nash
equilibria in strongly connected digraphs (this observation was also made in [4]).
We begin by presenting some results which give very simple structures corre-
sponding to Nash equilibria.

Claim 1 A pair of vertices ri ∈ R, cj ∈ C satisfying both δ−({ri}) = ∅ and
δ−({cj}) = ∅ forms a pure strategy Nash equilibrium.

Proof: If δ−({ri}) = ∅ then bij = 0 for all strategies cj . Thus, every column
is a best response for player II to row ri. Similarly, if δ−({cj}) = ∅ then every
row is a best response for player I to column cj . Therefore, the pair ri and cj

is a pure strategy Nash equilibrium. 2

Claim 2 A pair of vertices u, v with (u, v) ∈ A and δ−({u}) = ∅ forms a pure
strategy Nash equilibrium.

Proof: We may assume that u = ri and v = cj . Since (ri, cj) is an arc we see
that ri is a best response for player I against row cj . Every column is a best
response to row ri, so the pair forms a pure strategy Nash equilibrium. 2

Clearly, in the first stage of any algorithm, we can efficiently search in lin-
ear time for the equilibria described in Claims 1 and 2. Henceforth, we may
assume that our digraph G contains no pair of vertices with the correspond-
ing properties. Consequently, G must consist of weakly connected components
(components whose underlying undirected graph is connected) plus singleton
vertices all on the same side of the bipartition.

We denote by Γ+(v) the outneighbours of a vertex v, and by Γ+

S (v) the
outneighbours that are elements of S ⊆ V . In a win-lose game, a vertex (pure
strategy) v is weakly dominated if there is another vertex u for which Γ+(v) ⊂
Γ+(u). Thus, we also have the following simple claim.

Claim 3 A vertex v with δ+({v}) = ∅ is weakly dominated. 2

Observe that G contains at least one non-singleton weakly connected compo-
nent, otherwise we have a Nash equilibria by Claim 1. In addition, there is at
least one vertex in G that weakly dominates every isolated vertex otherwise we
have a Nash equilibria by Claim 2. Since at least one Nash equilibrium survives
if we iteratively delete weakly dominated strategies, we may discard isolated
vertices and then look for a Nash equilibrium in the resultant graph.

Now let G[S] be the subgraph induced by S ⊆ V . Clearly this corresponds to
a two-player win-lose game whose pure strategies are the elements of S. Making
the assumptions on G noted above (namely that G has no Nash equilibria of
the form considered in Claims 1 and 2, and has no isolated vertices), we obtain

Lemma 2.1 If S ⊆ V is a weakly connected induced subgraph of G with δ−(S) =
∅ then a Nash equilibrium in G[S] is a Nash equilibrium in G.
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Proof: We first note that S must contain both row and column vertices. For
suppose not; then since S is weakly connected, it must be a singleton. But this
means we must have either an isolated vertex, or a Nash of the form considered
in Claim 2, a contradiction.

So take a Nash equilibrium in G[S] consisting of a probability distribution p
on the rows of S and a probability distribution q on the columns of S. Extend
these to distributions p′ and q′ on the row and columns in V in the obvious
way; that is, p′ri

= pri
if ri ∈ S and p′ri

= 0 if ri /∈ S (define q′ in a similar
fashion). Then p′ and q′ form a Nash equilibrium in G. This follows simply
from the observation that any pure strategy cj /∈ S (respectively ri /∈ S) has
zero expected payoff if player I (respectively player II) used the mixed strategy
p′ (respectively q′) since δ−(S) = ∅. 2

Now if G is not strongly connected, we must be able to find a weakly con-
nected S ⊆ V with δ−(S) = ∅, and so we need consider only G[S] by the above
lemma. So we may assume that G is strongly connected. Implementing this
phase of the algorithm to reduce the problem size is also easy. We just need to
find the strongly connected components of G; this can be done in linear time
([9], [6]).

2.2 Nash equilibria and Induced Cycles

So far we have seen some very simple graph structures that correspond to Nash
equilibria. Here we will see one more. We use the following notation. We say
that a bipartite digraph is (α, β)-outregular if each vertex ri ∈ R has outdegree
exactly α, and each vertex cj ∈ C has outdegree exactly β. Then

Lemma 2.2 Let S ⊆ V induce an (α, β)-outregular graph. Suppose |Γ+

S (ri)| ≤
α for all ri /∈ S and |Γ+

S (cj)| ≤ β for all cj /∈ S. Then the uniform distributions
on S ∩ R and S ∩ C give a Nash equilibrium.

Proof: Clearly if player I uses the uniform distribution p on S ∩ R then each
pure strategy in S∩C gives player II an expected payoff of β

|S∩R| . However, any

pure strategy cj not in S∩C gives player II an expected payoff of at most β
|S∩R| .

Thus the uniform distribution q on S ∩C is a best response to p. Similarly, p is
a best response to q. 2

We will call a cycle C dominated if we can find a vertex v not on the cycle
such that there are at least two arcs originating from v and terminating on C.
So, for the simplest case α = β = 1, Lemma 2.2 gives the following corollary.

Corollary 2.3 Let G[S] be an induced cycle. If the cycle is not dominated by
any vertex v /∈ S then S corresponds to a Nash equilibrium. 2

We remark that if an induced cycle G[S] is dominated then the pair of
uniform distributions on the respective bipartitions of the cycle will not produce
a Nash equilibrium. So our goal is to find an undominated induced cycle. In
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addition, observe that a digon, by bipartiteness, cannot be dominated. Thus, if
|S| = 2 then the induced cycle corresponds to a pure strategy Nash equilibria.
Searching for undominated induced cycles will be an important tool in finding
Nash equilibria in planar digraphs.

3 Planar Graphs

We now present the polynomial time algorithm for win-lose games in which
the auxiliary graph is planar. Our proof relies on a structural result regarding
induced cycles in planar graphs. Specifically we will show that any strongly
connected, planar, bipartite graph contains an undominated induced cycle.

We will call a graph non-trivial if it has at least one edge.

Theorem 3.1 Any non-trivial, strongly connected, bipartite, planar graph has
an undominated induced cycle.

Before proving Theorem 3.1, let us see that its conditions cannot be relaxed.
The planarity assumption is necessary as non-planar counterexamples exists.
Figure 1, an orientation of K3,3, is such an example.

Figure 1: A non-planar counterexample.

Bipartiteness is also necessary. See Figure 2 for a planar, nonbipartite
counter-example. This is irrelevant from the perspective of games as non-
bipartite graphs have no clean game theoretic interpretation. It is perhaps
interesting, though, that the existence of this graph theoretic structure does
rely upon this basic game theoretic assumption.

Let’s move towards the proof of Theorem 3.1. We begin with the following
lemma.

Lemma 3.2 Any planar embedding of a non-trivial strongly connected graph G
has at least two facial cycles.

Proof: Consider the (directed) planar dual G∗. Observe that a directed cut in
G corresponds to a cycle in G∗. Therefore, as G is strongly connected, G∗ must
be acyclic. So G∗ has at least one source and at least one sink. Moreover, a
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Figure 2: A non-bipartite counterexample.

source or sink in G∗ corresponds to a facial cycle in G. Thus, there are at least
two facial cycles. 2

For the next lemma we use the following notation. Given a cycle C in G,
let the removal of C partition the plane into two regions R1 and R2. Let Gi,
i = 1, 2, be the graph consisting of vertices and arcs in the closure of Ri, denoted
by cl(Ri).

Lemma 3.3 The graphs G1 and G2 are both strongly connected.

Proof: Take any pair of vertices u, v in G1. There is a path from Puv from u
to v in G. This may use vertices in G−G1. Let a1 = (c1, x1) and a2 = (x2, c2)
be, respectively, the first and last arcs of Puv that are in R2. Then c1 and c2

are on C, so we may replace the sub-path from a1 to a2 using the path from c1

to c2 in C. Thus G1 is strongly connected. Similarly, G2 is strongly connected.
2

Theorem 3.4 Any non-trivial, strongly connected, bipartite, planar graph con-
tains an undominated facial cycle.

Proof: Let G be a minimal counterexample. By Lemma 3.2, G contains a facial
cycle C. It must be dominated by some vertex v; observe that, by bipartiteness,
this implies that C is not a digon. Take x, y ∈ V (C) such that (v, x) and (v, y)
are arcs in G. The set {(v, x), (v, y)} ∪ C divides the plane into 3 regions: the
face F surrounded by C, and two other regions A1 and A2. Without loss of
generality, we take F to be the outer face; see Figure 3.

Since G is strongly connected, we can find a path to v from one of x, y that
does not use the other. Such a path must be contained in cl(A1) or cl(A2),
because {v, x, y} is a separator in G. As C also provides a path between x and
y in either direction, it follows that there are paths from x and y to v both
contained in either cl(F ∪A1) or cl(F ∪A2). Without loss of generality, suppose
it is the former. Applying similar arguments to those of Lemma 3.3, we have
that the subgraph G′ induced by cl(F ∪ A1) is strongly connected. Clearly
G′ is also bipartite and planar; we claim it has no undominated facial cycles.
Suppose not, then there must be a facial cycle D that is dominated in G but
undominated in G′. This is only possible if D contains both x and y, since
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Figure 3: A dominated cycle. Note that there may be more (or less) vertices
than shown on C.

v
x y

F
C

D

A2

Px Py

Figure 4: Finding a smaller counterexample

{v, x, y} is a separator in G, and v is on the other side of the bipartition to x
and y. D must contain v also, else v itself would dominate D. Let Px be the
subgraph contained in A1 bounded by D and (v, x), and similarly let Py be the
subgraph bounded by D and (v, y); see Figure 4. Note that at least one of Px

and Py is non-empty and has an outer facial cycle, since one of (v, x) and (v, y)
is counter to the direction of D; by Lemma 3.3, it follows that it is strongly
connected. It also cannot be dominated from outside itself, because the removal
of {v, x} (respectively {v, y}) separates Px (respectively Py) from the rest of
the graph, and v lies on the other side of the bipartition from x and y. This
contradicts the minimality of G. So G′ is also a counterexample, and therefore
G = G′ by minimality.

Hence, the region A2 is empty. Now let Ci be the part of C bordering Ai,
for i = 1, 2. Let H be the graph obtained by removing C2 from G (that is,
removing all of its edges, and all of its vertices other than x and y). Now take
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Figure 5: Finding an undominated induced cycle.

the strongly connected component S of H containing v. It contains at least two
vertices, since there is a path from either y or x to v in G not using C2, and
so either x or y is in the same component. Note that there is a path from v to
any other vertex in H, so any vertex in H with an outneighbour in S is also in
S. Thus, any cycle that is not dominated in S is not dominated in G because
the vertices in C2 − {x, y} have outdegree one. This implies that S is a smaller
counterexample, contradicting the minimality of G. 2

Lemma 3.5 An undominated facial cycle in a strongly connected, bipartite,
planar graph has an undominated induced subcycle.

Proof: Denote the undominated facial cycle by C; without loss of generality,
take the related face F to be the outer face. We need only show that the graph
induced by C, say H = G[C], has an undominated induced cycle, since C is
undominated from outside.

By Lemma 3.2, H has another facial cycle D aside from the outer facial
cycle. Observe that D must consist of edges in C and chords between vertices
of C. Since there can be no chords inside D, nor outside D (unless H has a
digon, in which case we’re done), D is an induced cycle. Now take any v ∈ H,
v /∈ D. There must be a chord (p, q) ∈ D such that v and D\{p, q} are in
different components of H\{p, q}; see Figure 5. Thus the only vertices of D
where v could dominate are p and q; but since these are on different sides of the
bipartition, this is impossible. Thus D is undominated. 2

Thus we obtain our main structural result.
Proof of Theorem 3.1. The theorem follows immediately from Theorem 3.4 and
Lemma 3.5. 2

This also gives a polynomial time algorithm for finding a Nash equilibrium
in two-player planar win-lose games. As we have seen we can implement the
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techniques of Section 2 efficiently; thus, we may assume that G is strongly
connected. The proof of Theorem 3.1 is constructive. The faces of a planar
embedding correspond to vertices of the dual; the dual can be also be found
in polynomial time. Then consider each face (including the outer face) of any
planar embedding in turn, until we find an undominated facial cycle (which
we know exists). Finally, find an induced cycle of this facial cycle; this is an
undominated induced cycle, and hence a Nash equilibrium. So we have our
main result.

Theorem 3.6 There is a polynomial time algorithm for finding a Nash equilib-
rium in a two-player planar win-lose game. 2

4 Conclusion

Two natural questions arise. On the positive side, on what other classes of
graphs can Nash equilibria be efficiently obtained? On the negative side, for
which classes of graphs is the problem hard?

Acknowledgments

We would like to thank the referees for their helpful comments, and particularly
for pointing out the related work in [4]. The second author would also like to
thank Joel Phillips for some useful discussions.



Addario-Berry et al., Planar Win-Lose Games, JGAA, 11(1) 309–319 (2007)319

References

[1] T. Abbott, D. Kane, and P. Valient. On the complexity of two-player win-
lose games. In Proceedings of the 43rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 113–122, 2005.

[2] X. Chen and X. Deng. Settling the complexity of 2-player Nash-equilibrium.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 261–272, 2006.

[3] X. Chen, S. Teng, and P. Valiant. The approximation complexity of win-
lose games. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 159–168, 2007.

[4] B. Codenotti, M. Leoncini, and G. Resta. Efficient computation of Nash
equilibria for very sparse win-lose games. In Proceedings of the 14th Annual
European Symposium on Algorithms (ESA), pages 232–243, 2006.

[5] B. Codenotti and D. Stefankovic. On the computational complexity of
Nash equilibria for (0, 1) bimatrix games. Information Processing Letters,
94(3):145–150, 2005.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms.
McGraw-Hill, second edition, 2001.

[7] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of com-
puting a Nash equilibria. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (STOC), pages 71–78, 2006.

[8] P. Goldberg and C. Papadimitriou. Reducibility among equilibrium prob-
lems. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC), pages 61–70, 2006.

[9] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.


