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Abstract

A radial drawing is a representation of a graph in which the vertices lie
on concentric circles of finite radius. In this paper we study the problem
of computing radial drawings of planar graphs by using the minimum
number of concentric circles. We assume that the edges are drawn as
straight-line segments and that co-circular vertices can be adjacent. It is
proven that the problem can be solved in polynomial time. The solution
is based on a characterization of those graphs that admit a crossing-free
straight-line radial drawing on k circles. For the graphs in this family, a
linear time algorithm that computes a radial drawing on k circles is also
presented.
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1 Introduction

A radial drawing is a representation of a graph in which the vertices are con-
strained to lie on concentric circles of finite radius. Drawing graphs radially is
relevant in situations where it is important to display a graph with the con-
straint that some vertices are drawn “more central” than others. Examples of
such applications include social networks analysis (visualization of policy net-
works and co-citation graphs), operating systems (visualization of filesystems),
cybergeography (visualization of Web maps and communities), and bioinformat-
ics (visualization of protein-protein interaction diagrams); see e.g. [5, 11, 12].

This paper investigates crossing-free radial drawings of planar graphs. Let
G be a planar graph. A crossing-free radial drawing of G induces a partition of
its vertices into levels such that vertices in the same level are co-circular in the
drawing; for each level, the planarity of the drawing induces a circular ordering
of the vertices in the level. Conversely, in order to construct a radial drawing of
G a partition of its vertices into levels and a circular ordering within each level
must be found such that vertices of the same level are drawn co-circularly and
the edges can be drawn without intersecting each other.

Bachmaier, Brandenburg, and Forster [1, 2] investigate the radial planarity
testing problem: Given a partition of the vertices of G into levels, they want
to test whether there exists a crossing-free radial drawing of G consistent with
the given leveling (i.e. vertices in the same level can be drawn on the same
circle and the edges can be added without crossing). In [1] it is assumed that
the edges are drawn as strictly monotone curves from inner to outer circles
and that no two co-circular vertices are connected by an edge. The elegant
linear-time algorithm presented by Bachmaier, Brandenburg, and Forster tests
radial planarity by using an extension of PQ-trees, called PQR-trees. In [2]
the authors extend the algorithm to the case where edges between consecutive
co-circular vertices are allowed.

In this paper we assume that the partition of the vertices of G is not given
and study the problem of computing a partition that minimizes the number of
levels, i.e. that corresponds to a crossing-free straight-line radial drawing of G
on the minimum number of circles. We call such a drawing a minimum radial
drawing of G. We assume that the edges are straight-line segments and that
vertices on the same level can be adjacent. These choices are justified by different
application-oriented examples of radial drawings that adopt the straight-line
standard (see e.g. [6, 17, 19]) and by the observation that allowing edges among
co-circular vertices appears to be a natural approach for the reduction of the
number of levels. We also remark that the study of crossing-free straight-line
layered drawings in which vertices lie on parallel lines and where intra-layer
edges are allowed has been receiving increasing interest in the recent literature
(a limited list of citations includes [3, 7, 13, 18]).

The contribution of the present paper is to characterize those graphs that can
be drawn on a given number of concentric circles and to use this characterization
to solve the optimization problem described above. More precisely:
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• We show that every 2-outerplanar graph admits a crossing-free straight-
line radial drawing on two circles. The proof is constructive and the radial
drawing can be computed in linear time. Preliminary results on computing
radial drawings of 2-outerplanar graphs appear in [9].

• We generalize these results and characterize the family of graphs that
admit a crossing-free straight-line radial drawing on at most k ≥ 2 circles.
We recall that similar characterization problems for straight-line k-layered
drawings are studied for the case of k ≤ 3; see, e.g. [7]. We also recall that
every planar graph admits a crossing-free drawing with all vertices on the
same circle and at most one bend per edge [10].

• Based on the characterization above, we show that there exists a polyno-
mial time algorithm to compute a minimum radial drawing of a planar
graph. The drawing has the additional property of being “proper”, i.e. an
edge always connects either co-circular vertices or vertices on consecutive
circles. This contrasts with a result by Heath and Rosenberg [16] who
prove that it is NP-complete to decide whether a planar graph admits a
proper crossing-free layered drawing with vertices on parallel straight lines
and no intra-layer edges.

The remainder of this paper is organized as follows. Preliminaries and an
overview of our approach are given in Sections 2 and 3. In Section 4 we introduce
the concept of canonical k-outerplanar graphs. Section 5 defines the equipped
block cut-vertex tree data structure. An algorithm for drawing 2-outerplanar
graphs on two circles is described in Section 6. In Section 7 the results of
Section 6 are used to compute radial drawings of k-outerplanar graphs and to
devise a polynomial time algorithm for proper radial drawings of planar graphs
on the minimum number of circles. Conclusions and open problems can be
found in Section 8.

2 Preliminaries

We use the basic definitions regarding graph drawing from [8]. Let G be a
graph. A drawing Γ of G maps each vertex v of G to a distinct point p(v) of the
plane and each edge e = (u, v) of G to a simple Jordan curve connecting p(u)
and p(v) such that each edge intersects no vertex except its endpoints. Drawing
Γ is planar if no two distinct edges intersect except at common endvertices.
Graph G is planar if it admits a planar drawing. A planar drawing Γ of G
partitions the plane into topologically connected regions called the faces defined
by Γ. The unbounded face is called the external face. The boundary of a face is
its delimiting circuit (not necessarily a simple cycle) described by the circular
list of its edges and vertices. The boundary of the external face, also called
the external boundary, is the circular list of edges and vertices delimiting the
unbounded region. If the graph is biconnected the boundary of each face is
a simple cycle. An embedding of a planar graph G is an equivalence class of
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planar drawings that define the same set of faces, that is, the same set of face
boundaries. A planar graph G with a given embedding Ψ is called an embedded
planar graph. A drawing Γ of G is an embedding preserving drawing if Γ ∈ Ψ.

A 1-outerplanar embedded graph (also called 1-outerplane graph) is an em-
bedded planar graph where all vertices are on the external face. An embedded
graph is a k-outerplanar embedded graph (also called k-outerplane graph) (k > 1)
if the embedded graph obtained by removing all vertices of the external face is
a (k − 1)-outerplane graph. The planar embedding of a k-outerplane graph is
called a k-outerplanar embedding. A graph is k-outerplanar if it admits a k-
outerplanar embedding. A planar graph G has outerplanarity k (for an integer
k > 0) if it is k-outerplanar and it is not j-outerplanar for 0 < j < k.

Let G be a k-outerplane graph with k > 1. We associate a level with each
vertex v of G, denoted as lev(v), according to the following definition: lev(v) = 0
if v is on the external face of G and lev(v) = i (i = 1, . . . , k − 1) if v is on the
external face after the removal of every vertex u with lev(u) < i. If lev(v) = i,
we say that v is a vertex of level i. Let Vi be the set of vertices v with lev(v) = i.
The subgraph induced by Vi is denoted by Gi = (Vi, Ei). Notice that Gi is a
graph of outerplanarity 1. Let Vi,i+1 = Vi ∪ Vi+1. The subgraph induced by
Vi,i+1 is denoted by Gi,i+1 = (Vi,i+1, Ei,i+1). We denote as Ei,i+1 the set of
edges that have an end-vertex of level i and an end-vertex of level i + 1, i.e.
Ei,i+1 = Ei,i+1 \ (Ei ∪ Ei+1).

We use C0, C1, . . . , Ck−1 to denote a set of k concentric circles in the plane,
where the radius of Ci is greater than the radius of Ci+1 (i = 0, . . . , k − 2).
Let G be a planar graph and let Γ be a crossing-free straight-line drawing of
G. The drawing Γ is a radial drawing if the vertices of G are placed on a set
of concentric circles. Γ will be called a k-radial drawing of G if it is a radial
drawing on C0, C1, . . . , Ck−1. Γ is a minimum radial drawing if it uses the
minimum number of circles. If all edges of a radial drawing Γ connect either
vertices on the same circle or vertices on consecutive circles, Γ is called a proper
radial drawing.

Let G be a k-outerplane graph. A radial drawing of G is level-preserving if
it is a k-radial drawing and every vertex v with lev(v) = i is drawn on circle
Ci. Observe that a level-preserving k-radial drawing of a k-outerplane graph is
proper.

3 Overview of the Approach

We study the problem of computing a radial drawing of a planar graph G on
the minimum number of circles. Our approach is as follows:

• We prove that if a graph has outerplanarity k then it admits a k-radial
drawing.

• We prove that if a graph has a radial drawing on k-circles then it has
outerplanarity at most k.
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• We use the above characterization and a result by Bienstock and Monma
[4] to show that there exists an O(n5 log n)-time algorithm that computes
a minimum radial drawing of G.

The trickiest part is to show that a graph with outerplanarity k has a k-radial
drawing. To this end, we provide a linear-time algorithm that receives as input
a k-outerplane graph G and computes a level-preserving k-radial drawing of G.
We start with G0 and draw the vertices of V0 on C0 while maintaining their
circular ordering in G0. After placing the vertices of Vi on Ci we compute the
radius of Ci+1 and draw the vertices of Vi+1 on Ci+1 without moving any vertex
from Vj with 0 ≤ j ≤ i. For ease of presentation, we will define canonical k-
outerplanar graphs and show how each k-outerplane graph can be transformed
into a canonical k-outerplane graph. We will also show that a k-outerplane
graph has a k-radial drawing if and only if its canonical form has a k-radial
drawing.

4 Canonical Graphs

Let G be a k-outerplane graph. A mixed face of G is a face containing vertices
of two consecutive levels. G is called inter-triangulated if all its mixed faces are
three-cycles. Assume G is inter-triangulated and let c be a cut-vertex of Gi+1

(0 ≤ i ≤ k − 2). Let B and B′ be two blocks (i.e. biconnected components) of
Gi+1 that are consecutive when going around c in clockwise direction. Since G
is inter-triangulated, there exists at least one edge of Ei,i+1 incident on c that is
encountered between B and B′ when going around c in the clockwise direction.
Such an edge of Ei,i+1 is called a separating edge because it separates blocks B
and B′ around c. For example, in Figure 1(a), vertex 8 is a cut-vertex of G1

and edge (8, g) is a separating edge that separates blocks I and B. G is said to
be canonical if it is inter-triangulated and for any i (i = 0, . . . , k − 2) and for
any two clockwise consecutive blocks B,B′ of Gi+1 around a cut-vertex, there
is exactly one separating edge.

We describe now how a given 2-outerplane graph G can be augmented to
become canonical without changing the levels of its vertices. This augmentation
technique will be used as a basic step to augment a k-outerplanar graph to
become canonical. The augmentation technique consists of the following steps.

1. For each internal face f of the graph G0, consider the subgraph of G1

that lies inside f . If this subgraph is not connected, add edges until it is
connected.

2. For each vertex v ∈ V1, if v has no neighbour in G0, make v adjacent to
a vertex of G0 in such a way that the graph remains planar. This can be
done, for example, as follows. For each mixed face f , choose an arbitrary
vertex u of f that is in V0 and connect it to all the vertices of V1 that are
in f and that have no neighbours in V0.
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3. Triangulate the mixed faces of the graph obtained from previous steps.
This can be done, in several ways. For example we can proceed as follows.

(a) Let f be a mixed face. If f has three consecutive vertices u, c, v such
that u, c, v ∈ G1 and c is a cut-vertex of G1 then (u, v) is not an edge
of G. We add (u, v) inside f , i.e. u, c and v now form a triangle.
Repeat this step as often as possible for all mixed faces.

(b) Let f be a non-triangular mixed face. Let v0, v1, . . . , va−1 (a ≥ 1) be
the vertices of f in V0 in clockwise order when walking on the external
face of G0. Let w0, w1, . . . , wb−1 (b ≥ 1) be the vertices of f in V1 in
clockwise order when walking on the external face of G1. If b = 1,
triangulate by adding edges (w0, v1), . . ., (w0, va−2). If b = 2, then
a > 1 because the face is non-triangular. In this case either v0 and
w1 are not adjacent or va−1 and w0 are not adjacent. Assume that
v0 and w1 are not adjacent (the other case is analogous); add edges
(w1, v0), . . ., (w1, va−2). If b > 2 add edges (v0, w1), . . ., (v0, wb−2)
and, if a > 1, edges (wb−2, v1), . . ., (wb−2, va−1).

4. Let f be a mixed face of the inter-triangulated graph obtained from pre-
vious steps and let x, v, and y be the vertices in the boundary of f . If
x, y ∈ V0 and v ∈ V1 then add a dummy vertex w inside f and connect it
to x, v, and y. Vertex w is assigned to level 1.

Figures 1(a) and 1(b) show a 2-outerplane graph G and the graph G′ ob-
tained from the augmentation technique above. Edge (1, 13) is added during
Step 1, to make G1 connected. The edges from vertex f to the vertices of block
A are added during Step 2. Edge (f, 9) is added during Step 3. Finally, blocks
D, G, H, I, J , K, M , N , O, P , and Q are “created” during Step 4.

Lemma 1 Let G be a connected 2-outerplane graph with n vertices. There
exists an O(n)-time algorithm that computes an augmented graph G′ such that
(1) G′ is 2-outerplane, (2) the levels of the vertices of G are preserved in G′,
(3) G′ is canonical, and (4) the number of vertices of G′ is O(n).

Proof: Suppose we use the augmentation technique described above to compute
G′. We first prove that G′ is 2-outerplane. Since each edge e = (u, v) added to
G during Steps 1, 2 and 3 is added inside a face whose boundary contains u and
v, these edges do not violate planarity. Step 4 adds a dummy vertex w inside a
triangular face f and adds edges from w to the vertices of f . Also these edges
do not create crossings. Therefore G′ is planar.

Step 1 adds edges connecting vertices in different blocks of G1; the addition
of these edges do not create multiple edges because they connect vertices in
different connected components of G1; also the levels of the vertices is not
changed. During Step 2 edges are added between vertices of V0 and vertices
of V1 and the level of the vertices is not changed. By construction these edges
connect non adjacent vertices and thus no multiple edge is created. After the
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Figure 1: (a) A 2-outerplane graph G. The blocks of G1 are highlighted and labeled
with capital letters. The cut-vertices of G1 are numbered squares, and their separating
edges are bold. (b) The augmented form of G. The new blocks, cut-vertices and
separating edges are highlighted.
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execution of Step 2, each vertex of V1 is adjacent to at least a vertex of V0.
This implies that any edge added after Step 2 does not change the level of the
vertices, provided that planarity is not violated. Therefore levels are preserved
also after the execution of Step 3. Step 4 adds a single vertex w into a mixed
triangular face and connects it to a vertex c of G1 and two vertices of V0. The
dummy vertex w is assigned to level 1, vertex c becomes a cut-vertex of G1 and
its level is not changed. Hence each vertex of G′ is assigned either to level 0 or
to level 1. It follows that G′ is 2-outerplane. Also, the levels of the vertices of
G are preserved in G′.

We prove now that Step 3 triangulates all the mixed face of the graph ob-
tained after Step 1 and 2. When Step 3(a) is executed, some cut-vertices c of G1

are transformed into non-cut-vertices by adding edges between two neighbours
u and v of the cut-vertices c. Since c is a cut-vertex then vertices u and v are
not adjacent and edge (u, v) can be added without creating multiple edges.

Let f be a non-triangular mixed face of the graph obtained after the exe-
cution of Step 3(a). Let v0, v1, . . . , va−1 (a ≥ 1) be the vertices of f in V0 in
clockwise order when walking on the external face of G0. Let w0, w1, . . . , wb−1

(b ≥ 1) be the vertices of f in V1 in clockwise order when walking on the external
face of G1. Step 3(b) considers the following cases:

b = 1, i.e. f has only one vertex w0 of level 1. Since f is not triangular
we have a > 2, i.e. f has at least three vertices of level 0. Vertex w0

is not adjacent to vertices v1, . . . , va−2: if w0 were adjacent to these ver-
tices from outside face f , then either v0 or va−1 would not be on the
external face of G0. Therefore edges (w0, v1), . . ., (w0, wa−2) split f into
a − 1 triangular faces without creating multiple edges.

b = 2, i.e. f has two vertices w0 and w1 of level 1. Since f is not triangu-
lar then a > 2, i.e. f has at least two vertices v0 and v1 of level 0. Vertices
w0 and w1 are not adjacent to vertices v1, . . . , va−2 (if they exist): if w0

and/or w1 were adjacent to these vertices from outside face f , then either
v0 or va−1 would not be on the external face of G0. Also, either v0 and w1

are not adjacent or va−1 and w0 are not adjacent: if both edges (v0, w1)
and (va−1, w0) existed then the subgraph induced by the vertices of f
would be a subdivision of K4 with all its vertices on the same face, which
is impossible. Assume that v0 and w1 are not adjacent (the other case is
analogous). Then, edges (w1, v0), . . ., (w1, va−2) split f into a triangular
faces and no multiple edge is created.

b > 2, i.e. f has more than two vertices w0 and w1 of level 1. In this
case v0 is not adjacent to vertices w1, . . . , wb−2: if v0 were adjacent to
one of these vertices from outside face f , then such vertex would be a
cut-vertex of G1; however, since we execute Step 3(a), no vertex among
w1, . . . , wb−2 can be a cut-vertex. This imply that edges (v0, w1), . . .,
(v0, wb−2) can be added without creating multiple edges. The addition of
these edges splits f into b−2 triangular faces plus, if a > 2, a non triangular
face f ′ whose boundary is v0, . . . , va−1, wb−1, wb−2. Vertex wb−2 is not
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adjacent to vertices v1, . . . , va−1: if wb−2 were adjacent to these vertices
from outside face f ′, then either v0 or va−1 would not be on the external
face of G0. It follows that edges (wb−2, v1), . . ., (wb−2, va−1) split f ′ into
a triangular face without creating multiple edges.

By the discussion of the cases above we have that G′ is inter-triangulated.
In order to prove that it is canonical we need to show that there are not two
separating edges e1 = (c, v1) and e2 = (c, v2) between two consecutive blocks
around a cut-vertex c. Suppose, as a contradiction, that such two edges exist.
Since the graph is inter-triangulated then the two edges belong to the boundary
of a triangular face whose vertices are c ∈ V1 and v1, v2 ∈ V0. But such a face
cannot exist because we apply Step 4.

Finally, it is easy to see that the number of vertices of G′ is O(n). Namely,
at most one vertex is added to each face of the graph obtained after Steps 1,2,
and 3. The number of such faces is O(n) since the graph is planar and therefore
at most O(n) dummy vertices are added.

Concerning the time complexity, Step 1 computes the connected components
of G1 and adds edges, which can be done in O(n) time. For each face, Step 2
requires time O(deg(f)), where deg(f) is the number of edges on the boundary
of f . Iterating over all faces we have that this step can be performed in O(n)
time. Analogously, Steps 3(a) and 3(b) decompose the mixed faces by adding
edges to E1 and to E0,1. All the edges can be found in O(deg(f)), where deg(f)
is the number of edge on the boundary of f . Iterating over all faces we have that
these steps can be performed in O(n) time. Finally Step 4 consists of checking
the boundary of every face f and possibly placing a new vertex in f . So this
step can also be completed in O(n) time. �

Besides being canonical, the augmented graph G′ has some additional prop-
erties that will be useful in the following sections to ease the description of our
drawing algorithm and the proof of its correctness. To state these properties we
need some more definitions.

Let G be a 2-outerplane graph and let B be a block of G1. Let c0 and c1 be
two (possibly coincident) cut-vertices of G1 such that, walking clockwise on the
external boundary of B: (i) c0 precedes c1; (ii) there is no cut-vertex between
c0 and c1. Let B0 be the block that precedes B in the clockwise order around
c0 and let B1 be the block that follows B in the clockwise order around c1.
Let (c0, v0) be the separating edge between B0 and B and let (c1, v1) be the
separating edge between B and B1 (note that v0 and v1 may coincide if c0 and
c1 are distinct). Let V p

1 be the set of vertices that are encountered between c0

and c1 while walking clockwise on the external boundary of B and let V p
0 be the

set of vertices that are encountered between v0 and v1 while walking clockwise
along G0, visiting only those vertices of V0 that are adjacent to vertices in V1.
The subgraph Gp induced by V p

0 ∪V p
1 is called a portion of G. Also, we say that

Gp is the portion of G defined by (c0, v0) and (c1, v1). The following properties
hold for a 2-outerplanar graph in its augmented form.
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Property 1 Let G be a 2-outerplanar graph and let G′ be the graph obtained
from the application of the augmentation technique. Each connected component
of G′

1 has at least one cut-vertex.

Proof: Assume, by contradiction, that there exists a connected component K of
G′

1 that is biconnected. Since G′ is inter-triangulated, there exists a triangular
mixed face f consisting of one vertex v of K and two vertices x and y of V0.
But this is impossible because of Step 4. �

Property 2 Let G be a 2-outerplanar graph and let G′ be the graph obtained
from the application of the augmentation technique. For each vertex u ∈ V0 that
is adjacent to at least a vertex of V1, there is at least one separating edge having
u as an end-vertex.

Proof: Let u be a vertex of V0 that is adjacent to at least a vertex of V1 and
let (u, v0), (u, v1), . . ., (u, vh−1) (h ≥ 1)be the edges connecting u to vertices of
V1 in the circular clockwise order around u. Consider vertex v0 (same argument
apply to vh−1 if v0 and vh−1 are distinct). Since G′ is inter-triangulated v0 is
adjacent to at least another vertex of V0 distinct from u. Consider two edges
e1 = (v0, u1) and e2 = (v0, u2) incident to v0 such that: (i) u1, u2 ∈ V0, (ii) there
is no other edge connecting v0 to a vertex of V0 between them in the clockwise
order around v0. Because of Step 4, there must exists a block of G′

1 (“real” or
dummy) that is inside the cycle defined by v0,u1 and u2. This implies that v0

is a cut-vertex of G′ and that edge (v0, u) is a separating edge. �

Property 3 Let G be a 2-outerplanar graph and let G′ be the graph obtained
from the application of the augmentation technique. Let Gp be a portion of G′

defined by (c0, v0) and (c1, v1), with c0 �= c1. Then v0 = v1.

Proof: Suppose v0 �= v1. Let V p
0 be the vertices of Gp that are vertices of V0

and let V p
1 be the vertices of Gp that are vertices of V1. Let B the block of G1

that contains the vertices of V p
1 . Since c0 �= c1, B is a “real” block, i.e. it is not

a block added by Step 4 of the augmentation technique, because the dummy
blocks created by the augmentation have only one cut-vertex. It follows that
no vertex of V p

1 is a dummy vertex. If V p
1 only consists of the two vertices c0

and c1, we have v0 = v1 since G′ is inter-triangulated. Suppose there exists
a vertex v ∈ V p

1 with v �= c0 and v �= c1 that is adjacent to more than one
vertex of V0. Consider two edges e1 = (v, u1) and e2 = (v, u2) incident to v such
that: (i) u1, u2 ∈ V0, (ii) there is no other edge connecting v to a vertex of V0

between them in the clockwise order around v. Because of Step 4, there must
exists a block of G′

1 (“real” or dummy) that is inside the cycle defined by v,u1

and u2. This implies that v is a cut-vertex of G′. But this is impossible since
by definition of portion there is no cut-vertex encountered between c0 and c1

while walking clockwise on the boundary of G1. Therefore any vertex v ∈ V p
1

with v �= c0 and v �= c1 is adjacent to one vertex of V0 from which we derive
that v0 = v1 since G′ is inter-triangulated. �
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Property 4 Let G be a 2-outerplanar graph and let G′ be the graph obtained
from the application of the augmentation technique. Let K be a connected com-
ponent of G1 and let B be a block of K. If B has only one cut-vertex, then the
block B is a dummy edge (c, v) and v is a dummy vertex.

Proof: Assume that B has only one cut-vertex but B is not a dummy block,
i.e. it is not a block added by Step 4 of the augmentation technique. Since G′

is canonical, there exists a (non-dummy) vertex w of B different from c that is
adjacent to more than one vertex of V0. Consider two edges e1 = (w, u1) and
e2 = (w, u2) incident to w such that: (i) u1, u2 ∈ V0, (ii) there is no other edge
connecting w to a vertex of V0 between them in the clockwise order around w.
Because of Step 4, there must exists a block of G′

1 (“real” or dummy) that is
inside the cycle defined by w,u1 and u2. This imply that w is a cut-vertex of
G′. But this is impossible since B has only one cut-vertex. �

The augmentation technique described can be used as a basic step in order
to augment a k-outerplanar graph G to a k-outerplanar canonical graph G′.
More precisely the following lemma holds.

Lemma 2 Let G be k-outerplane graph with n vertices. There exists an O(n)-
time algorithm that computes an augmented graph G′ such that: (1) G′ is k-
outerplane, (2) the levels of the vertices of G are preserved in G′, (3) G′ is
canonical, and (4) the number of vertices of G′ is O(n).

Proof: The augmentation technique explained above can be repeated k − 1
times. More precisely, for each i = k − 2, k − 1, . . . , 1, 0 the augmentation
technique can be applied to Gi,i+1. By Lemma 1 each iteration produces a
2-outerplane graph G′

i,i+1 in canonical form, so the augmentation produces a
k-outerplane graph G′. Since each vertex of G belongs to at most two graphs
Gi,i+1, it follows that G′ is constructed in O(n) time. �

Corollary 1 If the augmented graph G′ from Lemma 2 has a k-radial drawing,
then G has a k-radial drawing.

5 Equipped BC-trees

We now introduce the equipped BC-tree data structure, which is an extension
of the well-known block cut-vertex tree [15]. Let G be a 2-outerplane graph.
Based on Corollary 1 we assume that the augmentation technique described
in Section 4 has been applied to G and that, therefore, G is canonical and
Properties 1, 2, 3 and 4 hold for G. Let K be a connected component of G1.
Recall that by Property 1, K has at least one cut-vertex. An equipped BC-tree
T of K is a rooted tree such that:

• T has three types of nodes:

– For each block (i.e. biconnected component) B of K, T has a B-node
βB .
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– For each cut-vertex c of K, T has a C-node γc.

– For each separating edge e of G that is incident to a cut-vertex of K,
T has a D-node δe.

• The edges of T are of two types:

– For each cut-vertex c and for each block B that contains c, T has an
edge (γc, βB).

– For each cut-vertex c and for each separating edge e incident to c, T
has an edge (γc, δe).

• The order of the children of each node of T reflects the planar embedding
of G: let B0, e0, B1, e1, . . . , Bh, eh (h ≥ 1) be the sequence of blocks and
separating edges incident to c in clockwise order. Then βB0 , δe0 , βB1 ,
δe1 , . . ., βBh

, δeh
are incident to γc in this clockwise order.

• The root of T is an arbitrary C-node.

The equipped BC-tree of the graph of Figure 1(b) is shown in Figure 2(b).
The tree is represented with the root in the bottom of the picture and the leaves
in the top so that the left-to-right order in the picture reflects the clockwise order
of the nodes in the tree.

Since G is canonical, a C-node γc of T cannot have two adjacent B-nodes
that are consecutive in clockwise ordering around γc; also, it cannot have two
adjacent D-nodes that are consecutive in clockwise ordering. Hence, if γc is not
the root of T , its parent is a B-node and its leftmost and rightmost children
are D-nodes. If γc is the root of T we arbitrarily choose a D-node as its left-
most child; as a consequence the rightmost child is a B-node. See for example
Figure 2(b) where the rightmost child of the root is the B-node βC , while the
leftmost child is the D-node δ(1,a). The following lemma can be proved by using
standard techniques for BC-trees [14].

Lemma 3 Let G be a canonical 2-outerplane graph with n vertices. There exists
an O(n)-time algorithm that computes an equipped BC-tree for each connected
component of G1.

Let c and (c, v) be a cut-vertex and a separating edge of K, respectively.
Vertex v is called a separating vertex of γc. For example, in Figure 2(b), ver-
tices b, c, d are separating vertices of the C-node γ3. Denote by βB0 , δe0 , βB1 ,
δe1 , . . . , βBh

, δeh
(h ≥ 1) the alternate sequence of B- and D-nodes adjacent to

γc in clockwise order and let ei = (c, vi) (0 ≤ i ≤ h). For each βBi
edges ei−1

and ei are called the left separating edge and the right separating edge of βBi
,

respectively (1 ≤ i ≤ h). Also the vertices vi−1 and vi are called the left sep-
arating vertex and the right separating vertex of βBi

, respectively (1 ≤ i ≤ h).
A separating edge (separating vertex) of βBi

is either its left or right separating
edge (vertex). If γc is not the root of T , let βB0 be the parent of γc. Vertices
v0 and vh are called the leftmost separating vertex and the rightmost separating
vertex of γc, respectively.



E. Di Giacomo et al., Radial Drawings, JGAA, 9(3) 365–389 (2005) 377

a

i

e

1

8
P

h

j

9

11
12

g

f

d c

A
3

I B

L

C

F E

b
N

4
5

6
7 13

2
M

D

Q

O

G

H

J K

10

(a)

δ (1,a)

δ (2,a)

δ(3,b)

δ(4,b) δ (4,c)

δ (3,c)

δ (5,c) δ(5,d)

δ(3,d)

δ(6,d)

δ (6,e)

δ (7,e)

δ (7,f)

δ (1,f)

δ (8,f)

δ(8,g)

δ (9,f) δ(9,g)

δ(10,g)

δ(10,h)

δ (10,i)

δ (11,i) δ (11,j)

δ (12,i) δ (12,j)

δ (1,j)

δ (13,j)

δ(13,a)

γ1

γ10 γ11

γ12

γ13

βA

Dβ βE βF

βO

βG βH

β P

βB

βQ

βC

βM

δ(2,b)

βN

βK

2γ 3γ 7γ

5γ4γ

8γ6γ

9γ

β βJI βL

(b)

Figure 2: (a) A schematic representation of the structure of the graph of Figure 1(b).
The skeleton is highlighted with thick edges. (b) An equipped BC-tree of the graph
of Figure 1(b) rooted at γ1.
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Figure 3: A drawing of the skeleton of the graph of Figure 1(b). The labels of the
regions reflect those of the corresponding blocks.
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Figure 4: A level-preserving 2-radial drawing of the graph of Figure 1(a).
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6 Radial Drawings of 2-outerplanar Graphs

Let G be a 2-outerplane graph. In this section we show how to compute a 2-
radial drawing of G. This result will be a basic building block for the drawing
techniques and the characterization in Section 7. As explained in Section 5 we
assume that the augmentation technique of Section 4 has been applied to G and
that, therefore, G is canonical and Properties 1, 2, 3 and 4 hold for G.

Let K be a connected component of G1. The subgraph of G induced by the
separating edges of K is called the skeleton of K and is denoted as skel(K).
The skeleton of G is the union of all skel(K), for every connected component
K of G1. We denote it by skel(G). For example in Figure 1(a), 1(b), and 2(a)
the bold edges highlight the skeleton of the graph.

In order to use the algorithm as the basic tool to compute a k-radial drawing
of a graph with outerplanarity k (see Section 3), we assume that it receives as
input a drawing Γ0 of G0 on a circle C0 and that it computes a drawing Γ of
G without changing Γ0, i.e. Γ0 ⊂ Γ. The only hypothesis about Γ0 is that it
preserves the planar embedding of G0. The algorithm consists of three main
steps:

1. Choice of C1: The radius of circle C1 is determined.

2. Drawing the skeleton of G: the drawing of skel(G) is computed, i.e.
the cut-vertices of G1 are placed on C1 and the separating edges are drawn.
The drawing of the skeleton divides the interior of the two circles into
regions, one for each block of G1. Figure 3 shows a drawing of the skeleton
of the graph of Figure 1(b).

3. Drawing the remaining vertices: The drawing of G is completed by
defining the coordinates of the vertices of G1 that are not cut-vertices.
Figure 4 shows a level-preserving 2-radial drawing of the graph of Fig-
ure 1(a).

A more detailed description of the three steps of the algorithm follows.

6.1 Choice of C1

Let K be any connected component of G1. The radius r1 of C1 depends on the
drawing of G0. As we explained in the high-level description of the algorithm
given above, the drawing of the skeleton divides the interior of the two circles
into regions, one for each block of G1. Radius r1 is chosen so that the region
associated with each block of K contains an arc of C1. This will be necessary
in order to draw the vertices of the blocks inside their associated regions.

Let K0,K1, . . . , Kh be the connected components of G1 and let Tj be the
equipped BC-tree of Kj (j = 0, . . . , h). For each B-node of Tj with separating
vertices vl, vr, compute the distance between the point representing vl and the
point representing vr in Γ0. Let dj be the minimum of these distances over all
B-nodes of Tj and let d = min{dj | j = 0, . . . , h}. We define the radius r1 of C1
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to be such that C1 intersects the chords of C0 with length d, i.e. r1 >
√

r2
0 − d2

4 ,
where r0 is the radius of C0. Computing the radius of C1 can be performed in
a time that is linear in the number of blocks of G, and therefore linear in the
number of vertices of G, since the graph is planar.

6.2 Drawing the skeleton of G

Given any circle C, and two points a and b on C, the arc of C traversed when
moving from a to b clockwise will be denoted as 〈a, b〉. Points a and b will be
called the first point and the last point of the arc, respectively. Each point of
the arc distinct from a and b will be referred to as an internal point of 〈a, b〉.
Let p be a point of C and let q be a point outside C. Point p is visible from q
if the segment pq does not cross C. The set of points of C that are visible from
q is an arc called the visible region of q on C. Note that, the first and the last
points of the visible region of q on C are the intersection points between C and
the straight lines through q tangent to C. The intersection point of pq on C is
either p, if p is visible from q, or the crossing between pq and C, otherwise. Let
Γ be a 2-radial drawing of G on two circles C0 and C1 and let p be a point on C1.
A free arc of p is a maximal arc of C1 having p as one end-point and containing
neither vertices of Γ nor crossings between an edge of Γ and C1. Point p has
always two free arcs, one moving from p clockwise: the right free arc of p, and
the other moving from p counterclockwise: the left free arc of p. Let B be a
block of a connected component K of G1 and let γc be the parent of βB in the
equipped BC-tree T of K. Let vl and vr be the left separating edge and the
right separating edge of βB , respectively. The angle measured going clockwise
from cvl to cvr in Γ is called the corner of B or also the corner of βB .

A drawing of skel(G) can be computed by drawing independently the skele-
ton of each connected component of G1. Namely, the algorithm computes a
drawing of skel(K) inside the polygon of Γ0 representing the face of G0 that
contains K in G. Since G is canonical two different connected components of
G1 are inside different faces of G0 and therefore their skeletons are drawn inside
different disjoint polygons. We want to compute a drawing of K such that the
corner of each block of K is convex. This property is important for proving the
planarity of the drawing of skel(G). The algorithm performs a BFS visit of T
starting from the root and visiting the children of each node according to their
clockwise order. We distinguish between the case when it is possible to choose
the root of T as a C-node with at least three B-children and the case when this
is not possible.

The root of T has at least three B-children. When a C-node γc is vis-
ited, c is drawn on C1 together with all its incident separating edges.
Two cases are possible:

• γc is the root of T . Let P be the convex hull of the separating vertices
of γc. From the choice of C1 (Subsection 6.1), every side of P crosses
C1 in two distinct points. This implies that the interior of P contains
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a set of arcs of C1. Draw c as a point of one of these arcs. See for
example the cut-vertex 1 in Figure 3.

• γc is not the root of T . Let ul and ur be the leftmost and the right-
most separating vertices of γc, respectively. By the choice of C1

(Subsection 6.1), ulur crosses circle C1 in two distinct points; let p
be the intersection point that is closer to ul, and denote by α the in-
tersection of the left free arc of p with the visible region of ul. Vertex
c is drawn as a point of α.

The root of T has exactly two B-children. When the root has only two
B-children, we cannot guarantee that the corners of all the B-nodes are
convex. Namely if the root γc of T has only two B-children, then it has
also only two D-children, i.e. c has only two separating edges incident to
it. Thus, if we guarantee that one of the angles between the two segments
that represent these two edges is less than 180◦ the other angle between
the same two segments is greater than 180◦. We now describe how to deal
with this case.

If there does not exist a cut-vertex shared by at least three blocks, then
there exists at least a block Br whose vertices are adjacent to more than
two vertices of G0. Namely, if such a block did not exist then there would
be a face of G0 of degree two, which is impossible since G does not have
multiple edges.

Let T be the equipped BC-tree of K. We choose the root γcr
of T to be

a C-node associated with a cut-vertex cr of Br. As in the case when the
root has more than two B-children we can arbitrarily choose the rightmost
(or equivalently the leftmost) child of γcr

. In this case we choose βBr
as

the rightmost child of γcr
.

The cut-vertex cr is placed on C1 similarly to the non-root cut-vertices in
the case when the root has at least three B-children. Namely, let ul and
ur be the left and the right separating vertices of the B-child βB of γcr

different from βBr
. Let p be the intersection point between ulur and C1

that is closer to ul. Place cr in the intersection between the left free arc
of p and the visible region of ul. After the placement of cr the other cut-
vertices of βBr

are placed on C1 according to the clockwise order around
the boundary of Br. For each cut-vertex c, let ul and ur be the leftmost
and the rightmost separating vertices of γc. Let p be the intersection
point between ulur and C1 that is closer to ul. Place c in the intersection
between the left free arc of p and the visible region of ul.

After the placement of all the cut-vertices of Br all the other cut-vertices
of G1 are placed with the same technique described for the case when the
root has at least three B-children.

Lemma 4 Let G be a 2-outerplane graph with n vertices. Let Γ0 be an embed-
ding preserving 1-radial drawing of G0. There exists an O(n)-time algorithm
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that computes an embedding preserving 2-radial drawing Γ of G0 ∪ skel(G) such
that Γ0 ⊂ Γ. Also, Γ is a level-preserving drawing.

Proof: We consider first the case when the root has at least three B-children
and prove that the algorithm described above computes a drawing for which
the statement holds. First we observe that for each cut-vertex c of G1 the arc
α of C1 where c has to be placed has non-zero length. Point p is in the visible
region of ul since the segment ulp does not cross C1 and therefore the arc α
has non-zero length. This proves that our algorithm always finds a point to
represent the cut-vertex c.

In order to prove that Γ is planar we concentrate first on a single connected
component K of G1 with equipped BC-tree T . We prove the following claim.

Claim When a cut-vertex c is drawn on C1 the separating edges incident to c
can be drawn without crossing any other existing edge. Also, the corner of each
B-child of γc is convex.

Let c0, c1, . . . , ck be the cut-vertices of K in the order they are added to the
drawing. The proof is by induction on k.

If k = 0, then c0 is the root of T and it is drawn on C1 as a point inside the
polygon P defined by the convex hull of the separating vertices of γc (note that
γc has at least three D-children and therefore P is indeed a polygon). Polygon
P is convex and for each separating edge (c0, v) incident to c0, v is a vertex
of P. Therefore these edges can be drawn without crossing each other and
without cross any other existing edge. Also, the corner of each B-child of γc is
the angle between two consecutive separating edges incident to c0; for any pair
of consecutive separating edges incident to c0 the angle between them is clearly
convex. Then the statement holds for c0.

Suppose now that the claim holds for k − 1, i.e. the first k − 1 vertices have
already been placed so that the claim holds for them. Let βB be the parent of
γck

and let γcj
(j < k) be the parent of βB . Let vl and vr be the left separating

edge and the right separating edge of βB , respectively and let ul and ur be
the leftmost and the rightmost separating edges of γck

, respectively. Denote
by R the region bounded by cjvl, cjvr and by the polyline representing the
path π from vl to vr on the boundary of the face f of G0 that contains K.
Since Γ0 preserves the embedding we have that vl, ul, ur, and vr appear in this
order when walking clockwise on C0 (possibly with ul = vl and with ur = vr).
Therefore ulur is contained in R which is convex by induction. It follows that
the point p (i.e. the crossing point between ulur and C1 that is closer to ul) and
the arc α are inside R and therefore ck is drawn inside R. For each separating
edge (ck, v) incident to ck, v is a vertex of π and since R is convex all these edges
can be added to drawing without creating a crossing. Also the angle measured
going clockwise from ckul to ckur is convex by construction and therefore the
corner of each B-child of γc is convex.

From the proof of the claim we have that the skeleton of a single connected
component K of G1 is drawn completely inside the polygon P which is contained
in the polygon representing the face f . Since G is canonical, then two different
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connected components of G1 are inside different faces of G0 and therefore their
skeletons are drawn inside different disjoint polygons. This implies that Γ is
planar. Also Γ is embedding preserving and level preserving by construction.

We consider now the case when the root has exactly two B-children. The
drawing of all the cut-vertices of Br along with the separating edges incident
to them is crossing-free. Namely, the separating vertices of the cut-vertices of
Br are more than two because the vertices of Br are adjacent to more than
two vertices of G0 and, by Property 2, if a vertex of V0 is adjacent to a vertex
of V1 then there is a separating edge incident to it. Hence the convex hull of
such vertices is a polygon P ′. Also, by Property 3 each cut-vertex is adjacent
to two consecutive vertices of P ′. Since the placement of the cut-vertices of Br

preserves the embedding, no crossing is possible. Also, for each cut-vertex c of
Br, the corner of each B-node that is a child of a γc is convex. Therefore, all
the remaining cut-vertices of K can be placed on C1 according to the technique
described for the case when the root has at least three B-children.

Concerning the time complexity of the algorithm, we prove that for each
cut-vertex c of G1 we can choose the arc where c has to be drawn in O(1) time.
Consider first the case when the root has at least three B-children. If γc is the
root of T and it has at least three B-children then, in O(1) time, we can retrieve
the coordinates of any three consecutive separating vertices u, v and w of γc.
The intersection p between uv and C1 that is closer to v and the intersection
q between vw and C1 that is closer to v can also be computed in O(1) time.
Arc 〈p, q〉 is one of the arcs of C1 that are inside polygon P, i.e. one of the arcs
where c can be placed.

If γc is not the root of T , let ul and ur be the leftmost and the rightmost
separating vertices of γc, respectively. The visible region of ul can be computed
in O(1) time by simple trigonometry. The crossing p between segment ulur and
C1 that is closer to ul can be computed in O(1) time. By Property 3, the first
point pf of the left free arc of p is the intersection point of c′ul on C1, where c′

is the cut-vertex that is encountered before c in the clockwise order around the
block B that contains c and c′. The coordinates of c′ can be retrieved in O(1)
time because either γc′ is the grandparent of γc or they are consecutive children
of βB . Therefore pf and the arc α where c has to be placed can be computed
in O(1) time.

Consider now the case when the root of T has exactly two B-children and
consider the placement of cr. Also in this case the visible region of ul and the
crossing p between segment ulur and C1 that is closer to ul can be computed
in O(1) time. The first point pf of the left free arc of p is the crossing between
a segment ulv and C1, where v ∈ V0 and (ul, v) is the first edge after those of
E0,1 in the clockwise order around v. Therefore pf can be computed in O(1)
time. It follows that the arc where cr has to be placed can be computed in O(1)
time.

Concerning the other cut-vertices of T , by the same argument as the one for
the non-root nodes in the case of the root with at least three children, we can
prove that they can be placed in O(1) time. Hence, the overall time complexity
is O(n). �
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6.3 Drawing the remaining vertices

We complete the drawing by drawing independently each portion of G. Let Gp

be a portion of G defined by (c0, v0) and (c1, v1).
If c0 = c1 then Gp has only one cut-vertex and by Property 4, we have that

B is a dummy edge (c0, v) and v is a dummy vertex. Hence we do not need to
draw v.

If c0 �= c1, by Property 3 we have that v0 = v1. Let q0 and q1 be the
intersection points of c0v0 and c1v1 on C1, respectively. In this case the polygon
defined by v0, q0 and q1 is a triangle. All the vertices of Gp that are in V1

are adjacent to v0 and they are drawn in the arc 〈q0, q1〉 according to their
clockwise order around the boundary of the block B to which they belong. It is
immediate to see that the drawing computed in this way is crossing-free, level
preserving and embedding preserving. Also the drawing of each portion Gp can
be computed in O(np) time, where np is the number of vertices of Gp. We have
the following lemma.

Lemma 5 Let G be a 2-outerplane graph with n vertices. Let Γ0 be an em-
bedding preserving 1-radial drawing of G0. There exists an O(n)-time algorithm
that computes an embedding preserving 2-radial drawing Γ of G such that Γ0 ⊂ Γ
and Γ is level-preserving.

The following theorem summarizes the results of this section.

Theorem 1 Let G be a 2-outerplane graph with n vertices. G admits a level-
preserving 2-radial drawing that preserves the embedding of G. Also there exists
an O(n)-time algorithm that computes such a drawing.

7 Computing Minimum Radial Drawings of Pla-
nar Graphs

In this section we first characterize the family of graphs that admit a radial
drawing on at most k concentric circles and then use the characterization to
solve the problem of computing a minimum radial drawing of a planar graph in
polynomial time. We start by extending the result of Theorem 1 to k-outerplane
graphs.

Theorem 2 Let G be a graph with outerplanarity k. Then G admits a proper
k-radial drawing. Also, given a k-outerplanar embedding of G, there exists an
O(n)-time algorithm that computes such a drawing, where n is the number of
vertices of G.

Proof: Since G has outerplanarity k then it has a k-outerplanar embedding. We
show how to compute a level-preserving k-radial drawing Γ of G that preserves
this embedding. This implies that Γ is proper. An algorithm to compute Γ
is based on first drawing the subgraph induced by the vertices of level 0 on
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circle C0 and then by adding at each step the vertices of level i on circle Ci

(i = 1, · · · k−1). By Lemma 2 we can assume that G is canonical an that for each
Gi,i+1 Properties 1, 2, 3 and 4 hold. Therefore at Step i the subgraph Gi−1,i can
be drawn by using the algorithm described in Section 6. Since G =

⋃k−2
i=0 Gi,i+1

the computed drawing is a radial drawing of G. We prove that no two edges
cross by induction. The drawing of G0,1 is planar by Lemma 5. Assume that the
drawing of G0 ∪ . . . ∪ Gi−1 (i > 1) is planar. This implies that each connected
component of Gi−1 is drawn inside a face of G0 ∪ . . . ∪Gi−2. By Lemma 5, the
drawing of Gi−1,i is planar, which implies that the drawing of each connected
component K of Gi is drawn inside a face of the drawing of Gi−1, and then,
from the above argument, the drawing of K is also inside a face of the drawing
of G0 ∪ . . .∪Gi−1. This implies that the drawing of G0 ∪ . . .∪Gi−1 ∪Gi is still
planar. Therefore, the above described algorithm computes a level-preserving
k-radial drawing of G. As for the time complexity, it follows from Lemma 5 that
the computation of drawing Gi−1,i requires O(ni) time where ni is the number
of vertices in Gi−1,i. Therefore the overall time complexity is O(n). �

While the algorithm in Theorem 2 has as input a k-outerplane graph G and
computes a drawing of G that satisfies radial properties, the following lemma
assumes that a radial drawing is given and studies the combinatorial properties
of the represented graph.

Lemma 6 Let Γ be a k-radial drawing of a graph G. Then G has outerplanarity
at most k.

Proof: We prove the statement by induction on k. If k = 1 then Γ is a straight-
line drawing with all vertices on a circle, and therefore G is 1-outerplane.

Suppose that the statement is true for 1 ≤ j ≤ k−1, and let Γ be a drawing
of G on k circles. All the vertices drawn on C0 are vertices of the external face
of G because the drawing is straight-line and crossing-free. Hence, if we remove
all the vertices of the external face of G, all vertices drawn on C0 are removed
and we are left with a (k − 1)-radial drawing. By induction the graph obtained
by removing the vertices of the external face of G has outerplanarity at most
(k − 1) and therefore G has outerplanarity at most k. �

Lemma 6 and Theorem 2 imply the following characterization.

Theorem 3 Let G be a planar graph. G admits a radial drawing on at most k
circles if and only if the outerplanarity of G is at most k.

Proof: Assume that G has a k-radial drawing. Then, by Lemma 6, G has out-
erplanarity at most k. Conversely, if G has outerplanarity j ≤ k, by Theorem 2
it admits a j-radial drawing with j ≤ k. �

Based on the result of Theorem 3, we can show that the problem of comput-
ing a minimum radial drawing of a planar graph G can be solved in polynomial
time. The minimum radial drawing has the additional property of being proper,
that is an edge always connects either co-circular vertices or vertices on consec-
utive levels.
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Theorem 4 Let G be a planar graph with n vertices. There exists an O(n5 log n)-
time algorithm that computes a minimum radial drawing of G. Furthermore the
computed drawing is proper.

Proof: Bienstock and Monma [4] describe an algorithm to compute the out-
erplanarity k of G and to determine a k-outerplanar embedding of G. This
algorithm takes O(n5 log n) time. The result in [4] together with Theorem 3
imply that k is the minimum number of circles for which there exists a radial
drawing of G. The fact that such a drawing is proper is a consequence of The-
orem 2. Again by Theorem 2 it follows that the time complexity of the whole
algorithm is dominated by the technique in [4]. �

8 Conclusions and Open Problems

The problem studied in this paper can be seen as a partitioning problem: We
want to partition the vertices of a planar graph G into the minimum number
of levels so that there exists a level-preserving radial drawing of G. Using a
result of Bienstock and Monma [4], we proved that there exists a polynomial
time algorithm that finds such a partition and computes a corresponding mini-
mum radial drawing. The results in this paper suggest several open problems.
We conclude by listing three of those that in our opinion are among the most
interesting.

• Compute a minimum radial drawing of a planar graph with n vertices in
o(n5 log n) time.

• Study the trade-off between minimizing the number of circles and maxi-
mizing the angular resolution.

• Our characterization result assumes that the radius of the circles in the
radial drawing is not fixed. It would be interesting to study the minimum
radial drawability problem in the case of fixed radius.
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