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Abstract

Graphs are an extremely general and powerful data structure. In pat-
tern recognition and computer vision, graphs are used to represent pat-
terns to be recognized or classified. Detection of maximum common sub-
graph (MCS) is useful for matching, comparing and evaluate the similarity
of patterns. MCS is a well known NP-complete problem for which optimal
and suboptimal algorithms are known from the literature. Nevertheless,
until now no effort has been done for characterizing their performance.
The lack of a large database of graphs makes the task of comparing the
performance of different graph matching algorithms difficult, and often the
selection of an algorithm is made on the basis of a few experimental re-
sults available. In this paper, three optimal and well-known algorithms for
maximum common subgraph detection are described. Moreover a large
database containing various categories of pairs of graphs (e.g. random
graphs, meshes, bounded valence graphs), is presented, and the perfor-
mance of the three algorithms is evaluated on this database.
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1 Introduction

Graphs are a powerful and versatile tool that is used in various subfields of
science and engineering. There are several applications, for example, in pattern
recognition [12, 13, 22, 28, 29, 35, 37], machine learning [21], computer vision
[14], image and video analysis [9, 11, 24, 26, 38] and information retrieval [19],
where there is the need to measure the similarity between objects. If graphs are
used for the representation of structured objects, then matching and comparing
objects becomes equivalent to determining the similarity between graphs ([1]).

There are several well known relations between graphs that are a suitable
basis for defining graph similarity measures. Graph isomorphism is useful to
find out if two graphs have identical structure [39]. More generally, subgraph
isomorphism (i.e. an isomorphism between a graph and a subgraph of another
graph) can be used to check if one graph is part of another [39, 18]. In two recent
papers [7, 8], graph similarity measures based on maximum common subgraph
and minimum common supergraph have been proposed, verifying if two graphs
share a common part.

Detection of the maximum common subgraph of two given graphs is a well-
known problem. In [27], an algorithm for solving this problem is described and
in [15, 36] the use of this algorithm for comparing molecular structurs has been
discussed. In [32] a maximum common subgraph algorithm that uses a backtrack
search strategy is introduced. Other algorithms adopt a different strategy for
deriving the maximum common subgraph, first obtaining the association graph
of the two given graphs and then detecting its maximum clique [2, 5, 20, 33].

It is well known that both maximum common subgraph and maximum clique
detection are NP-complete problems [25]. Therefore many approximate algo-
rithms have been developed. A survey of such approximate algorithms, including
an analysis of their complexity and potential applications is provided in [4].

Although a significant number of maximum common subgraph detection
algorithms have been proposed in the literature, until now no effort has been
spent for characterizing their performance: the authors of each novel algorithm
usually provide experimental results supporting the claim that, under suitable
hypotheses, their method can outperform the previous ones. Nevertheless it is
almost always very difficult for an user to choose the algorithm which is best
suited for dealing with the problem at hand. In fact, a report of the algorithm
performance on a specific test case can often provide no useful clues about what
will happen in a different domain.

Unfortunately, only a few papers face the problem of an extensive compari-
son of graph matching algorithms in terms of key performance indices (memory
and time requirements, maximum graph size, etc.) [10, 17]. So, it seems that
the habit of proposing more and more new algorithms is prevailing against the
need of assessing the performance of the existing ones in an objective way. As a
consequence, the users of graph-based approaches can only use qualitative cri-
teria to select the algorithm that seems to better fit the application constraints.
There is little or no information on how the behavior of these algorithms varies
as the type and the size of the graphs to be matched change from an application
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to another.
The first type of comparison that can be easily performed between different

algorithms is a theoretical comparison. In fact it is possible to estimate the
computational complexity of each algorithm in the worst case and in the best
case. A common problem is that users of graph matching algorithms have to
choose an algorithm, in a group of algorithms, that best fits their problem.
In many cases a real problem can be suitably represented using one or more
categories of graphs having known parameters (e.g. number of nodes, edge
density); thus a description of an algorithm through its the behavior in the best
or the worst case could be insufficient.

We can suppose, for instance, that algorithms A1 and A2 are available to
solve a given graph matching problem, and that the algorithm A1 is faster of
the algorithm A2 in the best case and in the worst case. Is this characterization
enough to prefer the algorithm A1 to the other? Of course it is not. The user
needs more details on the behavior of the two algorithms, to choose the best one.
In particular the information that the user needs is: which algorithm performs
better on those graphs describing his problem? The answer of this question is
not simple at all.

Firstly a more detailed theoretical analysis should be performed. Since the
information concerning the complexity in the best and in the worst case is not
sufficient for comparing algorithms, another parameter that can be used is the
computational complexity in the average case. Indeed, even if the computational
complexity in the worst case of the algorithm A2 is higher than the complexity
of A1, the average computational complexity for A2 may happen to be lower
than the one of A1.

Unfortunately the average case complexity can be analytically determined
for simple algorithms, but this may prove an impossible task for several algo-
rithms solving graph matching problems. The only possibility is to perform a
wide experimental comparison of different graph matching algorithms, for mea-
suring their performance on a large graph database containing many categories
of graphs.

Moreover the comparison between different graph matching algorithms is a
very important task because in general it is impossible to find the ‘best’ algo-
rithm: it is just possible to find an algorithm that performs better on a restricted
category of graphs, but till now no effort has been spent to establish which al-
gorithm is more convenient on each category of graphs, probably because of the
lack of standard databases of graphs specifically designed for this purpose.

In other research fields (for example, OCR), the availability of large de-
facto standard databases improves the verifiability and the comparability of the
experimental results of each method: thus our aim is to provide a standard
database of graphs also for graph matching problems.

The creation of a graph database is definitely not a simple task, since several
issues have to be taken into account. The first problem is to decide whether
the graphs should be collected from real-world applications or they should be
synthetically generated (as in [6]), according to some probabilistic model. The
latter choice, besides being simpler to implement, permits a finer control over
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the features of the graphs; the models for the synthetic generation of graphs
have to be derived from the analysis of graphs in real applications.

In this paper we present a synthetically generated large database containing
various categories of attributed graph, i.e. randomly connected graphs, 2D, 3D
and 4D regular and irregular meshes, regular and irregular bounded valence
graphs; for each category we have generated pairs of graphs having a known
maximum common subgraph.

Graphs used in pattern recognition applications have usually attributes on
nodes and edges, due to the fact that graphs are used to represent the structural
information of the patterns and nodes and edges attributes are used to store
the quantitative information of the single parts of each pattern and of their
interconnections. Thus, to make the proposed database more useful in the
pattern recognition community, attributes on nodes and edges are introduced.
The main problem is that attributes are strongly application dependent, but our
aim is to realize a database that can be used to test graph matching algorithms,
apart from their application domain.

MCS algorithms can be grouped in many categories: optimal graph matching
algorithms are more robust, but also considerably slower than suboptimal ones.
Suboptimal algorithms can be quite faster, but may fail in finding a solution
even if it exists. Some algorithm can be quite slow when matching two graphs,
but show a considerable speed-up when matching one graph against a large
set of prototypes. Other algorithms can be impressive on small graphs, but,
due to a significant memory usage, can result definitely inapplicable to larger
ones. As a consequence, a comparison is meaningful only if the algorithms being
compared have similar characteristics; otherwise little or no useful information
can be gained. In this paper three optimal algorithms are described and used
for the purposes of the benchmarking activity.

The first algorithm searches for the maximum common subgraph by finding
all common subgraphs of the two given graphs and choosing the largest [32];
the second algorithm builds the association graph between the two given graphs
and then searches for the maximum clique of the latter graph [20]. The third
algorithm also searches for the maximum clique, but uses more sophisticated
graph theory concepts for determining upper and lower bounds during the search
process.

We have chosen the most representative algorithms between those present
in scientific literature. As we show in [16] the maximum common subgraph is
an exact matching problem and it is solved, mainly, by techniques based on tree
search. The chosen algorithms are widely used and many other algorithms, also
based on tree search, can be considered as derived from them.

The remainder of the paper is organized as follows. In Section 2, basic
terminology and concepts will be introduced. Next, in Section 3 the three
algorithms for maximum common subgraph detection will be described , while
in Section 4 the database of graphs is presented. Experimental results are
reported in Section 5. Finally, future work is discussed and some conclusions
are drawn in Section 6.
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2 Basic Definitions

Let L denote a finite set of labels for nodes and edges.

Definition 1 A graph is a 4-tuple g = (V,E, α, β), where

• V is the finite set of vertices (also called nodes)

• E ⊆ V × V is the set of edges

• α : V → L is a function assigning labels to the vertices

• β : E → L is a function assigning labels to the edges

Edge (u, v) originates at node u and terminates at node v. An undirected
graph is obtained as a special case if there exists an edge (v, u) ∈ E for any edge
(u, v) ∈ E with β(u, v) = β(v, u). Node and edge labels come from the same
alphabet, for notational convenience.

Definition 2 Let g = (V,E, α, β) and g′ = (V ′, E′, α′, β′), be graphs; g′ is an
induced subgraph of g, g′ ⊆ g, if

• V ′ ⊆ V

• α(v) = α′(v) for all v ∈ V ′

• E′ = E ∩ (V ′ × V ′)

• β(e) = β′(e) for all e ∈ E′

From Definition 2 it follows that, given a graph g = (V,E, α, β), any subset
V ′ ⊆ V of its vertices uniquely defines a subgraph. This subgraph is called the
subgraph induced by V ′.

A matching process between two graphs g and g′ consists in the determina-
tion of a mapping M which associates nodes of the graph g with nodes of g′ and
vice versa. As it is well known, different constraints can be imposed to M , and
consequently different mapping types can be obtained: isomorphism, subgraph
isomorphism and maximum common subgraph are the most frequently used.

Definition 3 Let g and g′ be graphs. A graph isomorphism between g and g′

is a bijective mapping f : V → V ′ such that

• α(v) = α′(f(v)) for all v ∈ V

• for any edge e = (u, v) ∈ E there exists an edge e′ = (f(u), f(v)) ∈ E′

such that β(e) = β′(e′), and for any edge e′ = (u′, v′) there exists an edge
e = (f−1(u), f−1(v)) ∈ E such that β(e) = β′(e′)

If f : V → V ′ is a graph isomorphism between graphs g and g′, and g′ is an
induced subgraph of another graph g′′, i.e., g′ ⊆ g′′, then f is called a subgraph
isomorphism from g to g′′.
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Definition 4 Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) be graphs. A
common subgraph of g1 and g2, cs(g1, g2), is a graph g = (V,E, α, β) such that
there exist subgraph isomorphisms from g to g1 and from g to g2. We call g a
maximum common subgraph of g1 and g2, mcs(g1, g2), if there exists no other
common subgraph of g1 and g2 that has more nodes than g.

Notice that, according to Definition 4, mcs(g1, g2), is not necessarily unique
for two given graphs; usually there exist more than one maximum common
subgraph for two given graphs. We will call the set of all maximum common
subgraphs of a pair of graphs their MCS set.

Example 1 A graphical representation of two graphs, g1 and g2, is given in
Figure 1. For those graphs, we have:

• V1 = 1, 2, 3; V2 = 4, 5, 6; L = a, b, c, 1, 2

• E1 = (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2);

E2 = (4, 5), (5, 4), (4, 6), (6, 4), (5, 6), (6, 5)

• α1 : 1 → a, 2 → b, 3 → c

• α2 : 4 → a, 5 → b, 6 → c

• β1 : (1, 2) → 1, (2, 1) → 1, (1, 3) → 1, (3, 1) → 1, (2, 3) → 1, (3, 2) → 1

• β2 : (4, 5) → 2, (5, 4) → 2, (4, 6) → 1, (6, 4) → 1, (5, 6) → 1, (6, 5) → 1

There exist two maximum common subgraphs g3 = (V3, E3, α3, β3) and g4 =
(V4, E4, α4, β4):

• V3 = 7, 8; V4 = 9, 10

• E3 = (7, 8), (8, 7); E4 = (9, 10), (10, 9)

• α3 : 7 → a, 8 → c

• α2 : 9 → a, 10 → c

• β3 : (7, 8) → 1, (8, 7) → 1

• β4 : (9, 10) → 1, (10, 9) → 1

These graphs are also shown in Figure 1.

3 The Selected Maximum Common Subgraph

Algorithms

In this section we will provide a description of the three algorithms that will
be used for our experimental comparison. These algorithms are quite similar
under several respects. They all belong to the category of exact, or optimal,
matching algorithms, as opposed to approximate or suboptimal ones, in the
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sense that they always find the correct MCS, and not an approximate solution
to the problem. Since MCS is a NP-complete problem, their worst case time
complexity is exponential (more precisely, factorial) with respect to the number
of nodes in the graphs. Also, as we will see in the next subsections, their
structure is quite similar: they perform a depth first search, with the help of
some heuristic for pruning unfruitful search paths.

The differences among the three algorithms actually lie only in the informa-
tion used to represent each state of the search space (that is reflected in their
different space complexity), and in the kind of heuristic adopted.

The choice of three similar algorithms has been made for the purpose of
enabling a more effective interpretation of the experimental results: by reducing
to a minimum the possible causes of the measured performance diversity, it will
be easier to find a convincing explanation.

3.1 McGregor Algorithm

This algorithm can be suitably described through a State Space Representa-
tion [34]. Each state s represents a common subgraph of the two graphs un-
der construction. This common subgraph is part of the maximum common
subgraph to be eventually formed. In each state a pair of nodes not yet an-
alyzed (n1,n2), the first belonging to the first graph and the second belong-
ing to the second graph, is selected (whenever it exists) through the function
NextPair(s,n1,n2). The selected pair of nodes is analyzed through the func-
tion IsFeasiblePair(s,n1,n2) that checks whether it is possible to extend
the common subgraph represented by the current state by means of this pair,

Figure 1: Two graphs and their maximum common subgraphs.
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so obtaining a larger common subgraph. If the extension is possible, then the
function AddPair(n1,n2) actually extends the current partial solution by the
pair (n1,n2). After that, if the current state s is not a leaf of the search tree,
i.e. if there exists at least a node belonging to the first graph that hasn’t yet
been selected through the function NextPair, then this node is selected and the
analysis of a new state is started. After the new state has been analyzed, a
backtrack function is invoked, to restore the common subgraph of the previous
state and to choose a different new state. Using this search strategy, whenever
a branch of the search tree is chosen, it will be followed as deeply as possible
until a leaf is reached, or until a pruning condition is verified. The algorithm
stores the current level of the search tree; the value of this level is always less
than or equal to the size of the smaller of the two starting graphs. The size
of the maximum common subgraph is also less than or equal to the size of the
smaller of the two starting graphs, thus the pruning condition checks whether
the number of levels from the current one to the most distant leaf of the search
tree is not enough to construct a common subgraph larger than the stored one.
It is noteworthy that each branch of the search tree has to be followed, because
- except for trivial examples - is not possible to foresee if a better solution exists
in a branch that has not yet been explored. A special node, the null node, i.e.
a node that is compatible with any other node is also needed. Actually, after
that a node n1 is matched with all the nodes n2, it is finally matched with
the node null node. This process ensures the exploration of the whole search
tree, avoiding that branches containing the best solution are cut before their
complete exploration.

The first state is the empty state, in which no nodes have yet been matched.
A pseudo-code description of McGregor algorithm is shown in Figure 2. An
example of the McGregor algorithm application is sketched in Figure 3.

Figure 2: A sketch of McGregor algorithm.

Let N1 and N2 be the number of nodes of the first and the second graph
respectively, and let N1 ≤ N2. In the worst case, i.e. when the two graphs are
completely connected and the size of the alphabet of attributes is 1, the number
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of states s examined by the algorithm is:

S = (N2 + 1)(N2) · . . . · (N2 − N1 + 2) =
(N2 + 1)!

(N2 − N1 + 1)!
(1)

Figure 3: a) two directed graphs, G1 and G2; b) three maximum common
subgraphs between G1 and G2; c) a part of the search tree explored by McGregor
algorithm. In each state S(·, ·) a pair of nodes, the first belonging to the graph
G1, and the second belonging to the graph G2 is selected and it is checked
whether this pair of nodes can extend the current common subgraph. The
states contained in a thick oval are those in which the current maximum common
subgraph has been detected.

In this case the algorithm will explore (N2+1) nodes at level 1, N2 at level 2,
(N2 −1) at level 3, up to (N2 −N1 +2) at level N1. Multiplying these numbers,
we obtain the number of states of the worst case.



D. Conte et al., Maximum Common Subgraph, JGAA, 11(1) 99–143 (2007) 108

For the case N1 = N2 = N and N >> 1, eq. 1 can be approximated as
follows:

S ∼= e · N · N ! (2)

Notice that only O(N1) space is needed by this implementation of the algo-
rithm, indeed only the states associated to the nodes of the branch currently in
exploration need to be stored in memory.

A maximum common subgraph of two given graphs is defined in [32] as the
common subgraph maximizing the number of edges; we could call it edge in-
duced MCS, in contrast with the Definition 4 (node induced MCS ), in which the
maximum common subgraph maximizes the number of nodes. According to the
node induced definition, a MCS graph, can be composed of smaller graphs un-
connected with each other. Instead the case of a maximum common subgraph
containing unconnected nodes is not considered in [32]. In fact in [32] a graph
is used to represent a molecule, a node is used to represent an atom, and the
graph matching algorithms serve the purpose of simulating chemical reactions.
Thus, in McGregor’s case, an isolated node has no meaning, because in chemical
reactions it is usually impossible to create isolated atoms. The algorithm de-
scribed in this section is used to find out the node induced MCS, consequently
it is more general than the one introduced in [32].

3.2 Durand-Pasari Algorithm

The Durand-Pasari algorithm is based on the well known reduction of the search
of the maximum common subgraph between two graphs to the problem of finding
a maximal clique, i.e. the largest completely connected subgraph, in a graph
[20]. The first step of the algorithm is the construction of the association graph,
whose nodes correspond to pairs of nodes of the two starting graphs having
the same attribute. The edges of the association graph (that are undirected)
represent the compatibility of those pairs of nodes to be included. That is, a
node corresponding to the pair (n1,n2) is connected to a node corresponding
to (m1,m2) iff there is an isomorphism between the subgraph {n1,m1} of the
first graph and the subgraph {n2,m2} of the second graph. This condition can
be easily checked by looking at the edges between n1 and m1 and between n2

and m2 in the two starting graphs; node and edge attributes, if present, must
also be taken into account. It can been easily demonstrated that each clique in
the association graph corresponds to a common subgraph and vice versa; hence,
the maximum common subgraph can be obtained by finding the maximal clique
in the association graph.

The Durand-Pasari algorithm generates a list of nodes belonging to the cur-
rent clique of the association graph, using a depth-first search strategy on a
search tree, by systematically selecting one node at a time from successive lev-
els of the search tree, until it is not possible to add further nodes to the list. A
sketch of the algorithm is in Figure 4.
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The function NextNode(s,n) looks for the nodes to be examined. The algo-
rithm ends when there are no more nodes to be examined. At each level l of the
tree search, the choice of the nodes in the association graph to be considered is
limited to the ones which correspond to pairs (n1,n2) having n1 = l: l is the
number of the current level of the tree search and the condition n1 = l indicate
that at each level we consider nodes in the associations graph correspondent to
pairs that have one node of the first graph (in particular the l -th node) with all
nodes in the second graph. In this way the algorithm ensures that the search
space is actually a tree, i.e. it will never consider twice the same list of nodes.
After considering all the nodes for level l, a special node, called the null node,
is added to the list. This node can be added more than once to the list. This
special node is used to carry the information that no mapping is associated to
a particular node of the first graph being matched.

When a node is being considered, the forward search part of the algo-
rithm, first checks to prove whether this node is a legal node (with the function
IsLegalNode(s,n)). A node is legal if it is connected to every other node al-
ready in the clique. In [20] if a node is legal the algorithm continues with the next
level of the search tree. That is, the original algorithm examines any possible
clique of the association graph. In our implementation if the node is legal, the
algorithm checks if the size of the new clique is as large or larger than the current
largest clique, in which case it is saved and, only in this case, the algorithm con-
tinues with the next level. This check is performed by pruningCondition(s).
With the pruning condition the algorithm examines only the promising branch.
The new state is built with the addition of the new node (with the function
AddNode(s,n)).

When all possible nodes (including the null node) have been considered, the
algorithm backtracks and tries to expand along a different branch of the search
tree. The length of the longest list (excluding any null node entries) as well
as its composition is maintained. This information is updated, as needed. An

Figure 4: A sketch of the Durand Pasari algorithm for the maximum clique
detection.
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example of the Durand-Pasari algorithm application is sketched in the Figures 5,
6, 7, 8, 9.

Figure 5: Two directed graphs, G1 and G2.

Figure 6: A subset of the maximum common subgraph set between G1 and G2

of Figure 5.

Figure 7: The association graph of the two graphs in Figure 5.

If N1 and N2 are the sizes of the starting graphs, with N1 ≤ N2 , it can
be demonstrated that the algorithm execution will require a maximum of N1

levels. Since at each level the space requirement is constant (the node list can be
shared across levels, since it is accessed in a stack-like fashion), the total space
requirement of the algorithm is O(N1). To this, however, the space needed to
represent the association graph must be added. In the worst case the association
graph can be a complete graph of N1 ·N2 nodes. In the worst case the algorithm
will have to explore (N2 + 1) nodes at level 1, N2 at level 2, (N2 − 1) at level 3,
up to (N2 − N1 + 2) at level N1. Multiplying these numbers we obtain a worst
case number of states
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S = (N2 + 1)(N2) · . . . · (N2 − N1 + 2) =
(N2 + 1)!

(N2 − N1 + 1)!
(3)

which, for N1 = N2 = N reduces to O(N · N !).

3.3 The Balas Yu Algorithm

In order to find a maximum common subgraph between two attributes graphs,
in the first step the association graph of the two starting graphs is determined.
It has been already observed that the research of a maximum clique of the as-
sociation graph is equivalent to the research of a maximum common subgraph
between the two starting graphs. Balas and Yu proposed in [2] an algorithm
to find a maximum clique in a connected graph. The problem is that associ-
ation graph can also be unconnected, thus for finding out a maximum clique

Figure 8: A part of the search tree developed by Durand-Pasari algorithm for
graph in Figure 7. In each state S(·, ·) a node of the association graph is selected
and it is checked whether this node can extend the current clique; the states
contained in a thick oval are those in which a maximum common subgraph has
been detected.

Figure 9: The correspondence between each found maximum clique and the
related maximum common subgraph.
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of an association graph, this algorithm has been generalized. Consequently the
algorithm proposed in this section is more general than the one introduced in
[2].

Some basic definitions are needed to describe how this algorithm works.
Let G an undirected graph, let V and E respectively the number of nodes

and edges of G, and let ω(G) the size of a maximum clique.
A node coloring of G assigns colors to the nodes of G in such a way that

no two adjacent nodes get the same color. The cardinality of a minimum nodes
coloring is called the chromatic number χ(G) of G. It is worth noting that χ(G)
is an upper bound for ω(G) and that the coloring problem has a O(V + E)
complexity.

A graph GT is triangulated (or chordal) if every cycle of GT , whose length
is at least 4, has a chord. Let the graph MTS(GT ) be a largest triangulated
subgraph of G. It can be shown that finding out the graph MTS(GT ), has a
O(V +E) complexity and a maximum clique KT of MTS(GT ) can be found as
a byproduct during the search of MTS(GT ). In Figure 10 an undirected graph
G and its maximum triangulated subgraph MTS(GT ) are represented.

Figure 10: a) an undirected graph; b) a maximum triangulated subgraph of G,
MTS(GT ); the edges of a maximum clique of MTS(GT ) are represented with
thick lines. The computational complexity to find out a MTS(GT ) is O(V +E)
and a maximum clique is obtained as a byproduct.

The algorithm proposed by Balas and Yu can be suitably described through a
State Space Representation [34]. Each state s is associated to the subproblem of
finding a maximum clique in a subgraph of the starting graph. Each subproblem
is characterized through the size k of the current maximum clique and a partition
of the nodes of the starting graph into three sets: included nodes I (i.e. those
nodes that are forcibly included into the subproblem), excluded nodes Ex (i.e.
those nodes that are forcibly excluded from the subproblem), unclassified nodes
S (i.e. all the other nodes), and a node n chosen into the S set. The solution of
the subproblem consists of finding how many nodes can be colored in a graph
GT , whose nodes are the nodes of the set S and whose edges are the edges
of the starting graph connecting the nodes of S, fixing a priori the number
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|KT | of colors. The uncolored nodes are stored in a set W . As a byproduct
of this coloring procedure a clique, whose size is, in the best case, the sum of
|I| and |KT |, is calculated. If this clique is larger than the current one, then
it is stored as the current maximum clique. If the set W is empty, then the
node n is excluded, and a new subproblem is defined on the modified E and S

sets; otherwise, for each node vi in the set W , a new subproblem, in which vi is
inserted in I, is defined. When it is not possible to choose a further node n, an
empty state is obtained and the exploration of the current branch is terminated.

In the first state, the sets I and Ex are empty, all the nodes V are included
in S and the size k of the current maximum clique is 0. A node belonging to
the unclassified set S is selected through the function SelectSubProblem(n).
The function SolveSubProblem(n) checks whether it is possible to exclude the
node n; in this case no other subproblem descending from the current one will
be solved and a new subproblem, chosen in a further branch of the search
tree is then analyzed. If the exclusion is not possible, then the subproblem is
feasible and |W | new subproblems, descending from the current one, will be
defined and solved. If, during the solution of any subproblem, a clique whose
size is larger than k is found, then it is stored and it becomes the current
maximum clique. After the subproblem has been determined, if S is not empty,
the sets I, Ex and S are updated through the function Update(s) and the
first descending subproblem is immediately solved. After that, a BackTrack(s)

function is invoked, to restore the previous state and the previous sets, in order
to choose a different node n from the set S to built a different descending
subproblem. Using this search strategy, whenever a branch is chosen, it will be
followed as deeply as possible in the search tree until a leaf is reached. It is
noteworthy that every branch of the search tree not excluded by the pruning
rules has to be followed, because - except for trivial examples - is not possible
to foresee if a better solution exists in a branch that has not yet been explored.
A pseudo-code description of Balas Yu algorithm is shown in Figure 11.

The main characteristic of Balas Yu algorithm is that the feasibility function
can cut the a large number of branches in the search tree in a polynomial time.
For the sake of the clarity, further definitions are needed.

Let the graph S be a graph whose nodes are all the nodes of the set S and
whose edges are the edges of the starting graph G, connecting the nodes of the
set S; let MTS(S) be a maximum triangulated subgraph of the graph S, and
let the graph KT a maximum clique of MTS(S). Finally, we say that the graph
Cλ(G) is a λ-chromatic induced subgraph of G if Cλ(G) is the largest subgraph
of G colored using just λ colors.

These properties are true for every graph G:

α the size of the maximum clique is smaller than the chromatic number χ(G)
and χ(G) can be found in a time O(V + E);

β the size of the maximum clique is larger than the size of the clique KT ,
and KT can be found in a time O(V + E).

A flow diagram of the SolveSubProblem(n) function is shown in Figure 12.
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Firstly, it is checked whether |V − Ex| < k, in this case there are too few nodes
to find out a clique larger than the current one; thus n can be inserted in Ex and
the function terminates. Otherwise if |I| = k then MTS(S) and its maximum
clique KT are evaluated. The clique, whose nodes are the nodes of I and the
nodes of KT , is the maximum current clique. If its size is larger than k, than
it can be stored as the maximum current clique. If MTS(S) = S (i.e. if S is a
triangulated graph) then n can be inserted in Ex and the function terminates.
Otherwise if W|KT |(S) = S (i.e. if S can be colored using |KT | colors) then n can
be inserted in Ex and the function terminates. If |I| 6= k then if W|k−I|(S) = S

(i.e. if S can be colored using |k − I| colors) then n can be inserted in Ex and
the function terminates. In all those cases in which it is not possible to color
the whole graph S, a set of uncolored nodes U = {v1, . . . , vm} is obtained and
m new subproblems are generated. Each new subproblem is characterized as
follows: Iti = I∪vi, all other nodes of W and all the neighbors of vi are inserted
in Ex.

It is noteworthy that in all those cases in which it is possible to color the
whole graph in polynomial time (i.e. the considered graph is chordal), a branch
of the search tree is cut using the property α. An example of the Balas-Yu
algorithm application is sketched in Figure 13.

Let N1 and N2 be the number of nodes of the first and the second graph
respectively. Since at each level of the search tree only one subproblem is solved
a time, and only the solving subproblem need of memory resources, the total
space requirement of the algorithm is O(max(N1, N2)). To this, however, the
space needed to represent the association graph must be added. In the worst
case the association graph can be a complete graph of N1 · N2 nodes.

Figure 11: A sketch of the Balas Yu algorithm for the maximum clique detection.
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Table 1: Running times and Space complexities for the seclected algorithms on
two graphs G1 and G2 with dimension, respectively, of N1 and N2.

Algorithm Space Time
Complexity (worst case) Complexity (worst case)

McGregor [32] O(N1)
(N2+1)!

(N2−N1+1)!

Durand-Pasari [20] O(N1 · N2)
(N2+1)!

(N2−N1+1)!

Balas-Yu [3] O(N1 · N2)
(N2+1)!

(N2−N1+1)!

3.4 Summary

The running time and space complexity of the selected algorithms for two graphs
G1 and G2 with dimension, respectively, of N1 and N2 is summarized in Table 1.

4 The Database

In general, two approaches can be followed for generating a graph database; a
first way is to collect graphs obtained by processing real data [31], the second
possibility is to generate graphs synthetically.

The first approach will ensure that the graphs are realistic, i.e. they are not

Figure 12: A sketch of the function SolveSubProblem(n).
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toy graphs with different properties than the ones encountered in real applica-
tions. However in most cases this approach is very expensive, because it may
require a huge collection of real data in order to obtain a set of graphs that
is representative also of less frequent situations. Moreover the achieved graphs
are dependent both on the considered application and on the pre-processing
algorithm used, remarkably reducing the general purpose of the database and
its usefulness in different contexts. On the other side, the artificial generation of
graphs is not only simpler and faster than collecting graphs from real applica-
tions, but it allows to control several critical parameters of the underlying graph
population, such as the average number of nodes, the average number of edges
per node, the number of different attributes, and so on. Starting from these con-
siderations, a quite large database of graphs has been generated synthetically.
This database is also easily expandable, in a relatively short time.

The choice of the graph categories to be included in the database, has been

Figure 13: a) an association graph. The stressed edges make evident a maximum
clique; b) the search tree constructed by Balas-Yu algorithm. In each state a
node is included in the set I and, as a consequence, one or more nodes included
in the set E, i.e. the set of those nodes that cannot be included in a clique
containing the nodes of the set I. In each state the clique of size k is evaluated.
If the difference between the number of nodes and E is smaller than k, a lager
maximum common subgraph cannot be found. Also if the set T , i.e. the nodes
of maximum triangulated subgraph and the set S, i.e. the set of those nodes not
included in both I and E have the same dimension, no larger common subgraph
can be found.
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realized considering the kinds of graphs that are more frequently used by mem-
bers of the IAPR-TC15 community (see http://www.iapr-tc15.unisa.it/); a clas-
sification of various categories of graphs used within the Pattern Recognition
field has been recently proposed in [10]. The proposed database is structured
into pairs of graphs. Each pair is characterized through a maximum common
subgraph constructed with a specified structure and size. A total of 81,400 pairs
of graphs have been generated. In particular, the following categories of graphs
have been considered:

• Randomly Connected Graphs;

• Regular Meshes, with differents dimensionalities: 2D, 3D and 4D;

• Irregular Meshes;

• Bounded Valence Graphs;

• Irregular Bounded Valence Graphs;

This kinds of graph have been introduced in [23] for the isomorphism and
subgraph isomorphism algorithms evaluation.

Labeled graphs whose size is from 10 to 100 nodes are included in each
category. For each size and category of graphs, 500 different pairs have been
generated considering five different size of the maximum common subgraph
that the pair holds between them (i.e. for each size of the maximum common
subgraph have been generated 100 different pairs).

As regards the labeling, random values for the attributes have been gen-
erated, since any other choice would imply assumptions about an application
dependent model of the represented graphs.

Choosing a uniform distribution of the values, it is possible to assume, with-
out any loss of generality, that attributes are represented by integer numbers. In
fact, in most real cases attributes can be represented using a fine alphabet after
a quantization stage. Also, the use of floating point values can be somewhat
more problematic, because:

• usually it makes little sense to compare floating point numbers for strict
equality, and,

• there is no universally useable binary format for storing binary numbers;

These disadvantages are not repaid for by significant advantages, since also inte-
ger attributes can be used to perform arithmetic tasks, e.g. distance evaluation.

One of the most important parameter characterizing the difficulty of the
matching problem is the number A of different attributes values (i.e. the size
of the alphabet): obviously the higher this number, the easier is the matching
problem.

It should be important to have in the database different values of A: in
such case it is possible to decide either to measure the matching time keeping
A constant and varying the size of the graphs, or to increase A as the size of
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the graphs increases; both choices make sense for estimating the performance
of different types of applications.

In order to avoid the need to have several copies of the database with different
values of A, in this database, each attribute is generated as a 16-bit value, using
a random number generation algorithm ensuring that each bit is sufficiently
random. Then, it is possible to choose any value of the form 2k, with k not
greater than 15, just by using, in the attributes comparison function, only the
first k bits of the attribute. Furthermore, for values of A that are not powers
of 2, attribute value modulo A can be used, if A is sufficiently smaller than 216,
without introducing any undesired bias in the distribution of the values. Using
this technique an attributed graph database has beet built. The database is
enough general for experimenting with many different attribute cardinalities,
avoiding the explosion of the size required to store the database.

A brief description of the properties of each category of graphs and of the
motivation inspiring the choice of including them in the database is given later in
this section, together with the number of generated pairs of graphs per category.

Each category of graphs included into the database is characterized by a size
from 10 to 100 nodes. In particular thirteen values of size have been considered
(i.e., 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 and 100). The considered
graphs are simple, i.e. there are neither self loops nor multiple edges connecting
the same two nodes. Graphs have been generated in pairs, and for each pair
the characteristic parameters of the maximum common subgraph are fixed, as
detailed in the following. Furthermore, for each selected category of graphs, five
different size of maximum common graph (i.e. 10%, 30%, 50%, 70% and 90%
of the size of the starting pair of graphs) have been taken into account. Finally,
for each value of the generation parameters (i.e. graph size, MCS size and the
parameters specific to each category) 100 pairs of graphs are included into the
database.

The organization of the entire database is shown in Table 2.

4.1 Randomly Connected Graphs

In graphs belonging to this category, edges connect nodes without any struc-
tural regularity. This category of graphs has been introduced for modeling
applications in which each entity, represented by a node, can establish rela-
tions, represented by edges, with any other entity, independently of the relative
positions. This hypothesis typically occurs in the middle and high processing
levels of a computer vision task [3].

In randomly connected graphs, it is assumed that the probability of an edge
connecting two nodes of the graph is independent of the nodes themselves. The
same model proposed in [39] has been adopted for generating these graphs: let
ni and nj be two distinct nodes of the graph; the probability η that an edge is
connecting ni and nj is fixed and assumed to be uniform.

According to the meaning of η, if N is the total number of nodes of the graph,
the expected number of its edges is η · N · (N − 1). However, if this number is
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Table 2: Graph Database organization: for each kind of graph, for each size
of the maximum common subgraph and for each value of the characteristic
parameters, the number of pairs that have been generated, is shown.
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not enough large to obtain a connected graph, further edges are suitably added
until the generated graph becomes connected.

Three different values of the edge density η have been considered (0.05, 0.1
and 0.2). In the database we have not considered all the sizes of the graphs
because, for some values of the size, the resulting graphs were not meaningful
(e.g. for the graphs with 10 nodes, the maximum common subgraph with 10%
of the size of the graphs is a 1 node graph, and it was not considered).

4.2 Regular Meshes

These graphs are introduced for modeling applications characterized through
regular structures (e.g. lower levels of a vision task). Furthermore, it is generally
agreed that regular structured graphs often represent a worst case for general
graph matching algorithms (i.e. algorithms working on any type of graphs) [39].
To solve this problem, specialized graph matching methods have been developed
to efficient perform the matching for given graph structures. Thus the database
includes, as regular graphs, the mesh connected graphs (2D, 3D and 4D).

The considered 2D meshes are graphs in which each node (excluding those
nodes belonging to the border of the mesh) is connected with its 4 neighbor
nodes. Similarly, each node of a 3D and 4D graph has respectively connections
with its 6 and 8 neighbor nodes.

Since not every number of nodes can be used for generating a mesh, the
percentage of nodes composing the maximum common subgraph are not exactly
the ones reported before. For instance for the pairs with graph size of 50, the
percentage of 10% for the maximum common subgraph has not been considered
for 3D meshes, because a graph of five nodes cannot be a 3D mesh; instead we
have used a 3D mesh with 8 nodes leading to a maximum common subgraph
that is the 16% of the size of the starting graph.

4.3 Irregular Mesh-Connected

Graphs introduced for the simulation of the behavior of the algorithms in pres-
ence of slightly distorted meshes. They have been obtained from regular meshes
by the addition of a certain number of edges. Each added edge connects nodes
that have been randomly determined according to a uniform distribution. The
number of added edges is ρN , where ρ is a constant greater than 0. Note that,
the closer ρ to 0 is, the more symmetric graphs are.

For each category of irregular meshes (2D, 3D e 4D), three values of ρ have
been considered (0.2, 0.4 and 0.6) and graphs whose size is from 10 up to
100 nodes have been generated; for each pair of graphs five different sizes of
maximum common graph (10%, 30%, 50%, 70% and 90% of the size of the
starting pair of graphs) are taken into account and, for each size, 100 pairs of
graphs are included into the database. Some values of size are not considered for
the same reason described for regular meshes. Furthermore, for irregular meshes
other pairs are not considered: these pairs are that which extra edges are zero
considering the size of maximum common subgraph (e.g. the pairs which graph
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size is 15 with a maximum common subgraph of 4 nodes (30%) have not extra
edges for ρ=0.2 (extra-edges=ρN = 0.8) and are not considered).

4.4 Bounded Valence Graphs

These graphs can model applications in which each object (i.e. a node) establish
a fixed number of relations (through edges) with other objects, not necessarily
with those belonging to its neighborhood [30]. More in detail, every node has
a number of edges (among ongoing and outgoing) lower than a given threshold,
called valence. A particular case occurs when the number of edges is equal for
all the nodes; in this case the graph is commonly called fixed valence graph.

The database includes graphs with a fixed valence, that have been generated
by inserting random edges (using an uniform distribution) with the constraint
that the valence of a node cannot exceed a selected value; edge insertion con-
tinues until all the nodes reach the desired valence. It is worth noting that it
is impossible to have fixed valence graphs with an odd number of nodes and an
odd valence, but in our database we have only considered graphs with an even
number of nodes.

Three different values of the valence v (3, 6, 9) have been generated and
for each value of v. Also for the bounded valence graphs are not considered all
the values of the size: for some percentage the size of the maximum common
subgraph is not enough for building a graph with the fixed valence (e.g. for the
graphs with 50 nodes, the maximum common graph with 5 nodes (10% of the
size of the starting graph) cannot be a fixed valence graph with v = 9, so these
pairs of graphs are not considered).

In order to introduce some irregularities in the bounded valence graphs, also
Irregular Bounded Valence Graphs are considered.

For such graphs, the average valence of the nodes (that is, the ratio between
the number of edges and the number of nodes) is still bounded, but the single
node may have a valence which is quite different from the average, and which
is not bounded by a constant value. To this aim, first a fixed valence graph is
generated, then, a certain number of edges are moved from the nodes they are
attached to, to other nodes. The number of movements is equal to M = 0.1·N ·V ,
where V is the valence. This is equivalent to say that 10% of all the edges are
moved.

The edges to be moved are chosen according to a random distribution with
uniform probability. However, the new endpoints to which these edges are con-
nected are not chosen uniformly, since this choice would affect only very slightly
the overall variance of the valence of the nodes. Instead, after a random per-
mutation of the nodes, the moved edges are distributed among the nodes using
a probability distribution in which the node whose index is i has a probability
of receiving an edge evaluated as αe−βi where α and β depend on the number
N of nodes, and satisfy the following constraints:

i) the sum of the probabilities of the nodes of the graph is equal to 1 and
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ii) the probability of the node i multiplied by the number of edges to be
moved is equal to 0.5

√
N .

Using this distribution the maximum valence of the resulting graph will not
be independent of N , and so special-purpose algorithms for bounded valence
graphs cannot be employed, even though the graph is isomorphic for 90% of its
edges to a fixed valence graph.

The number and type of irregular bounded graphs included into the database
is the same as the bounded valence graphs.

5 Experimental Results

In order to perform the benchmarking activity, we implemented a version of
each of the three selected algorithms in C++. Our versions find the maximum
common subgraph of directed, labeled and unconnected graphs.

The value of the attributes on the graphs of the database is depending on
the value of A (i.e. the number of different attributes). Thus, for each different
value of A, a graph with different attributes is selected. Three values of A

have been used, namely 33%, 50% and 75% of the size of the graphs. Results
are clustered in 63 different groups, and each of them is detailed in a different
graphic. In the current section we only summarize our experimental results;
more details are provided in the electronic appendix.

For this aim the execution of each algorithm is stopped when the first max-
imum common subgraph is determined and however a time-out of 30 minutes
for each matching problem is provided. The benchmarking has been performed
on an Intel Celeron 766 Mhz PC, equipped with 128 MB of RAM.

For each category of graphs (i.e. meshes, random graphs,...) a table that we
call the winner map, is reported (see Figures 14, 15, 16, 17). Each winner
map has the size of the graph on the columns and the parameters characterizing
the shape of the graph on the rows (for instance, in case of random graphs, the
selected parameters are the density and the number of attributes). In a winner
map, each cell reports the fastest algorithm for an assigned graph matching
problem. Moreover, the magnitude degree of the speed of the fastest algorithm
on the second one is reported on each cell.

A different shade is associated to each algorithm, thus just observing the
shade of the cells it is immediately understandable which algorithm solved the
problem using the smallest time.

5.1 Randomly Connected Graphs1

Figure 14 shows the behavior of the selected algorithms with reference to the
randomly connected graphs. McGregor always performs better on sparse graphs
(η = 0.05). The main reason is that McGregor solves the problem without using
the association graph. When the graph density is low, the association graph is

1for more details see Appendix A.1
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Figure 14: The winning table for random connected graphs. In the table the
percentages are the size of the alphabet of attributes respect the number of
nodes. Furthermore η represents the graph density.

large and strongly connected, thus the transformation can result not convenient.
For an increasing density (η = 0.1) of the graphs, McGregor algorithm is still
winning when the graphs are small or the alphabet of attributes is large. In
the other cases the problem is solved more efficiently using the Durand-Pasari
algorithm. In case of large graphs with high densities, Balas-Yu is the winner.
The reason is that the heuristic of the algorithm is more sophisticated and ex-
pensive to compute. So, for small graphs, the time saved using the pruning rules
deriving by the heuristic is not counterbalanced by the time used to compute
the heuristic itself. On the contrary, the use of this refined heuristic can give
the best performance on larger graphs.

5.2 Meshes2

In Figure 15, Figure 16(a) and Figure 16(b) the performance of the algorithms
on regular and irregular meshes are shown. The behavior of the algorithms is
quite similar for the benchmark on meshes 2D, 3D and 4D.

For each type of meshes, McGregor algorithm performs better in most cases.
The main reason is that for the meshes the number of edges is linear with
the number of nodes, thus meshes are not very dense graphs. Then, in most
cases, the association graph is large and dense and thus it is not convenient

2for more details see Appendices A.2, A.3, and A.4
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Figure 15: The winning table for meshes 2D. In the table the percentages are
the size of the alphabet of attributes respect the number of nodes. Furthermore
ρ represents the mesh irregularity.

to solve the problem of finding a maximum clique. When the alphabet size is
more restricted, and so the association graph is more dense, for smaller graphs
Durand-Pasari performs better. Moreover Durand-Pasari algorithm performs
better on small graphs, when the irregularity of the meshes (the parameter ρ)
increases. Finally, for larger graphs, with an higher degree of irregularity and a
more restricted alphabet size, Balas Yu is the fastest algorithm. In those cases
the search tree is very dense and its exploration is very time consuming. Thus
a good heuristic, cutting a considerable number of branches gives a solid speed
up to the algorithm.

5.3 Regular Bounded Valence Graphs3

In Figure 17(a) the performance of the selected algorithms on regular bounded
valence graphs is shown. When the connection degree v is 3 the fastest algorithm
is McGregor. The reason is that when the connection degree is small, the number
of edges is small also, similarly to the case of meshes, thus the graphs are not
very dense. Then, in most of the cases, the association graph is large and
dense and it is not convenient to solve the problem of finding the maximum
clique. If the connection degree is 6 or 9, and if the alphabet size is more
restricted, the association graph becomes less dense, thus it becomes convenient

3for more details see Appendix A.5
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Figure 16: The winning tables for meshes 3D (a) and meshes 4D (b). In the
tables the percentages are the size of the alphabet of attributes respect the
number of nodes. Furthermore ρ represents the mesh irregularity.
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Figure 17: The winning tables for bounded valence graphs (a) and irregular
bounded graphs (b). In the tables the percentages are the size of the alphabet of
attributes respect the number of nodes. Furthermore v represents the maximum
connection degree between two nodes.
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to use algorithms for finding the maximum clique. In these cases Durand-Pasari
performs better on smaller graphs and Balas Yu performs better on larger graphs
due the more refined and complex heuristic. Finally, when the alphabet size
becomes wider (namely A = 75%), McGregor is always the fastest algorithm.

5.4 Irregular Bounded Valence Graphs4

In Figure 17(b) the performance of the algorithms on irregular bounded valence
graphs is shown. In most cases, for small graphs, Durand-Pasari performs bet-
ter. The only cases in which this algorithm is not the fastest is when the average
connection degree is 3 and the number of attributes is medium or large. The
reason is that for these cases the number of edges is not large, thus the graphs
are not very dense. Then, the association graph is large and sparse and it is
not convenient to solve the problem of finding a maximum clique. When the
connection degree is 6 or 9, the association graph becomes less dense, thus it
becomes always convenient to solve the matching problem using the maximum
clique. In these cases Durand-Pasari performs better on smaller graphs and
Balas Yu performs better on larger graphs due the more refined heuristic.

6 Discussion and Conclusions

In this paper we have presented a benchmarking activity for assessing the per-
formance of some widely used optimal maximum common subgraph algorithms.
The comparison has been carried out on a large database of synthetically gener-
ated labeled graphs, which has been built and made publicly available to provide
a common reference data set for further benchmarking activities.

The usefulness of the proposed benchmark lies in the choice of the algorithms
and in the built database. We have chosen the most representative algorithms
between those present in scientific literature. Furthermore the database covers
almost the totality of graph structures used in Pattern Recognition field. After-
wards the benchmarking activities we can conclude that the first algorithm (and
all algorithms that are derived from it) is more suitable than the other ones for
the applications that use regular graphs (meshes, bounded valence graphs, etc.)
to represent data. In fact in these cases the effort for building the association
graph is not counterbalanced by a faster processing. In the other cases (when
graphs have not a regular structure) the very efficient response time of the sec-
ond algorithm repays the time spent to construct the association graph. For
largest graphs the third algorithm can be used efficiently because of its smarter,
albeit more complex, heuristic.

As it could be expected, experimental results show that no algorithm per-
forms definitively better than the others but, depending on the structure of the
graphs, each algorithm can be considerably faster than the others on a restricted
set of problems.

4for more details see Appendix A.6



D. Conte et al., Maximum Common Subgraph, JGAA, 11(1) 99–143 (2007) 128

As a future work, we are planning to extend the database with other graph
categories and to add an indexing facility (based on several graph parameters),
for making its use more easy and convenient to other researchers that will have
the need to perform an experimental comparison with these and possibly others
algorithms.
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7 Appendix

A.1 Experimental results for random graphs

Figure 18: The size of the attribute alphabet is M = 33%, M = 50% and
M = 75% of the number of nodes, and the density is η = 0.05 and η = 0.1.
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Figure 19: The size of the attribute alphabet is M = 33%, M = 50% and
M = 75% of the number of nodes, and the density is η = 0.2.
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A.2 Experimental results for 2D meshes

Figure 20: The irregularity parameter of the mesh is ρ = 0 and ρ = 0.2; the size
of the attribute alphabet is M = 33%, M = 50% and M = 75% of the number
of nodes.
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Figure 21: The irregularity parameter of the mesh is ρ = 0.4 and ρ = 0.6; the
size of the attribute alphabet is M = 33%, M = 50% and M = 75% of the
number of nodes.
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A.3 Experimental results for 3D meshes

Figure 22: The irregularity parameter of the mesh is ρ = 0 and ρ = 0.2; the size
of the attribute alphabet is M = 33%, M = 50% and M = 75% of the number
of nodes.
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Figure 23: The irregularity parameter of the mesh is ρ = 0.4 and ρ = 0.6; the
size of the attribute alphabet is M = 33%, M = 50% and M = 75% of the
number of nodes.
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A.4 Experimental results for 4D meshes

Figure 24: The irregularity parameter of the mesh is ρ = 0 and ρ = 0.2; the size
of the attribute alphabet is M = 33%, M = 50% and M = 75% of the number
of nodes.
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Figure 25: The irregularity parameter of the mesh is ρ = 0.4 and ρ = 0.6; the
size of the attribute alphabet is M = 33%, M = 50% and M = 75% of the
number of nodes.
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A.5 Experimental results for regular bounded graphs

Figure 26: The size of the attribute alphabet is M = 33%, M = 50% and
M = 75% of the number of nodes, and the valence v is 3 and 6.
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Figure 27: The size of the attribute alphabet is M = 33%, M = 50% and
M = 75% of the number of nodes, and the valence v is 9.
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A.6 Experimental results for irregular bounded graphs

Figure 28: The size of the attribute alphabet is M = 33%, M = 50% and
M = 75% of the number of nodes, and the valence v is 3 and 6.
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Figure 29: The size of the attribute alphabet is M = 33%, M = 50% and
M = 75% of the number of nodes, and the valence v is 9.


