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Abstract

We consider the problem of constructing a minimal cycle-breaking
set of turns for a given undirected graph. This problem is important
for deadlock-free wormhole routing in computer and communication net-
works, such as Networks of Workstations. The proposed Cycle Breaking
algorithm, or CB algorithm, guarantees that the constructed set of pro-
hibited turns is minimal and that the fraction of the prohibited turns does
not exceed 1/3 for any graph. The computational complexity of the pro-
posed algorithm is O(N2∆), where N is the number of vertices, and ∆ is
the maximum node degree. The memory complexity of the algorithm is
O(N∆).

We provide lower bounds on the minimum size of cycle-breaking sets
for connected graphs. Further, we construct minimal cycle-breaking sets
and establish bounds on the minimum fraction of prohibited turns for
two important classes of graphs, namely, t-partite graphs and graphs with
small degrees. The upper bounds are tight and demonstrate the optimality
of the CB algorithm for certain classes of graphs. Results of computer
simulations illustrate the superiority of the proposed CB algorithm as
compared to the well-known and the widely used Up/Down technique.
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1 Introduction

Recently, Networks of Workstations (NOWs) [11, 16, 19, 24, 25], have emerged as
an inexpensive alternative to massively parallel multiprocessors [10, 19]. NOWs
comprise a collection of routing switches, communication links and workstations
interconnected in an ad hoc manner resulting in a graph of irregular topology. In
order to minimize network latency and achieve high-bandwidth communications,
recent experimental and commercial switches for NOWs implement wormhole
routing [19, 15]. In wormhole routing, each message or packet is sent in chunks
referred to as flits (message flow control units) [6, 10]. Each flit is transferred in
parallel between adjacent nodes. The header flit (the first one of each message)
contains the destination address. When a router at a node receives a header
flit, it forwards the flit through an available communication channel towards the
destination without having to wait for the rest of the message. If no available
channel is found due to congestion, the header flit is blocked and is forced to
wait until a channel becomes available.

However, because packets are allowed to hold many resources (channels)
while requesting others, wormhole routing is very susceptible to deadlocks [9,
11, 19]. Figure 1 depicts a section of a network in which no measures are taken
to prevent deadlock. (The rest of the network where four deadlocked messages
have been originated is not shown.) The figure shows four-port routers with
their local processors presented as circles. Assume that each message Mi is
destined for node i. We show a scenario where communication channels have
been occupied by the messages shown juxtaposed next to them. The rest of
the messages occupy a number of other channels in the network. It is seen that
four messages, M1, M2, M3, and M4 are blocking each other, so that no one
can move forward. For example, message M2 has acquired ownership of the
vertical communication channel south of node 4, within node 4, and north of
node 4 but is waiting for the channel between nodes 1 and 2 which has already
been committed to M3. Thus, deadlock prevention has become an important
problem in wormhole communication networks.

In [17, 22], authors implemented a layered shortest path routing algorithm,
LASH, where a number of virtual paths were used to break cycles in their sim-
ulated NOW clusters. In their model, layers contain only unidirectional paths
where path assignment is done in a way to prevent cycle formation. Authors
conclude that the state-of-the-art InfinibandTM switches could be used to im-
plement their protocols. In contrast, the IP routing is a store-and-forward tech-
nology, in which the entire message is stored by a router before it is forwarded to
one of the adjacent routers. Furthermore, in networks employing IP technology
the physical layer is predominantly Ethernet based in which a spanning tree
protocol is used to break all cycles [7].

It has been proven in [9] that the absence of cycles in the channel depen-
dency graph is a sufficient condition for deadlock-free routing. Later it has been
shown [21] that this is also a necessary condition for deadlock-free coherent rout-
ing algorithms. The elimination of cycles in the channel dependency graph is
equivalent to elimination of all cycles in the sense of Definition 3 (see Section
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2, below) in the graph of original communication network. This can be accom-
plished by prohibition of a carefully selected set of turns in the graph. A turn
in a graph G is a three-tuple of nodes, (a, b, c), and (a, b) and (b, c) are edges
in G. In order to model existing switch-based networks we assume that G is
undirected. Several routing methods using turn prohibition currently exist for
regular topologies, such as 2-dimensional meshes, tori or hypercubes [10, 12, 19].
Recently, a number of publications [5, 9, 10, 11, 13, 16, 18, 19, 23, 27] have been
devoted to the problem.

It was shown in [12] for meshes and tori and in [18, 24, 25] for irregular
topologies that reduction in the number of prohibited turns results in a decrease
of average path lengths and in a reduction of average message delivery time,
thereby increasing the throughput. The experimental data in Figure 2 show
that for each percentage point reduction in the fraction of prohibited turns,
there is a considerable gain (7.77) in the maximum sustainable throughput in
the network which is referred to as the saturation point, beyond which the
message delivery latency tends to infinity [1].

For a general topology, most of the existing routing strategies are based on
the spanning tree approach [16]. According to this strategy, a spanning tree is
constructed which is subsequently used for communication, thus guaranteeing
deadlock freedom. The main shortcomings of this approach are long message
paths and congestion on the edges near the root node [16]. This approach is
also very inefficient since a large number of links are not used. This method can
be improved by allowing shortcuts using cross-edges that do not belong to the
spanning tree. For example, for the widely used Up/Down routing [16], after
a spanning tree is constructed for G, nodes are labeled preserving the partial
order defined by the tree with the root having the label 1. If we denote the label
of a node a as `a, then turn (`a, `b, `c) is prohibited iff `b > `a and `b > `c.

For the Up/Down approach [16, 26], given a network topology, the fraction
of prohibited turns for deadlock-free routing, depends not only on the selection
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Figure 1: Formation of deadlock in a section of a network in which all turns are
permitted. Message Mi is destined for processor Pi at node i, i=1,. . . ,4
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of a spanning tree but also on the root of the spanning tree, and could be very
close to one [23]. The problem of construction of an optimal spanning tree is
NP-hard.

The general problem of finding the minimum set of turns such that it inter-
sects with the set of turns in each cycle in a given graph (the “cycle-breaking
problem”) has been first introduced in [18, 23, 24, 27], as motivated by its im-
portance for deadlock-free routing in communication networks. It should be
pointed out that the cycle-breaking problem is a sub-problem of the general
“set covering problem” [4, 8]. A number of similar (or even simpler looking)
sub-problems of the set covering problem, such as vertex cover problem, code
covering radius problem, etc., are NP-hard. We expect that cycle-breaking
problem to be NP-hard as well, though it is not proven yet. Therefore, it is
a challenge to develop an algorithm of small complexity that would provide a
minimal solution of the problem.

In [18, 23, 24, 27], earlier versions of the turn prohibition algorithm were
suggested which did not guarantee minimality and might become inefficient for
certain topologies. Attempting to construct a minimal set from a given non-
minimal set of prohibited turns is impractical since for a graph G(V,E), the
complexity of such an approach is O(∆2N3), where ∆ = max di, i = 1, 2, . . . , N ,
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Figure 2: Effect of reducing the fraction of prohibited turns on the saturation
point. The dotted line (with a slope of 7.77) shows the linear regression least
squares fitting to the experimental points with a fit quality of R2 = 0.99.
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and di is the degree of node vi ∈ V , N = |V | is the number of nodes in G. Paper
[23] was devoted to application of network calculus in which a turn prohibition
(TP) algorithm was presented briefly, and its properties were stated without
rigorous proofs.

The present paper formulates an algorithm (the CB algorithm) for construc-
tion of a minimal set of prohibited turns, presents rigorous analysis of its prop-
erties and performance, establishes lower bounds on the size of the solution, and
proves that, for certain classes of graphs (t-partite graphs, graphs with small
degree nodes) the CB algorithm is optimal or, in some cases, at least asymptot-
ically optimal. The time complexity of the developed algorithm is O(N2∆) and
the required memory complexity is O(N∆). The approach developed in this
paper provides a viable alternative to other methods of deadlock resolution, e.g.
[15, 16, 20]. Furthermore, its results make it possible to increase the maximum
load in the network without reaching saturation. Indeed, the fraction of pro-
hibited turns is reduced by at least 15% compared to the Up/Down algorithm
(the best known up to now) which corresponds to more than 116% increase of
the saturation point.

The rest of the paper is organized as follows. In Section 2, we introduce
the mathematical model, followed by establishing lower bounds on the fraction
of prohibited turns in Section 3. Section 4 describes the CB algorithm for
construction of minimal (irreducible) sets of prohibited turns with the fraction of
prohibited turns not exceeding 1/3 for any graph. The main properties of the CB
algorithm are formulated and proved in Section 5. Sections 6 and 7 contain an
analysis and evaluation of the upper and lower bounds on fractions of prohibited
turns for complete bipartite and the t-partite graphs and for graphs with small
degrees, respectively. The bounds are shown to be tight for particular classes
of graphs. Finally, we present experimental results for randomly generated
topologies and offer our conclusions. Our simulation results (Section 8) for
topologies with 64 nodes show that the proposed CB algorithm reduces the
number of prohibited turns significantly when compared with the Up/Down
approach.

2 Mathematical Model

Let us consider an undirected graph G(V, E), with N = |V | vertices or nodes,
denoted by a, b, . . ., and M = |E| edges, denoted by (a, b), etc. We assume that
graph is connected, i.e. there is a path between any two nodes in G. If this is
not the case, we consider individual components separately.

Definition 1 A turn in a graph G is a 3-tuple of nodes (a, b, c) if (a, b) and
(b, c) are edges in G and a 6= c.
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Figure 3: Construction of prohibited turns in a simple graph with cut-nodes.
Special edges are shown as thick lines and delayed nodes are shown as solid
circles. A prohibited turn is shown as an arc between the two edges defining the
turn. For example turns (4, 3, 5) and (7, 6, 14) are prohibited and turn (3, 4, 5)
is permitted.

We note that the turn (a, b, c) denotes the same turn as (c, b, a). If the degree
of node j is denoted as dj , and the total number of turns in G is T (G), we have

T (G) =
N∑

j=1

(
dj

2

)
=

N∑

j=1

dj(dj − 1)
2

. (1)

Definition 2 A path P = (v0, v1, . . . , vL−1, vL) from node a to node b in G is
a sequence of nodes vi ∈ V such that, v0 = a and vL = b, every two consecutive
nodes are connected by an edge, and vi 6= vi+2

Nodes and edges in the path are not necessarily all different but sequences
such as . . . , a, b, a, . . . are not permitted.

Definition 3 Path P = (v0, v1, . . . , vk−1, vk = v0, v1) in G is called a cycle
of length k, if any ordered pair of nodes (vi, vi+1), appears at most once in P ,
except (v0, v1) that appears exactly twice.

If no proper subset of nodes of the cycle P forms a cycle, we call P a simple
cycle.

Examples of cycles which are broken by the prohibited turns as shown for
the graph in Figure 3 are:

Simple cycle: (14,13,6,14,13)
Spectacles-type cycle: (14,13,6,7,9,10,7,6,14,13)

8-type cycle: (11,12,13,1,8,7,6,13,11,12)
Non-simple cycle: (11,13,6,14,11,13)

The cycle (11, 13, 6, 14, 11, 13) is not simple because the set of nodes {11, 13, 14} ⊂
{11, 13, 6, 14, 11, 13}. The nodes {11, 13, 14} form a simple cycle (11, 13, 14, 11, 13).

Note that our definitions of a path and a cycle are somewhat different from
the conventional definitions [2, 3, 8, 14]. It can be said that we consider “cycles
of ordered pairs of adjacent nodes”, rather than “cycles of nodes”. The reason



Levitin et al., Cycle-Breaking Sets of Turns, JGAA, 10(2) 387–420 (2006) 393

for this definition is that cycles of ordered pairs of adjacent nodes result in
deadlocks in networks of workstations, where computing nodes correspond to
the vertices and communication links correspond to the edges of the graph G.
Breaking all such cycles in G is necessary and sufficient for preventing deadlocks
in the corresponding network [9].

Definition 4 If edges (a, b) and (b, c) are adjacent and belong to path P =
(v0, v1, . . . , vL) such that, a = vi−1, b = vi, c = vi+1, i ∈ 1, 2, . . . , L− 1, then
turn (a, b, c) is said to cover P , i.e., (a, b, c) ∈ P .

Definition 5 A set W (G) of turns in G is called cycle-breaking if every cycle
in G is covered by at least one turn from W (G). Elements of W (G) are called
prohibited turns.

The set A(G) = Γ(G) \ W (G) is called the set of permitted turns, where
Γ(G)is the set of all turns of the graph G. A path P in G is called permitted if
all turns covering P belong to A(G), otherwise the path is prohibited.

We say that the cycle-breaking set W (G) of prohibited turns preserves con-
nectivity if for any two nodes a, b ∈ V , there exists at least one permitted path
from a to b.

For the topology in Figure 4, cycle (13, 1, 8, 7, 6, 13, 1) is covered by the turn
(13, 1, 8). As an example, one cycle-breaking set of prohibited turns for the
same topology is

W (G) =





(8, 1, 13), (10, 8, 9), (8, 7, 10), (8, 7, 9),
(9, 7, 10), (7, 6, 13), (13, 6, 14), (13, 12, 14),
(12, 11, 14), (12, 11, 13), (13, 11, 14), (4, 3, 5)



 .

Given graph G representing a connected network topology, we shall consider
in Section 4 the problem of finding a minimal cycle-breaking set of turns for G,
which preserves connectivity of the graph. This problem was first formulated
and solved for meshes by Glass and Ni [13].

Definition 6 Path P = (v0, v1, . . . , v0) in G is called a halfloop if it is not a
cycle (see Definition 3) and it is permitted under a given set of prohibited
turns W (G).

The number of turns in a minimum cycle-breaking set is denoted by Z(G) =
min |W (G)|.

Definition 7 Cycle-breaking set of turns W (G) is minimal (irreducible), if
there are no cycle-breaking proper subsets of W (G). In other words, deletion of
any turn from a minimal set of prohibited turns will introduce at least one cycle
in the graph.

(We note that a minimal cycle-breaking set is not necessarily a minimum
cycle-breaking set.)
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3 Lower Bound on Minimal Cycle-Breaking Sets
of Turns

In this section we present lower bounds for the fraction z(G) = Z(G)/T (G) of
prohibited turns to break all cycles without loss of connectivity in any connected
graph G(V, E) where N = |V | and M = |E|.
Theorem 1 If C is a set of cycles in a graph G with N nodes and M edges,
|C| = R and r is the maximum number of cycles in C covered by the same turn,
then the fraction of prohibited turns z(G) = Z(G)/T (G) satisfies the following
inequalities:

z(G) ≥ M −N + 1, (2)

and
z(G) ≥ R

rT (G)
. (3)

Proof: The lower bound (2) follows from the fact that any cycle-breaking set
of edges contains at least β = M −N + 1 elements, where β is the cyclomatic
number for G [14], and each cycle-breaking set of turns (a, b, c) generates a
cycle-breaking set of edges (a, b) with a smaller or equal number of elements.
Lower bound (3) follows from the fact that R cycles should be covered by at
least R/r turns. 2

For example, for complete graphs KN with N nodes, we have M = N(N −
1)/2 and T (KN ) = N(N − 1)(N − 2)/2. If we enumerate the number of turn-
disjoint triangular cycles in KN we obtain R = N(N − 1)(N − 2)/6. Since in
turn-disjoint cycles case we have r = 1 and by (3), we obtain z(KN ) ≥ 1/3.

Lemma 1 Consider a connected graph G with a minimum cycle-breaking set of
turns W (G) = {(ai, bi, ci)|i = 1, 2, . . . , Z(G)}. If there exists an edge (a, b) such
that all turns (a, b, c) are prohibited and |{(a, b, c)}| = s, then

Z(G) ≥ M −N + s. (4)

Proof: Since the edge (a, b) is involved in s prohibited turns, we are assured
that it will not be part of any cycle and therefore it can be deleted from the
graph. After deleting the edge (a, b) we obtain a graph G′ consisting of one or
two components with total number of edges M ′ = M − 1 and N ′ = N nodes.
By Theorem 1, the number of turns to be prohibited in G′ to break all cycles
is

Z(G′) ≥ M ′ −N ′ + 1 = (M − 1)−N + 1 = M −N.

Hence,
Z(G) ≥ M −N + s .

2

Using Lemma 1, we can improve lower bound (2) if in a given graph, in
addition to the number of nodes N and the number of edges M , we also know
the minimum node degree δ.
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Theorem 2 Let G(V,E) be a connected graph with minimum degree δ = min di,
i = 1, 2, . . . , N where d1 is the degree of node vi ∈ V and δ > 2. Then

Z(G) ≥ M −N +
(

δ − 1
2

)
+ 1. (5)

Proof: Proof is by induction. Assume that, in graph G with non-empty cycle-
breaking set of turns W (G), there is no edge (a, b) such that all turns (a, b, c)
are prohibited. This means that, arriving to a node b along the edge (a, b), one
can always find an edge (b, c) to leave the node. In other words, there exists
paths of unlimited lengths in G. Since the number of edges in G is finite, the
same edge in the same direction will be repeated in a path, thereby forming a
cycle. This contradiction proves that there should exist an edge (a, b) with all
of the turns (a, b, c) prohibited. The number of such turns is at least δ − 1. By
Lemma 1, we obtain Z(G) ≥ M −N +(δ−1). Thus, for δ = 3, the lower bound
(5) is valid:

Z(G) ≥ M −N + 2

≥ M −N +
(

2
2

)
+ 1 .

Assume that the lower bound (5) is valid for all graphs with minimum degree
δ − 1. Now, consider a connected graph G with minimum degree δ. After
removing edge (a, b) involved in all δ− 1 prohibited turns (a, b, c) with adjacent
nodes, we obtain a graph G′ with minimum degree at least δ − 1, number of
nodes N , and the number of edges M ′ = M − 1. By assumption,

Z(G′) ≥ (M − 1)−N +
(

δ − 2
2

)
+ 1 .

Hence,

Z(G) ≥ (δ − 1) + Z(G′)

≥ (M − 1)−N +
(

δ − 2
2

)
+ 1 + (δ − 1),

or,

Z(G) ≥ M −N +
(

δ − 1
2

)
+ 1 .

2

As shown below in Corollary 6, bound (5) is attained for δ = 3. However,
we believe that a stronger lower bound is valid.

Conjecture 1 Z(G) ≥ M −N +
(

δ
3

)
+ 1.
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Theorem 3 If G is a connected graph and G∗ is a homeomorphic graph to G
[14] obtained by adding a node of degree 2 in the middle of one of the edges in
G, then

Z(G) ≥ Z(G∗). (6)

Proof: Any set of turns that breaks all cycles in G is obviously a cycle-breaking
set in G∗ as well, which proves the theorem. 2

Corollary 1 For any connected graph G with M edges and N nodes there exists
a homeomorphic graph G̃ such that

Z(G̃) = M −N + 1. (7)

Proof: Consider a spanning tree in G. There are M − N + 1 edges that do
not belong to the spanning tree. By adding a node of degree 2 at each one
of these edges and prohibiting turns at these nodes, all cycles will be broken,
which proves Corollary 1. 2

4 CB Algorithm for Constructing Irreducible Sets
of Prohibited Turns

In this section we describe the Cycle Breaking or CB algorithm. Given a con-
nected graph G(V,E) with N(G) = |V | nodes, the CB algorithm constructs a
minimal set of prohibited turns W (G), breaking all cycles and preserving the
connectivity of G. Furthermore, the CB algorithm guarantees that the fraction
of prohibited turns will not exceed 1/3. As far as we know, this is the first algo-
rithm providing minimal set of prohibited turns and a nontrivial upper bound
for the fraction of prohibited turns breaking all cycles.

The algorithm is recursive. At each recursive call of the algorithm one node
is selected and each turn at the selected node is either permitted or prohibited
and the selected node is then deleted. For example, if, after deleting a node
a with degree da and all its edges from G, the remaining graph G − a is still
connected, then we prohibit all da(da − 1)/2 turns (c, a, b) and permit all turns
(a, b, c). By prohibiting all turns (c, a, b) at node a, we break all cycles that
include node a. Since the node a cannot participate in any cycle formation,
it can be ignored from further consideration. This is accomplished by deleting
node a from the graph. Then, the CB algorithm is invoked recursively and
applied to the smaller graph G − a. At every recursive call of the algorithm
labeling of a node to be deleted is done by using the smallest natural number
that has not been used at the previous recursive calls as its label. We label a
node by assigning a natural number to the node that indicates the order in which
the node has been selected. Initially, all nodes are unlabeled. In the course of
the algorithm, a node can also be marked as forcing or delayed. Nodes that have
not been marked forcing or delayed are called ordinary nodes. As described in
the algorithm, an edge can be marked as special if the selected node is a cut-
node. The variable called HALFLOOP is initially cleared by assigning a value
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of 0 to it. When it is set, its value becomes 1 and remains set as 1. When
set, this flag indicates that nodes attached to the special edges become delayed
nodes. This is done to prevent spectacle type cycle formation.

4.1 Formal Description of CB Algorithm, CB(G)

We assume that we are given a connected graph G(V,E) with N(G) = |V |
nodes. Before the algorithm starts, we initialize the sets for prohibited and
permitted turns, W (G) := ∅, A(G) := ∅, and the variable HALFLOOP := 0,
mark all nodes and edges as ordinary and all nodes as unlabeled.

1. If N(G) = 1, label the node and RETURN

2. If there exists a forcing node in G, select the forcing node and label it.
Otherwise, select an ordinary node with minimum degree δa. If there are
non-cut-nodes in the set Vm of all nodes of minimum degree, we select one
node from the set Vm. Label the selected node.

3. Connected components of graph G− a, obtained by deleting the selected
node and all its edges, are indexed as G1, G2, . . . , Gk using the following
criteria:

a. If there is a delayed or a forcing node in G, it should be in G1.

b. Otherwise, component Gi connected to the selected node a with
smaller number of edges should have a larger index i.

4. For i = 2, . . . , k, one edge that connects component Gi to a is marked
special.

5. All turns (b, a, c) in which (a, b) is special and b ∈ Gi, c ∈ Gj with i > j
belong to the permitted set A(G), A(G) := A(G) ∪ {(b, a, c)}. Otherwise,
they belong to the prohibited set W (G), W (G) := W (G) ∪ {(b, a, c)}.
All turns starting with the selected node (a, p, q), where p, q ∈ G, are
permitted and belong to set A(G), A(G) := A(G) ∪ {(a, p, q)}.

6. If HALFLOOP = 1 then node x ∈ G1 connected to a is marked forcing,
provided that x is of degree 1 in G1 or a cut-node (articulation point) of
degree 2 in G1; otherwise, (if x is of degree 2 but is not a cut-node or if it
has a degree larger than 2) x is marked delayed.

7. If G1 has a delayed node b, and, after the deletion of the selected node a,
the node b has degree 1 or is a cut-node of degree 2, then node b becomes
a forcing node.

8. CB(G1)

9. For i = 2, . . . , k
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a. If HALFLOOP = 0 and, after the CB algorithm has been applied
to Gi−1, there exists a halfloop (a, x1, . . . , a), where x1, x2, . . . , xk ∈
Gi−1 with x1, x2, . . . , xk not necessarily all distinct then HALFLOOP
:= 1.

b. If HALFLOOP = 1 then node x in Gi connected to a with special
edge is marked forcing, provided that it is of degree 1, or a cut-node
of degree 2. Otherwise it is marked delayed.

c. CB(Gi)

10. RETURN.

4.2 Informal Discussion

The CB algorithm is invoked by a call CB(G) where the argument is the graph
for which we seek to construct a minimal set of prohibited turns. Prior to the
invoking the algorithm, two sets W (G) and A(G) are initialized to be empty, the
HALFLOOP flag is cleared to 0, all nodes are marked unlabeled, and all nodes
and edges of the graph are marked ordinary. Steps 1− 7, 9a, and 9b comprise
one recursive call of the algorithm. Thus, at each recursive call, exactly one
node a is selected, and this recursive call can be numbered by the label of the
node `a. At Step 1, the algorithm tests for completion. If there is just one
node left, then node is labeled and algorithm returns with the sets W (G) and
A(G) containing the set of prohibited and permitted turns respectively. At Step
2, if there exists a forcing node in G, we select the forcing node and label it.
This recursive call is called a forced call. The motivation for selecting forcing
nodes first is that no turns are prohibited at this recursive call of the algorithm.
Note that according to the algorithm, there exists either at most one forcing
node, or at most one delayed node, but not both of them simultaneously in
each connected component at each recursive call. At next Step 3, we delete the
selected node and its edges and index the connected components. In particular,
if there is a delayed node it must belong to component G1. We then index the
remaining components based on the number of edges connecting them to the
selected node. Component with a smaller number of edges connecting to the
selected node has a larger index. This order of indexing minimizes the number
of turns to be prohibited at Step 5. At Step 4, one edge connecting the selected
node to each component, excluding G1, is marked special. (If there are multiple
edges, it is beneficial to choose special edge that ends at the node of largest
degree). At Step 5 of the algorithm, we identify all turns at the selected node
that will be prohibited and make them members of the prohibited set W (G).
If the selected node is not a cut-node, all turns at the node are prohibited.
Similarly, all permitted turns are made members of the permitted set A(G).
The Step 6 is executed only when a is a forcing node. Then the node x ∈ G1

connected to a (there exists exactly one such node) is marked either forcing (if
it is of degree 1, or a cut-node of degree 2 in G), or delayed. At Step 7, if the
delayed node, after deletion of the selected node a, turns out to be of degree 1,
or a cut-node of degree 2, it is transformed into a forcing node. Thus, sooner or
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later, any delayed node becomes a forcing node. Then, the algorithm recurses
by invoking itself with the component G1 at Step 8. The remaining Step 9 is
executed k − 1 times whenever there are k connected components in G − a.
If the flag HALFLOOP = 0, we determine if there is any halfloop in each
component. When a halfloop is detected involving the selected node and nodes
in the component Gi−1, HALFLOOP is set to 1. Once the HALFLOOP flag
is set, it remains set until the completion of the algorithm. Therefore, after
it has been set HALFLOOP = 1, there is no need to execute Step 9a (in
fact, k − 1 steps) in all following recursive calls, and Step 9b can be executed
immediately after Step 7. The algorithm then checks again if HALFLOOP
flag is set, and if so, one node in each component Gi (i is larger than the index
of the component where a halfloop has been found) connecting to the selected
node is marked as either forcing or delayed. Note that forcing nodes have the
smallest labels in their components. Subsequently, we invoke the CB algorithm
for each component Gi, i ≥ 2. Note that each node is selected exactly once
in the course of the algorithm. Note also that no turns are ever prohibited at
delayed or forcing nodes.

We note that the CB algorithm labels nodes such that:

• All nodes have different labels.

• All nodes of component Gj will have larger labels than nodes of component
Gi, if j > i.

• If node b in component Gi is forcing, then `b < `a for all other nodes
a ∈ Gi.

• If node b in Gi component is delayed, then `b > `a for all a ∈ Gi that have
been selected prior to b becoming a forcing node.

It can be shown [4] that by using the depth first search algorithm one can
identify all cut-nodes and the connected components of a graph in O(M) time.
It follows that, for a graph with a maximum node degree ∆, the time complexity
of the CB algorithm is O(N2∆) and required memory is O(N∆).

4.3 Example

We now illustrate the operation of the CB algorithm with reference to the graph
in 4. In the figure, we show node labels in parentheses after the node numbers.
Labels show the order in which nodes are selected by the CB algorithm. At
the first recursive call, we select the ordinary node 1 of degree 2, delete it and
its edges (1, 13), (1, 8), and prohibit one turn. Note that all turns such as
(1, 13, 12) starting with node 1 are permitted. We next select node 2, which is a
cut-node. We prohibit no turns at node 2, and node 2 and its edges are deleted,
two connected components are created. The first component G1 includes three
nodes 0, 3, 4, and 5. We mark the edge (10, 2), which connects the selected
node 2 to G2 as special, shown as thick line in the figure. We then apply the
CB algorithm to G1. Node 0 is selected without prohibiting any turns. After
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deleting node 0 and its edges, we are left with a subgraph in which all three nodes
are non-cut-nodes of minimum degree 2. Arbitrarily, the CB algorithm selects
node 3, prohibits the turn (4, 3, 5), and deletes edges (3, 4) and (3, 5). Nodes
4 and 5 are then selected with no prohibited turns completing the handling of
G1. When we consider G2, we discover a halfloop 2, 0, 3, 4, 5, 3, 0, 2 in G1, set
the HALFLOOP , and mark node 10 as delayed. We are now ready to handle
subgraph G2. When we apply the CB to the subgraph G2, we find out that there
is no forcing node in G2 and therefore select node 6, which satisfies the selection
criterion. Since this is a cut-node we prohibit only the two turns as shown, thus
maintaining the connectivity between the two components. After deleting node
6 and its edges, we discover two new components. The first one includes nodes
7, 8, 9, and a delayed node 10. The other component includes nodes 11, 12, 13,
and 14. As indicated in Step 3a of the CB algorithm, the component with a
delayed node becomes the new component G1, which is handled first. We see
that, since node 10 is delayed, its selection is deferred until it is promoted to
be a forcing node in the component. In this component, node 8 is selected and
all three turns are prohibited as shown. Then node 7 is selected prohibiting
one turn. After node 7 and its edges are deleted, subgraph has only two nodes
both of which are of degree 1. Since node 10 is a delayed node of degree 1, it
is promoted to be a forcing node. Next recursive run selected the forcing node
10 as indicated by its label.

4(5)

5(6)3(4)0(3)2(2)

1(1) 9(11)

10(10)

8(8)

7(9)6(7)

13(14)

14(15)11(12)

12(13)

Figure 4: Prohibited turns generated by the CB algorithm showing delayed
nodes as solid circles and special edges with thick lines

After a total of 15 recursive calls, a minimal set W (G) of prohibited turns
for G is constructed. In this case, Z(G) = |W (G)| = 12 turns are prohibited
out of T (G) = 50. We note that if the initial selection order were 0, 4, 3, 5, or
0, 4, 5, 3, or 0, 5, 3, 4, or 0, 5, 4, 3, the HALFLOOP flag would not have been
set at the label 4 step. All of these alternative selection orders would not have
created any halfloop in the connected component G1. In the following table we
demonstrate the step-by-step operation of the algorithm, showing the status of
the nodes and any related edges, their labels, and the prohibited turns at every
step of the algorithm. Note that when the HALFLOOP flag is set when node
5 is selected, it remains set for the duration of the algorithm.
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Table 1: Step-by-Step Operation of the CB algorithm for graph in Figure 4.
Note that nodes 10 and 13 which were delayed, were subsequently promoted to
forcing.

Selected Node Node Special Delayed HALFLOOP Prohibited
Node Label Attribute Edge Node Turns

1 1 ordinary none none 0 {(13,1,8)}
2 2 cut (10,2) none 0 ∅
0 3 ordinary none none 0 ∅
3 4 ordinary none none 0 {(4,3,5)}
4 5 ordinary none none 0 ∅
5 6 ordinary none 10 1 ∅
6 7 cut (6,13) none 1 {(13,6,14),

(7,6,14)}
8 8 ordinary none none 1 {(7,8,9),

(7,8,10),
(9,8,10)}

7 9 ordinary none none 1 {(9,7,10)}
10 10 forcing none none 1 ∅
9 11 ordinary none none 1 ∅
11 12 ordinary none 13 1 {(12,11,13),

(12,11,14),
(13,11,14)}

12 13 ordinary none none 1 {(13,12,14)}
13 14 forcing none none 1 ∅
14 15 ordinary none none 1 ∅

5 Main Properties of CB algorithm

Theorem 4 CB algorithm has the following four properties.

Property 1. Any cycle in G contains at least one turn from W (G).
Property 2. For any two nodes a and b, if there exists a path between a and b
in G, then there exists a path between a and b, with no turns from W (G) along
the path, after the CB algorithm is applied.
Property 3. For any graph G, Z(G) ≤ T (G)/3, where T (G) is the total num-
ber of turns in the graph.
Property 4. The set W (G) of prohibited turns generated by CB algorithm is
minimal (irreducible).

Proof of Property 1. First, we will prove the following lemma.

Lemma 2 If x is a forcing or delayed node in a connected component G, then,
after application of the CB algorithm to G, there is no permitted (not containing
any turns from W (G)) closed path (halfloop) P = (x, x1, . . . , xk, x) in G, where
xi, i = 1, . . . , k are not necessarily distinct, but are different from x.
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We will prove the lemma by induction. For N(G) ≤ 3 the lemma is obviously
true. Assume that the lemma is valid for any graph G with N(G) ≤ N . Then
consider a graph with N(G) = N + 1, and let P be a closed path in G. If x is a
forcing node then, after this node is selected and deleted, in each connected com-
ponent of graph G−x there is a forcing or a delayed node connected to x. Let x1

be such a node belonging to P . Then P has a form P = (x, x1, x2, . . . , xl, x1, x)
where x1, x2, . . . , xl belong to the connected component G1 of G − x. Hence,
in G1, there must be a closed path P1 = (x1, x2, . . . , xl, x1). However, since
N(G1) ≤ N , such a permitted path does not exist. Therefore, P is not permit-
ted either, which proves the lemma.

Consider now the case when x is a delayed node. Let xi ∈ P be the node
with the smallest label `xi = min `xj , xj ∈ P . At the recursive call of the
algorithm when xi is selected, the entire path belongs to the same connected
component that includes the delayed node x. Two cases are possible.

1. After deleting node xi, the remaining part of P belongs to the same con-
nected component. Then the turn at xi that covers P must be prohibited,
thereby prohibiting path P .

2. After deleting node xi, path P breaks into at least two parts, P1 that
includes x, and P2, the parts belonging to different connected components.
If P2 is connected to xi with at least two edges, then at least one of the
turns at xi that covers P , namely, the turn to a non-special edge, must be
prohibited. If P2 is connected to xi with just one edge, then this edge is
special, and the node xi+1 connected to xi with this edge is either forcing,
or delayed. Thus, by inductive assumption, there is no permitted path
P2 = (xi+1, . . . , xi+1), and therefore, there is not permitted path P in G,
which proves the lemma.

Return now to the proof of Property 1. We will also use induction over the
number of nodes in G. For N(G) < 3, Property 1 is trivial. Assume the
property is true for all N(G) ≤ N , and consider a graph G with N(G) = N +1.
Let a ∈ G be the node selected at the first recursive call, `a = 1. First, consider
cycles in G that include nodes from only one of the connected components of
G − a. Since all turns at a between edges connecting to the same component
are prohibited, all such cycles that include a are also prohibited. All cycles in
one of the components that do not include a are prohibited by the inductive
assumption.

Consider now cycles that include nodes from different connected components,
Gi and Gj , where i > j. According to the CB algorithm only turns to the special
edge, connecting a to Gi are permitted. Therefore, a cycle that includes nodes
from Gi and Gj must include the edge (a, x) twice, where x ∈ Gi is the end point
of the special edge. To form a cycle, there should be a closed path (halfloop)
pj = (a, y, . . . , z, a), where y, . . . , z ∈ Gj , and a path Pi = (x, x1, . . . , xk, x) ∈
Gi. However, if Pj is permitted, then the node x is either forcing or delayed,
and no permitted path Pi exists. Thus, Property 1 is proved. 2
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Proof of Property 2. We use induction over the number of nodes N(G) in
G. For N(G) = 3 the property is trivial. Let the property be true for all
N(G) ≤ N . Consider a graph with N(G) = N + 1 nodes. Select a node a
and perform steps of the algorithm and delete the node and its edges. We
obtain one or more components Gi, i = 1, 2, . . . , k. Any two nodes in the same
component are connected. If one node belongs to one component and the other
one is either node a, or belongs to another component, they are connected with
special edges, since all turns between special edges are permitted, as well as
turns between edges connecting node a with G1 and special edges. Hence, this
run of the algorithm does not affect connectivity. Since N(Gi) ≤ N for all
i = 1, 2, . . . , k, the property is proved. 2

Proof of Property 3. At recursive call `a of CB algorithm we prohibit a
subset of the set of all turns (c, a, b) with `c > `a, `b > `a and permit all
turns (a, b, c) with `b > `a, `c > `a. The number of prohibited turns at run
`a is Ta ≤ da(da − 1)/2 and the number of permitted turns (a, b, c) is Da ≥∑

i∈nbors(di − 1), where summation is made over all nodes i adjacent to node
a. If node a has a minimal degree in the remaining graph at recursive call `a or
if it is not connected with a delayed node, which has a degree smaller than da,
then, since da ≤ di for all neighbors of a, Da ≥ da(da − 1). The only remaining
case is when all ordinary nodes of minimal (among ordinary nodes) degree are
connected with a delayed node of degree d′ < da. Then, at node a, at most
d′−1 edges end at nodes of degree da, while at least (da−1)− (d′−1) = da−d′

edges end at nodes with degrees at least da +1. Thus, the number of permitted
turns is

Da ≥ (d′ − 1)(da − 1) + (da − d′)da + (d′ − 1)
≥ da(da − 1).

Hence, in all cases, the number of permitted turns is larger than the number of
prohibited turns by at least a factor of two. Since this is true for each run of
the algorithm, it follows that Z(G) ≤ T (G)/3. 2

Note that the only graph with Z(G) = T (G)/3 is the complete graph Kn,
with an edge between every two nodes.

Proof of Property 4. It should be noted that this property was shown not
to be satisfied by the original TP algorithm [23]. Our proof here uses induction
over the number of nodes N = N(G). For N ≤ 3 the property is trivial.
Assume that the property is true for N(G) ≤ N . Consider a graph G with
N(G) = N + 1. Let a be the first selected node, `a = 1. It is sufficient to prove
that deleting a prohibited turn (b, a, c) from W (G) creates a cycle.

If nodes b and c belong to the same connected component Gi, then, by
Property 1, after completion of the CB algorithm, there exists a permitted
path from b to c that belongs to component Gi, and, therefore, permitting the
turn (b, a, c) creates a cycle (a, b, . . . , c, a, b).

Now, let b ∈ Gi and c ∈ Gj with i > j. Then the edge (a, b) is ordinary
or non-special, there exists a special edge (a, d), d ∈ Gi. Hence, permitting
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turn (b, a, c) creates a cycle (b, a, c, . . . , e, a, d, . . . , b, a). Note that turn (d, a, e),
between a special edge connecting node a to Gi and an ordinary edge connecting
a to Gj , i > j, is permitted by the CB algorithm, and therefore Property 4 is
proved. 2

Now, we shall demonstrate the operation of the CB algorithm by applying it
to an important class of graphs, namely to full bipartite graphs Kn,m [14]. For
Kn,m class graphs the set of nodes consists of two disjoint subsets {a1, . . . , an},
{b1, . . . , bm} and set of edges E = {(ai, bj)|i = 1, . . . , n, j = 1, . . . , m}. Thus,

N = n + m, M = |E| = nm, and T (Kn,m) =
(

n
2

)
+

(
m
2

)
.

For the bipartite graph K3,3 in Figure 5, N = 6, Z(K3,3) = 5, and an irre-
ducible set of prohibited turns is W (K3,3) = {(2, 1, 4), (2, 1, 6), (4, 1, 6), (3, 2, 5),
(4, 3, 6)}. By (5), Theorem 2, this is optimal cycle-breaking set of turns for

1

2

3

4

5

6

Figure 5: Prohibited turns generated by the CB for the bipartite graph K3,3

K3,3. For K4,4, CB algorithm results in a cycle-breaking set of 14 turns out of
a total of 48 turns, which is minimal number of prohibited turns for K4,4. For
arbitrary n, minimum degree nodes will be selected alternately from two parts
of the bipartite graph. Denoting the required number of prohibited turns as
Z(Kn,n), we obtain the following recursive equation

Z(Kn,n) = Z(Kn−1,n−1) +
(

n
2

)
+

(
n− 1

2

)

= Z(Kn−1,n−1) + (n− 1)2.

Hence

Z(Kn,n) =
n−1∑

k=1

k2

=
n(n− 1)(2n− 1)

6
. (8)

If m > n, at the first stage (m−n)
(

n
2

)
turns around m−n nodes of the larger

part containing m nodes will be prohibited, thus

Z(Kn,m) =
n(n− 1)(2n− 1)

6
+

n(n− 1)(m− n)
2
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=
n(n− 1)(3m− n− 1)

6
. (9)

6 Minimal Cycle-Breaking Sets of Turns for t-
Partite Graphs

In this section we shall use the CB algorithm for determining the upper bounds
on minimal cycle-breaking sets for bipartite and t-partite graphs. For the com-
plete bipartite topology Kn,m and the symmetric bipartite topology Kn,n, we
obtain a lower bound for the fraction of prohibited turns by means of the fol-
lowing theorem and its corollaries.

Theorem 5 For complete bipartite graphs Kn,n with n ≤ m

n− 1
2(m + n− 2)

≤ z(Kn,m) ≤ (n− 1)(3m− n− 1)
3m(m + n− 2)

. (10)

Proof: To prove the upper bound, we use the set of prohibited turns constructed
by the CB algorithm with Kn,m given by (9). The total number of turns in Kn,m

is equal to

T (Kn,m) = n

(
m
2

)
+ m

(
n
2

)
= nm(m + n− 2)/2 .

Hence,

z(Kn,m) ≤ (n− 1)(3m− n− 1)
3m(m + n− 2

.

To prove the lower bound, consider the bound given by (3). If the set of cycles

C is taken to contain only cycles of length four, then there are R =
(

n
2

)(
m
2

)

of such cycles and each turn can cover no more than r = m− 1 cycles. Hence,

z(Kn,m) ≥ R

rT (Kn,m)
=

n(n− 1)m(m− 1)
4(m− 1)(mn(m + n− 2)/2)

=
n− 1

2(m + n− 2)
.

2

Corollary 2 For bipartite graphs Kn,n, bounds for the fraction of prohibited
turns is given by

(n− 1)(n + 2)
4n2

≤ z(Kn,n) ≤ 2n− 1
6n

. (11)

Proof: The upper bound follows directly from (10).

For the lower bound, note that for Kn,n we have T (Kn,n) = 2n

(
n
2

)
=

n2(n − 1) and no more than
(

n
2

)
+

(
n− 1

2

)
= (n − 1)2 turns can be selected
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in such a way that no two or more turns cover the same cycles of length four.
These turns cover (n−1)3 cycles. All other turns cover at most (n−2) additional
cycles. Thus, we have for the total number of prohibited turns

Z(Kn,n) ≥ (n− 1)3 +

(
n
2

)2

− (n− 1)3

n− 2
=

(n− 1)2(n + 2)
4

.

2

Corollary 3 For bipartite graphs Kn,n, an alternate lower bound for the frac-
tion of prohibited turns is given by

z(Kn,n) ≥ 1− 1
2n

− 1
2

√
2− 2

n
+

1
n2

. (12)

Proof: Note that for Kn,n we have T (Kn,n) = n2(n − 1). Consider the set of(
n
2

)2

cycles of length four. We split all prohibited turns in the minimum cycle-

breaking set of turns into n(n − 1) groups, putting any two turns (a, b, c) and
(x, y, z) in one group if and only if a = x, c = z. Denote the number of turns
in these groups as sj , j = [1, 2, . . . , n(n − 1)]. Then, the number of prohibited
turns is Z(Kn, n) =

∑n(n−1)
j=1 sj . Now, we consider the number cj of cycles of

length four, covered by turns from group j, cj = (n−1)+(n−2)+ . . . , (n−sj).
For the total number of cycles of length four we obtain,

(
n
2

)2

≤
n(n−1)∑

j=1

cj =
n(n−1)∑

j=1

sj(2n− sj − 1)
2

=
2n− 1

2
Z(Kn,n)−

n(n−1)∑

j=1

s2
j

2
.

Since
n(n−1)∑

j=1

s2
j

2
≥ n(n− 1)

2

(
Z(Kn,n)
n(n− 1)

)2

,

we have

(Z(Kn,n))2 − n(n− 1)(2n− 1)Z(Kn,n) +
1
2
n3(n− 1)3 ≤ 0 .

Solving this inequality for Z(Kn,n), we obtain the fraction of prohibited turns
as

z(Kn,n) ≥ 1− 1
2n

− 1
2

√
2− 2

n
+

1
n2

.

2

Hence, the limn→∞ z(Kn,n) ≥ 1 −
√

2
2 ≈ 0.2929. Therefore, asymptotically,

bound (12) gives better results than bound (11). The bounds for Z(Kn,n) are
given in Table 2 for n = 2, . . . , 8.
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Table 2: Bounds for the number of prohibited turns Z(Kn,n)

n 2 3 4 5 6 7 8

Z(Kn,n) ≥ 1 5 14 28 50 81 123

Z(Kn,n) ≤ 1 5 14 30 55 91 140

We conjecture that the CB algorithm generates a minimum cycle-breaking
set for any complete bipartite graph Kn,m.

Next we consider complete t-partite graphs Kn1,n2,...,nt
= Kt

n, where ni = n,
i = 1, 2, . . . , t [8], with N = nt nodes and M = n2t(t− 1)/2 edges.

Theorem 6 For complete t-partite graphs Kt
n,

4n3(t− 2) + 3(n− 1)2(n + 2)
12n2(nt− n− 1)

≤ z(Kt
n) ≤ 2n2t− 2n2 − 3n + 1

6(n2t− n2 − n)
. (13)

Proof: To prove the upper bound, we estimate the number of prohibited turns
Z(Kt

n), generated by the CB algorithm. Number of prohibited turns can be
calculated as

Z(Kt
n) = Z(Kt

n−1 +
(

n(t− 1)
2

)
+

(
n(t− 1)− 1

2

)
+ . . . +

(
(n− 1)(t− 1)

2

)

=
n(t−1)∑

j=2

(
j
2

)
+

n−1∑

j=1

(
j(t− 1)

2

)
. (14)

With
n(t−1)∑

j=2

(
j
2

)
=

1
6
n(t− 1)(nt− n + 1)(nt− n− 1)

and
n−1∑

j=1

(
j(t− 1)

2

)
=

1
12

n(t− 1)(n− 1)(2nt− 2n− t− 2) ,

the total number of turns T (Kt
n) = nt

(
n(t− 1)

2

)
equation (10) follows from

(14).
To prove the lower bound, consider all cycles of length three, containing

nodes from three different parts, and all cycles of length four, containing nodes

from two different parts. There are C1(Kt
n) = n3

(
t
3

)
cycles of the first type

and C2(Kt
n) =

(
n
2

)2 (
t
2

)
cycles of the second type. To cover all cycles of the

second type, by Corollary 1, Z2(Kt
n) ≥ (n−1)2(n+2)

4

(
t
2

)
turns are needed. Since
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no cycles of the first type have common turns with each other and with cycles
of the second type, using Theorem 1, we obtain

Z(Kt
n) ≥ C1(Kt

n) + Z2(Kt
n) ≥ n3

(
t
3

)
+

(n− 1)2(n + 2)
4

(
t
2

)
,

Z(Kt
n) ≥ t(t− 1)

2
(
n3(t− 2)

3
+

(n− 1)2(n + 2)
4

) .

Note that T (Kt
n) = nt

(
n(t− 1)

2

)
, thus

z(Kt
n) ≥ 1

n(t− 1)− 1
(
n(t− 2)

3
+

(n− 1)2(n + 2)
4n2

z(Kt
n) ≥ 4n3(t− 2) + 3(n− 1)2(n + 2)

12n2(nt− n− 1)
.

2

For example, by Theorem 6, for n = 2, 3 and any t ≥ 3, the upper and lower
bounds coincide to yield z(Kt

n) = 11/36, and for these cases the CB algorithm
is optimal.

Corollary 4 If n →∞, then 1
3 − 1

12(t−1) ≤ limn→∞ z(Kt
n) ≤ 1

3 . If also t →∞,
then z(G) → 1

3 .

Thus lower bound (13) is asymptotically tight and the maximum difference
between the upper and the lower bound is achieved when n →∞.

7 Application of the CB Algorithm to Graphs
with Small Degree Nodes

Now we consider an arbitrary graph G, which is constrained to have only nodes
of small degrees. This corresponds to the practical case where the number of
possible point-to-point connections at each node is restricted by the number of
output buffers in the router [10]. Assume that degrees of all nodes do not exceed
3. As shown below, in this case the upper bound on the fraction of prohibited
turns given in Section 5 can be substantially improved.

Consider first the case when initially graph G includes a node of degree
smaller than 3. Then, at each recursive call of the CB algorithm, each connected
component will have a node of degree smaller than 3. If the component is not a
simple cycle or a path without repeating nodes it includes also nodes of degree
3. Since recursive calls that select nodes of degree 1 do not prohibit any turns,
we assume that there are no nodes of degree 1 in the initial graph. Note that
if there are at least two nodes of degree 2 in a component, then at least one
of them is not a delayed node and is a neighbor of a node of degree 3. Also,
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there is only one possibility that a node a of degree 3 will be selected, namely,
if the component includes exactly one delayed node b of degree 2. It is easy to
show by contradiction that in this case there exists a non-cut-node of degree 3
that is not a neighbor of the delayed node. Therefore, only a non-cut-node of
degree 3 can be selected. Let G be such a connected graph with M edges and
N = N2 + N3 nodes, where N2 and N3 are the number of nodes of degree 2
and 3, respectively. Furthermore, assume that CB algorithm is applied to this
graph until the remaining subgraph becomes a collection of k simple, disjoint
cycles of length Cj , j = 1, . . . , k. Denote by Ai (i = 1, 2, 3) the number of nodes
of degree i selected during the execution of the algorithm up to the point when
a collection of cycles is obtained. Then A2 = B2 + P2, where B2 and P2 denote
the number of non-cut-nodes and number of cut-nodes of degree 2, respectively.
Obviously, exactly one turn in each of k simple cycles need to be prohibited.
(Nodes selected in these cycles are not counted in A1 or A2.) Hence, the total
number of prohibited turns is

Z(G) ≤ B2 + 3A3 + k . (15)

It is readily seen that Cj , A1, A2, and A3 satisfy the following equations

k∑

j=1

Cj + A1 + A2 + A3 = N, (16)

and
k∑

j=1

Cj + A1 + 2A2 + 3A3 = M. (17)

Since each cut-node increases the number of components by one we have

P2 = k − 1, (18)

and since the minimum length of a cycle is 3

k∑

j=1

Cj ≥ 3k. (19)

Inequality (19) can be strengthened. First, note that at every step of the
algorithm there exists a component without a delayed or a forcing node. If the
initial graph is not a cycle of length N = 3, it is easy to see that at least one
non-cut-node of degree 2 will be selected in this component, in the course of the
algorithm, before this component turns into a cycle. Thus,

B2 ≥ 1 (20)

provided that N > 3 and there exists anode of degree 2 in the initial graph.
Note that the same is true in the case when the initial graph has nodes of degree
3, provided that N > 4.

Consider now components with delayed nodes.



Levitin et al., Cycle-Breaking Sets of Turns, JGAA, 10(2) 387–420 (2006) 410

Lemma 3 If a component has a delayed node and all other nodes are of degree
3, then either a cycle of length 4 appears or a non-cut-node of degree 2 is selected
in the course of the algorithm.

Proof: After a node of degree 3 is selected in this component, three more nodes
of degree 2 will appear. Together with the delayed node, they may form a cycle
of length four as shown in Figure 6a. Suppose now that this is not the case
and consider the component to which the delayed node belongs after selection
of node of degree 3. Note that henceforth only nodes of degree 2 will be selected
in this component. Two cases can take place in the course of the algorithm as
follows:

(i) The delayed node becomes a node in a simple cycle.

(ii) The delayed node becomes a forcing node.

Consider the case (i). Since in addition to the delayed node, at least two
nodes must become simultaneously of degree 2 to form a cycle, it follows that
when it occurs, a non-cut-node of degree 2 was selected as in Figure 6(a).

Case (ii) includes two sub cases. First sub case takes place if the delayed
node becomes a cut-node of degree 2. Then the node a whose selection caused
this result must be a non-cut-node, as shown in Figure 7(a). The second sub
case occurs if the delayed node becomes a node of degree 1. Then the selected
node a is a neighbor of the delayed node, Figure 7(b). Node a must be a non-
cut-one, since otherwise the delayed node must have been turned into a forcing
node (a cut-node) already, Figure 7(c). 2

(a)

a

(b)

Figure 6: Graphs illustrating the cases where the only node of degree two is a
delayed node, showing delayed nodes as solid

It follows from Lemma 3 that every selection of node of degree 3 either
creates a cycle of length Cj = 4, or leads to a selection of non-cut-node of
degree 2, increasing B2 by 1. These considerations, together with (19) and (20)
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imply the following inequality

k∑

j=1

Cj + B2 − 1 ≥ 3k + A3. (21)

Finally, since at most one node of degree 3 can be selected in each component,
except the component without a delayed node, it follows that

A3 ≤ k − 1. (22)

a

(a)

a

(b)

a

(c)

Figure 7: Graphs illustrating the runs that would make a node of degree 2 a
forcing node in (a), a node of degree 1 forcing node in (b), and node that should
have been a forcing node rather than a delayed node in (c)

Theorem 7 Let G be a connected graph with M edges and N > 3 nodes, where
all nodes have degrees not exceeding 3 and at least one node is of degree smaller
than 3. Then

Z(G) ≤
⌊

1
6
(6M − 5N + 2)

⌋
, (23)

and

z(G) ≤
⌊

1
6 (6M − 5N + 2)

⌋

(4M − 3N)

≤ 1
4
− N − 4

12(4M − 3N)

≤ 1
4
− N − 4

12(4M − 3N)
. (24)

Proof: The proof follows from the system of equations (16)– (18) and inequal-
ities (15),(21), and (22). Subtracting (16) from (21) and substituting P2 from
(18), we get

2A3 ≤ N − 4k −A1. (25)
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Multiplying (22) by 4 and adding (25) yields

6A3 ≤ N −A1 − 4. (26)

Subtracting (16) from (17), we obtain

A2 + 2A3 = M −N. (27)

From (15) and (18):
Z(G) ≤ A2 + 3A3 + 1. (28)

Taking into account that Z(G) is an integer and A1 ≥ 0, from (26), (27), and
(28), we obtain:

Z(G) ≤ b 1
6 (6M − 5N + 2)c .

Since the total number of turns is T (G) = 4M − 3N , the fraction of prohibited
turns is upper bounded by

z(G) ≤
⌊

1
6 (6M − 5N + 2)

⌋

4M − 3N
,

or
z(G) ≤ 1

4
− N − 4

12(4M − 3N)
.

2

Figure 8: An example graph with Z(G) ≤ ⌊
43
6

⌋
= 7 and z(G) ≤ 7

31

Corollary 5 For any degree 3 regular graph G with N > 4,

Z(G) ≤
⌊

4N + 7
6

⌋
, (29)

z(G) ≤
⌊

4N+7
6

⌋

3N
,

≤ 2
9

+
7

18N
. (30)
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Proof: After selecting the first node (which is a non-cut-node of degree 3),
prohibiting 3 turns, permitting 6 turns, deleting the node and its edges, we
obtain a graph considered in Theorem 7, with N ′ = N − 1 nodes and M ′ =
M − 3 = 3N

2 − 3 edges. Hence the number of prohibited turns Z(G) becomes

Z(G) ≤ 3 +
⌊

1
6
(6M ′ − 5N ′ + 2)

⌋
,

≤ 3 +
⌊

1
6
(6(M − 3)− 5(N − 1) + 2)

⌋
,

≤
⌊

4N + 7
6

⌋
,

where we used M = 3N/2. With the total number of turns given by T = 3N ,
(30) follows immediately. 2

Bounds (24) and (30) are tight. The first is achieved, e.g., for the graph
shown in Figure 8 with z(G) ≤ 7

31 , and the second is achieved, for example for
the Petersen graph, K3,3, among many others. Bound (30) is also achieved
when the number of repeated groups of six nodes tends to infinity as in the
graph shown in Figure 9. In spite of the fact that both the upper and lower
bounds are tight, there is a gap between the upper bounds (24), (30) and the
lower bound Z(G) ≥ M − N + 1. This variation is due to the effect of nodes
of degree 3 that are selected in the course of the algorithm, as the following
theorem shows.

...

...

Figure 9: A topology in which the upper bound (30) is attained asymptotically
when number of five-node clusters tends to infinity

Theorem 8 For graphs described in Theorem 7, if no node of degree 3 is ever
selected in the course of the algorithm, then

z(G) =
M −N + 1
4M − 3N

. (31)

Proof: If A3 = 0, then from (16), (17), (28), and (2) we obtain

Z(G) = M −N + 1 (32)
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which gives (31). 2

Thus in this case upper and the lower bounds coincide and the CB algorithm
is optimal.

A similar result holds for a degree 3 regular graph if the number of connected
components remains equal to one throughout the execution of the algorithm.

Corollary 6 If graph G is a degree 3 regular graph and k = 1, then

z(G) =
1
6

+
2

3N
. (33)

Proof: Since k = 1, then A2 = B2 + P2 = B2, and
∑k

j=1 Cj = C1. Total
number of prohibited turns Z(G) then becomes

Z(G) ≤ B2 + 3A3 + k

≤ 4 + B2

≤ 4 + A2 . (34)

Number of nodes and number of edges are equal to N = C1 + A1 + A2 + 1 and
M = C1 + A1 + 2A2 + 3 we obtain

M −N = A2 + 2. (35)

It follows from (34),(35) and Theorem 2 that

Z(G) = M −N + 2. (36)

Since total number of turns in a degree 3 regular graph G is T (G) = 3N , we
obtain

z(G) =
1
6

+
2

3N
.

2

8 Experimental Results

To illustrate the effectiveness of the CB algorithm we compared it with the pop-
ular Up/Down approach [16] by means of simulation experiments. To compare
the two algorithms, we generated a family of graphs with a given bisection width
B. The bisection width is the minimum number of edges that when deleted par-
tition the graph into two separate connected components with equal number of
nodes in each component. In Figure 10 (a), (b), (c), and (d) we show the results
of our simulation experiments for topologies of bisection widths two, four, six,
and eight respectively. These histograms of the fraction of prohibited turns were
obtained using the Up/Down and the CB algorithms. For each distribution in
Figure 10, we evaluated 100 randomly generated graphs with the given bisec-
tion width. All graphs had 64 nodes with each graph having an average node
degree of four. We then applied both algorithms to the same set of topologies,
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Figure 10: Experimental comparison of fractions of prohibited turns of
Up/Down and CB-algorithms. In the figures, m, and s stand for the mean
and the standard deviation of the distributions respectively.

determining the mean and the variance for the fraction of prohibited turns.
In Figure 11, we plotted the mean of the fraction of prohibited turns versus
the bisection width B. It can be seen that the Up/Down approach has a larger
variance than the CB algorithm. The mean fraction of prohibited turns in the
Up/Down approach are consistently larger by about 15% than those generated
by the CB algorithm.

In next set of experiments we analyzed the average distance as a function of
bisection width in a large number of topologies. Given the randomly generated
family of connected topologies as discussed above, we first computed the average
distance in each topology without any turn prohibition. We then applied turn
prohibitions using the Up/Down algorithm and computed the average distance
to determine the effect of prohibitions on the average distance. Subsequently we
applied the CB algorithm to prohibit turns to the same original topology and
computed the average distance after the CB algorithm is applied. We repeated
these set of experiments for the same 100 randomly generated topologies as used
in previous sets of experiments, and computed the mean of average distances.
We repeated the set of experiments, varying the bisection width between 2
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Figure 11: Average fraction of prohibited turns vs bisection width B. All topolo-
gies had 64 nodes and an average node degree of four.

and 30. Experimental results are shown in Figure 12. Surprisingly, as can
be seen in Figure 12(a), for the 64 node topologies that we investigated, the
Up/Down algorithm has smaller average distance values than the CB algorithm
when bisection width values are between 2 and 10, and the CB algorithm has
smaller average distance values than CB algorithm when bisection width values
between 16 and 30. When the bisection width is in the range of 12 to 14
both algorithms perform approximately the same. As expected, in all cases,
both CB and the Up/Down algorithms increase the average distance of the
original topology. Defining the average distance dilation as the ratio of the
average distance with a given prohibition scheme to the average distance with
no prohibition, we obtain the plot in Figure 12(b). For the topologies that we
investigated,the CB algorithm introduces approximately the same dilation in
topologies with a bisection width of 2 as does the Up/Down algorithm at a
bisection width of 30. For bisection widths 12 and 14 both algorithms cause
approximately same dilation. For topologies with bisection widths greater than
14, the dilation introduced by the CB algorithm is always less than the dilation
introduced by the Up/Down algorithm.

Finally, in Figure 13 we show our simulation results comparing saturation
points of the CB and the Up/Down algorithms. In these experiments, we used
uniform traffic model where every node is equally likely to be selected as a
source and as a destination. Messages generated by the source node are of fixed
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Figure 12: Comparing average distance in hops (a) and average dilation (b) in
Up/Down (UD) and CB algorithms against the reference No Prohibition (NP).
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Figure 13: Experimental results comparing saturation points of the Up/Down
and the CB algorithms. Saturation point is in terms of number of messages
(also referred to as worms) per second per node.

length of 200 flits. In our experiments each flit contains eight bits of payload
data and three bits of control information. Control bits are used to indicate if
a flit is a header flit, a payload flit, or a tail flit. During the simulations, we
observed message latencies as the message generation rate is increased. As the
observed latencies tend to infinity, the corresponding message generation rate is
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noted as the saturation point (maximum sustainable message generation rate)
for that topology. In the figure, each experimental point represents the average
saturation point for 100 different topologies for both the CB and the Up/Down
approaches. Even with the minimum bisection width constraints in the topolo-
gies as shown, we see that for all topologies with the minimum bisection widths
(between two and twenty) that we investigated, the CB algorithm outperformed
the Up/Down algorithm by as much as 73%. We note that for 15% reduction
in the fraction of prohibited turns, Figure 2 predicts (with no bisection width
constraints in the topologies) an increase in the saturation point of greater than
116%.

9 Conclusions

In this paper we analyzed the problem of constructing minimal cycle-breaking
sets of turns in a given graph. This problem is important in networks with irreg-
ular topologies in which wormhole routing is used. We developed an algorithm,
which we called the CB algorithm, with O(N2∆) complexity. This algorithm
generates irreducible sets of prohibited turns, the size of which is no more than
one third of the total number of turns for any graph. Furthermore, this set
breaks all cycles and maintains connectivity in the original graph. The results
of computer simulations illustrate that the proposed approach performs con-
sistently and considerably better than the existing Up/Down approach. With
randomly generated 64-node topologies with nodes of average degree four, the
CB algorithm based approach outperformed the Up/Down approach by ap-
proximately 15% for the fraction of prohibited turns. For message latencies, we
observed the improvement in saturation points by the CB algorithm over the
Up/Down algorithm to be as large as 73%.
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