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Abstract

The Transversal Hypergraph Generation is the problem of generating,
given a hypergraph, the set of its minimal transversals, i.e., the hyper-
graph whose hyperedges are the minimal hitting sets of the given one.
The purpose of this paper is to present an efficient and practical algo-
rithm for solving this problem. We show that the proposed algorithm
operates in a way that rules out regeneration and, thus, its memory re-
quirements are polynomially bounded to the size of the input hypergraph.
Although no time bound for the algorithm is given, experimental evalu-
ation and comparison with other approaches have shown that it behaves
well in practice and it can successfully handle large problem instances.
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1 Introduction

Hypergraph theory [3] is an important area of discrete mathematics with a large
number of applications in both theoretical and applied Computer Science. A
hypergraph H = (V, E) is a finite collection E of sets over a finite set V. The
elements of V are called nodes while the elements of E are called hyperedges. A
transversal (or hitting set) of H is a set T ⊆ V that has a non-empty intersection
with every hyperedge of H. A transversal T is minimal if no proper subset of
T is a hitting set of H. The collection of all minimal transversals of H, denoted
by Tr(H), is called the transversal hypergraph of H.

The Transversal Hypergraph Generation is the problem of genera-
ting the transversal hypergraph Tr(H) of a given hypergraph H. Its decisional
variant, Transversal Hypergraph, is the problem of deciding whether, given
two hypergraphs H and G defined on the same set of nodes, G = Tr(H) holds.

Transversal Hypergraph Generation is one of the most important
problems on hypergraphs with many practical applications in various areas of
Computer Science, especially in Logic and Artificial Intelligence. For example,
there are certain problems in propositional circumscription [8], in model-based
diagnosis [10], in model-preference default reasoning [26, 37, 38, 39], and in
machine learning [7, 12, 22, 23] that are reduced to solving a Transversal

Hypergraph Generation problem. For an exposition of applications of the
Transversal Hypergraph Generation see [14, 15, 18]. An interesting re-
lation between the Transversal Hypergraph Generation and the field of
knowledge discovery in databases was pointed out in [22, 23]. Recent applica-
tions of the problem are channel assignment in cellular mobile communication
systems [36] and computing homology groups of finite simplicial complexes in
Topology [13].

The main reason for the large applicability of the Transversal Hyper-

graph Generation problem is that finding minimal or maximal (with respect
to some property) structures or solutions is a common and essential task in
many areas. The notion of the transversal is a nice way of modelling these
extremal structures. Even more, there are many natural problems that are just
a disguised form of the Transversal Hypergraph Generation. Such an
example is the generation of all prime implicants of the dual form of a monotone
Boolean expression in DNF [18, 24]. Another important problem is the genera-
tion of all maximal models of Boolean expression in CNF, having all its variables
negated [28]. The above problems are polynomially equivalent to Transver-

sal Hypergraph Generation while the generation of the maximal models
of any Boolean expression in CNF is at least as hard as the Transversal

Hypergraph Generation.
It is easy to see that a hypergraph H may have exponentially many (with

respect to its size) minimal transversals. Thus, an algorithm that solves a gene-
ration problem with large output, like the Transversal Hypergraph Gene-

ration, may require exponentially many steps to produce the whole output.
There is a surge of interest in defining suitable complexity measures for the
efficiency of a generation algorithm. Total-polynomiality or output-polynomiality
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is a measure that takes into account not only the size of the input but the size
of the output, too. Stronger requirements for the efficiency of a generation
algorithm take into account the size of the input and the size of the output
so far (incrementally output-polynomial algorithm) or the delay time between
consecutive outputs (polynomial delay algorithm). For further discussions on
performance criteria for problems with large output see [20, 25, 27, 34].

Complexity questions related to the generation of minimal transversals have
been widely discussed in the literature (see, for example, [9, 4, 14, 17, 18, 28, 30]).
However, the exact complexity of the Transversal Hypergraph Genera-

tion problem is still open. Its complexity strongly depends on the complexity
of its decision version Transversal Hypergraph since there would exist an
output-polynomial time algorithm for solving the Transversal Hypergraph

Generation problem if and only if the Transversal Hypergraph problem
was polynomial time solvable [4]. The Transversal Hypergraph problem
is in its generality in co-NP, while several polynomial time cases also exist (see
[14, 15] for more details and references on them). Although there are several al-
gorithms that involve, in some manner, the computation of minimal transversals
(see, for example, [2, 32, 33, 35, 36]), no output-polynomial time algorithm is
known. In 1996, Fredman and Khachiyan [18] presented an algorithm for solving
the decision version in subexponential time no(log n), where n is the combined
size of the input, i.e., the number of hyperedges of the two hypergraphs. This
algorithm can be used as an oracle for solving the Transversal Hypergraph

Generation in incremental output-subexponential time [24], the best provable
upper time bound yet.

The result of Fredman and Khachiyan in [18] implies that the Transversal

Hypergraph problem is not co-NP–hard, unless any co-NP–complete problem
can be solved in subexponential time, and gives evidence that it lies in an in-
termediate class between P and co-NP. It was recently shown in [16, 17] and,
independently, in [30] that the complement of the Transversal Hypergraph

problem can be solved by a nondeterministic algorithm that makes polynomi-
ally many deterministic steps plus O(log2 n) nondeterministic ones. This result
places the Transversal Hypergraph problem in the class co-NP[log2 n], the
subclass of co-NP where only the first O(log2 n) steps are nondeterministic (see
[11, 21, 31] for more on limited nondeterminism). It also makes straightforward
the subexponential running time of the algorithm presented in [18].

In this paper we present an algorithm for solving the Transversal Hyper-

graph Generation problem. The proposed algorithm computes all minimal
transversals of the input hypergraph correctly and efficiently and, hence, it is
suitable for solving problems that can be modelled as a Transversal Hyper-

graph Generation. The aim of this paper is to give a detailed description
of the algorithm, to prove its correctness and to study its time and space com-
plexity. An early version of the proposed algorithm was firstly presented and
experimentally evaluated in [29]. At that time no implementation of any algo-
rithm for solving the problem was known to us. After the first submission of
this work, two implementations were published: first, the implementation of the
algorithm of Fredman and Khachiyan [18] by Boros et al. in [6], and second,
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the implementation of an algorithm proposed by Bailey et al. in [1]. Thus,
we have revised the code and made several improvements in the auxiliary data
structures even though the main algorithm is unchanged. Then, a new experi-
mental study was made to evaluate and compare the proposed algorithm with
the above implementations. The computational results are incorporated here.

Our algorithm is based on the brute force scheme given by Berge in [3] (we
describe this scheme in the following section). This simple method needs expo-
nential many steps to produce the whole output, it generates the first minimal
transversal near the end of the procedure and its high memory requirements
make it suitable only for small problem instances. On the contrary, exper-
imental evaluation on a number of test cases have shown that the proposed
algorithm is more effective and efficient even for large problem instances. Com-
pared with the scheme of Berge, it generates all minimal transversals quite fast,
while it presents a notable uniformity in the rate of the output (unfortunately,
no time bound for the delay between consecutive outputs is currently proven).
Although no time bound is given, we prove that its space complexity is polyno-
mially bounded by the size of the input hypergraph (where, as usual, the size
of the output does not count in the total space requirements of the algorithm).
To our knowledge, this is the first algorithm that achieves space bound that
is a polynomial to the size of the input hypergraph. This happens because it
operates in a generate-and-forget fashion i.e., no previous minimal transversal
is required for the generation of the next ones. In contrast, other algorithms
require that all generated minimal transversals must be stored. This means
that in case of a large output, memory requirements could be devastating. In
addition, absolute time delays are very small, allowing the successful handling
of large problem instances with large output.

The rest of this paper is organized as follows: In the next section we give
some formal definitions and notations, along with the necessary properties on
hypergraphs. The simple scheme of Berge is also described there. In Section 3
we give a modified version of the algorithm of Berge by utilizing the notion
of the generalized node. A further modification is given next that computes
minimal transversals in a depth-first search manner. To avoid regenerations,
we define in Section 4 the new concept of the appropriate node and we next
describe the final improved version of the algorithm and prove its correctness
and its space complexity. Some implementation issues of our code are discussed
in Section 5 and experimental evaluation and comparison results concerning the
algorithms previously mentioned are also given there. Finally, in the last section
conclusions and directions for future work are given.

2 Preliminaries

In this section we give some formal definitions and the necessary properties on
hypergraphs. For more theoretical issues the reader is referred to [3, 5].

Definition 1 A hypergraph H is an ordered pair H = (V, E), where V =
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{v1, . . . , vn} is a finite set of elements and E = {E1, . . . , Em} is a family of
subsets of V such that

1. Ei 6= ∅ (i = 1, . . . ,m) and

2. ∪m
i=1Ei = V.

The elements of V are called nodes while the elements of E are called hyperedges
of the hypergraph H.

A hypergraph can be seen as a generalization of a graph where the restriction
of an edge having only two nodes does not hold. For convenience, we shall
identify a hypergraph H on a node set V with its set of edges E , if there is no
danger of ambiguity.

Definition 2 Let H = {E1, E2, . . . , Em} be a hypergraph on V. The partial
hypergraph Hi of H (i = 1, . . . ,m) is the hypergraph on V that contains the
first i hyperedges of H, i.e., Hi = {E1, . . . , Ei}.

Definition 3 A hypergraph H = (V, E) is simple if for every pair Ei, Ej ∈ E,
Ej ⊆ Ei ⇒ j = i.

Definition 4 Let H = (V, E) be a hypergraph. Then, Min(H) is the set of
minimal hyperedges of H with respect to set inclusion, i.e., Min(H) = {Ei ∈
E | (∀Ej ∈ E , i 6= j, Ej ⊆ Ei) : Ej = Ei}, and Max(H) is the set of maximal
hyperedges of H with respect to set inclusion, i.e., Max(H) = {Ei ∈ E | (∀Ej ∈
E , j = 1, . . . ,m, i 6= j, Ej ⊇ Ei) : Ej = Ei}.

Simple hypergraphs are also known as Sperner families [3, 5]. It is easy to see
that for any hypergraph H on V, Min(H) and Max(H) are simple hypergraphs
and can be computed in time that is a polynomial in the number of hyperedges
of H. Moreover, every partial hypergraph of a simple hypergraph is simple, too.

Definition 5 Let H = (V, E) be a hypergraph. A set T ⊆ V is called a transver-
sal (or, hitting set) of H if it intersects all its hyperedges, i.e., T ∩Ei 6= ∅,∀Ei ∈
E. A transversal T is called minimal if no proper subset T ′ of T is a transversal
of H.

In graphs, a transversal is usually called a node cover. If T is a transversal
of H on V, then the complementary set I = V \ T of T forms an independent
set of H, i.e., a set that does not contain any hyperedge of H. (This reduces
to our standard notion of independent set in graphs if we specialize to the case
where all hyperedges contain precisely two nodes.) A minimal transversal can
be identified in polynomial time by removing, starting from V, one by one the
nodes of V and checking after each removal whether the remaining set is a hitting
set. However, finding a transversal with minimum cardinality is NP-hard, which
is a consequence of the NP-complete Minimum Node Cover problem [19].
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Definition 6 The transversal hypergraph Tr(H) of a hypergraph H is the fa-
mily of all minimal transversals of H.

The next proposition follows from the definition of the transversal hypergraph.

Proposition 1 Let H = (V, E) be a hypergraph. Then, the transversal hyper-
graph Tr(H) of H is a simple hypergraph and Tr(H) = Tr(Min(H)).

It is easy to see that given two hypergraphs H and G defined on the same
set of nodes V, the problem of deciding whether G is the transversal hypergraph
of H (Transversal Hypergraph) is in co-NP since a succinct disqualifier (a
minimal transversal of H not contained in G) can be guessed and verified in time
that is a polynomial in the size of the input, i.e., to the combined number of the
hyperedges of H and G. It was recently shown in [16, 30] that the problem can be
solved with limited nondeterminism and it was placed in the class co-NP[log2 n],
where n in the size of the input.

Proposition 2 ([14, Proposition 4.4]) The Transversal Hypergraph prob-
lem is computationally equivalent to the subcase where the input hypergraphs are
simple hypergraphs.

Without loss of generality, we shall henceforth deal only with simple hyper-
graphs defined on the same set of nodes. The following propositions capture
important relations between a hypergraph and its transversal hypergraph (for
proofs see [3]).

Proposition 3 Let H and G two simple hypergraphs. Then,

G = Tr(H) if and only if H = Tr(G). (1)

Corollary 1 (Duality Property) Let H be a simple hypergraph. Then,

Tr(Tr(H)) = H. (2)

Corollary 2 Let H and G two simple hypergraphs. Then,

Tr(H) = Tr(G) if and only if H = G. (3)

We end this section by giving the definition of two useful operations:

Definition 7 Let H = {E1, . . . , Em} and G = {E ′

1, . . . , E
′

m′} be two hypergraphs.
Then,

H ∪ G = {E1, . . . , Em, E ′

1, . . . , E
′

m′}, and (4)

H ∨ G = {Ei ∪ E ′

j , i = 1, . . . ,m, j = 1, . . . ,m′}. (5)

The first operation is the union of H and G, i.e, the hypergraph whose
hyperedges are the hyperedges of both hypergraphs. The second one is in some
sense the Cartesian product of them, i.e., the union of all possible pairs of
hyperedges, one from the first hypergraph and one from the second one. We
next state an important property that holds for simple hypergraphs (for a proof
see [3]):
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for i = 2, . . . ,m do

Find Tr(Hi−1)
Compute Tr(Hi) = Min(Tr(Hi−1) ∨ {{v}, v ∈ Ei})

end for

Return Tr(Hm)

Algorithm 1: The algorithm of Berge

Proposition 4 Let H and G be two simple hypergraphs. Then,

Tr(H ∪ G) = Min(Tr(H) ∨ Tr(G)). (6)

Based on Proposition 4, there is a simple scheme attributed to Berge [3] for
generating all minimal transversals of a hypergraph H = {E1, . . . , Em} on V. Let
Hi = {E1, . . . , Ei}, i = 1, . . . ,m be the partial hypergraph of H on V. It holds
that Hi = Hi−1 ∪ {Ei}, for all i = 2, . . . ,m, while H1 = {E1} and Hm = H.
Thus, Tr(Hi) = Tr(Hi−1 ∪ {Ei}) and, according to Equation (6),

Tr(Hi) = Min(Tr(Hi−1) ∨ Tr({Ei}))

= Min(Tr(Hi−1) ∨ {{v}, v ∈ Ei}) (7)

The algorithm of Berge (see Algorithm 1) is based on Equation (7) and
computes all minimal transversals of the input hypergraph H recursively, in
two steps: First, it computes the minimal transversals of the partial hypergraph
Hi−1 and then it calculates the Cartesian product of the set Tr(Hi−1) by the i-
th hyperedge Ei of H and removes all elements that are not minimal. Thus, one
can compute Tr(H) by starting from the minimal transversals of E1 (note that
the minimal transversals of a hypergraph with a single hyperedge are exactly
its nodes) and adding one-by-one the rest of the hyperedges, computing at
each step the set of minimal transversals of the new partial hypergraph. The
procedure terminates after the addition of the last hyperedge Em. Algorithm 1
then outputs the transversal hypergraph Tr(H) of the input hypergraph H.

Theorem 1 Algorithm 1 correctly generates all minimal transversals of any
simple hypergraph H.

Proof: Follows directly from Proposition 4. 2

The algorithm of Berge is the most simple and direct scheme for computing
the minimal transversals of a hypergraph. However, there are several drawbacks
that make it inefficient and unsuitable for large problem instances. First of all,
notice that all, possibly exponentially many, intermediate transversals of the
partial hypergraphs Hi (i = 1, . . . ,m − 1) must be computed (the Cartesian
product of the set Tr(Hi−1) by the hyperedge Ei) and only the minimal of them
must be kept. This means than the total running time of the algorithm may
be exponential in both the size of the input and the output. No less important
are the memory requirements that also emerge from the above. All these in-
termediate minimal transversals have to be stored and kept until used for the
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computation of the new transversal set. Since the number of these intermediate
minimal transversals can be exponential, the memory requirements of the algo-
rithm can become devastating. And last but not least, since the computation of
the first transversal of the input hypergraph H is accomplished after all minimal
transversals of the partial hypergraph Hm−1 have been computed, the first final
minimal transversal is output after exponential delay time. This is the most
severe drawback of the algorithm of Berge in view of the complexity measures
for our problem.

3 Generalized Nodes and Depth-First Transver-

sal Computation

In this section we describe a number of modifications and improvements to the
simple scheme of Berge that make the final algorithm quite efficient, practical,
and suitable for large instances.

3.1 Generalized Nodes

Our first aim is to reduce the large number of intermediate partial transversals
produced by Algorithm 1. This would improve the total running time of the
algorithm and reduce its storage requirements. To do this, we define the notion
of the generalized node:

Definition 8 Let H be a hypergraph on V. The set X ⊆ V is a generalized
node of H if all nodes in X belong in exactly the same hyperedges of H.

Obviously, the cardinality of a generalized node may vary from 1 to |V|. If
X1,X2, . . . ,Xk are all the generalized nodes of H, then V = X1 ∪ X2 ∪ . . . ∪ Xk,
while Xi ∩ Xj = ∅, for all i 6= j, i, j = 1, . . . , k.

Definition 9 Let H = {E1, . . . , Em} be a hypergraph on V and X ⊆ V be a
generalized node of H. Then, the generalized hypergraph of H with respect to
X is the hypergraph Hg

X
= {Eg

1 , . . . , Eg
m} on Vg

X
= {{V \ X} ∪ {vX }}, where vX

is an auxiliary node not in V and Eg
i (1 ≤ i ≤ m) follows from Ei by substituting

(if it appears) the set X by the node vX .

The above definition can be generalized for more than one generalized nodes:

Definition 10 If X1,X2, . . . ,Xk,Xi ⊆ V, i = 1, . . . , k, are the generalized nodes
of the hypergraph H = {E1, . . . , Em} on V, then the generalized hypergraph of
H is the hypergraph Hg = {Eg

1 , . . . , Eg
m} on Vg = {vX1

, vX2
, . . . , vXk

}, where
vX1

, vX2
, . . . , vXk

are auxiliary nodes not in V and Eg
i (1 ≤ i ≤ m) follows

from Ei by substituting (if they appear) the sets X1,X2, . . . ,Xk by the nodes
vX1

, vX2
, . . . , vXk

, respectively.
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Assume that the hypergraph H has a generalized node X with cardinality
|X | ≥ 2. Let Hg

X
be the generalized hypergraph of H with respect to X and let

Tr(Hg
X

) be the transversal hypergraph of Hg
X

. The importance of the concept
of the generalized node follows from the observation that

Tr(H) = {T g ∈ Tr(Hg
X

) | vX 6∈ T g} ∪

{(T g \ vX ) ∨ X ,∀T g ∈ Tr(Hg
X

) | vX ∈ T g}. (8)

In other words, the minimal transversals of H follow by taking one by one the
minimal transversals of HgX that include the node vX and replacing vX by each
(simple) node in X , in turn. Obviously, the number of minimal transversals of
H produced from a single minimal transversal T g of Hg

X
is exactly |X |. The

minimal transversals of HgX that do not include vX remain as they are, since
they hit H. This procedure can be generalized to any number of generalized
nodes.

Lemma 1 Let H be a hypergraph on V and X1,X2, . . . ,Xk,Xi ⊆ V, i = 1, . . . , k,
be its generalized nodes. Let also T g = {Xi1 , . . . ,Xil

}, 1 ≤ i1, . . . , il ≤ k, be a
minimal transversal of the generalized hypergraph Hg of H. Then,

1. every l-tuple of the Cartesian product Xi1 ∨ Xi2 ∨ · · · ∨ Xil
is a minimal

transversal of H and

2. no other minimal transversal of H exists.

Proof: Let T = {vi1 , . . . , vil
} be an l-tuple of the Cartesian product Xi1 ∨Xi2 ∨

· · · ∨ Xil
such that vij

∈ Xij
, j = 1, . . . , l. Every simple node vij

is actually
a unique representative of Xij

in T . Since T g is a transversal of Hg and all
nodes of every generalized node of H belong to exactly the same hyperedges of
H, then T is a transversal of H. Moreover, the removal of a simple node of T
would result in a set that does not hit at least one hyperedge of H since every
generalized node is represented in T by exactly one simple node. Hence, T is a
minimal transversal of H.

To prove the second statement, see that if T is a minimal transversal of H,
then T has at least one common node with every hyperedge of H. Every node
of T corresponds to exactly one generalized node. If T g is the collection of all
these generalized nodes, then T g is a transversal of Hg since it intersects every
hyperedge Eg

i of it. Moreover, T g is minimal (a proper subset T ′g of T g that
intersects every hyperedge of Hg would result, by taking the Cartesian product
of its nodes, in a set T ′ that is contained in T and intersects every hyperedge
of H, a contradiction). 2

Example 1 Assume that a hypergraph H has two hyperedges with 100 nodes
each: E1 = {1, . . . , 100} and E2 = {51, . . . , 150}. The partial hypergraph H2 =
{E1, E2} has 2550 minimal transversals (2500 with two nodes and 50 with one
node) which must be kept for the subsequent stage if we use the straightforward
scheme. For H2, three generalized nodes are defined: X1 = {1, . . . , 50}, X2 =
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{51, . . . , 100}, and X3 = {101, . . . , 150}. Using the generalized node approach,
we have only 2 minimal transversals to store, namely the set {{51, . . . , 100}}
and the set {{1, . . . , 50}, {101, . . . , 150}}. All minimal transversals of H2 may
occur from these, as Lemma 1 suggests.

According to Lemma 1, every minimal transversal T of H is an offspring
of some minimal transversal T g of Hg. Thus, the generation of Tr(H) is now
reduced to the generation of Tr(Hg).

3.2 The Modified Algorithm of Berge

We shall now describe a modification of Algorithm 1 that exploits the concept
of the generalized node explained above.

Let X1,X2, . . . ,Xki
be the generalized nodes of the partial hypergraph Hi =

{E1, . . . , Ei} of H, ki ≥ 1. Assume that we have already defined the generalized
nodes of Hi and computed Tr(Hg

i ). We add now the next hyperedge Ei+1 to
define the partial hypergraph Hi+1 = Hi∪{Ei+1}. The addition of Ei+1 imposes
the new determination of all previously determined generalized nodes. There
are three possible types for every generalized node X of Hi:

(α) X ∩ Ei+1 = ∅. In this case, X is also a generalized node of Hi+1.

(β) X ⊂ Ei+1. In this case, X is also a generalized node of Hi+1.

(γ) X ∩Ei+1 6= ∅ and X 6⊂ Ei+1. In this case, X is divided into X1 = X \ (X ∩
Ei+1) and X2 = X ∩Ei+1. Both X1 and X2 are generalized nodes of Hi+1.

Notice that the determination of the new set of generalized nodes depends
only on the addition of Ei+1. Ei+1 may also reveal some nodes of H that were
unknown until the i-th level. All these nodes will form a new generalized node
for Hi+1 (this falls into case (α)).

We next represent Tr(Hg
i ) and Ei+1 according to the new generalized nodes.

If (α) or (β) is the case for all generalized nodes of Hi+1, then all minimal
transversals and Ei+1 remain as they were. If (γ) is the case, assume that
a generalized node X is divided into X1 and X2. Obviously, Ei+1 contains
only X2 while every minimal transversal T g of Hg

i contains both X1 and X2.
Since one of these nodes suffices for T g to be a minimal hitting set of Hg

i ,
two minimal transversals emerge from T g: one containing X1 and another one
containing X2 (the generalized nodes of type (α) and (β) of T also appears in
these minimal transversals). If T g contains κ generalized nodes of type (γ),
then T g corresponds now to 2κ pairwise different minimal transversals of Hg

i ,
that is, all possible combinations of the two parts in which type (γ) nodes of T g

are divided, along with the generalized nodes of type (α) and (β) of T . Notice
that all these offsprings of T g are not necessarily hitting sets of Hg

i+1.
According to Proposition 6, Tr(Hg

i+1) is given by the relation:

Tr(Hg
i+1) = Tr(Hg

i ∪ {Eg
i+1}) = Min(Tr(Hg

i ) ∨ Tr({Eg
i+1}))

= Min(Tr(Hg
i ) ∨ {{vX } : vX ∈ Eg

i+1}) (9)
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for k = 0, . . . ,m − 1 do

Add Ek+1

Update the set of generalized nodes
Express Tr(Hg

k) and Ek+1 as sets of generalized nodes of level k + 1
Compute Tr(Hg

k+1) = Min(Tr(Hg
k) ∨ {{vX } : vX ∈ Eg

i+1})
end for

Output Tr(Hm)

Algorithm 2: The modified algorithm of Berge based on generalized nodes

Add E1

Update the set of generalized nodes
Express E1 as set of generalized nodes
Compute T = Tr(E1)
Call add next hyperedge(T , E2)

Algorithm 3: Depth-first transversal computation

Algorithm 2 is a modification of the simple scheme of Berge that computes
the minimal transversals of the partial generalized hypergraphs according to
Equation (9). During all intermediate steps, only the generalized transversals
are kept which, in turn, are split after the addition of the next hyperedge. Ex-
perimental evaluation has shown that this dramatically reduces the number of
intermediate transversals (see Example 1), especially at the early stages (where
the generalized nodes are few but large) and greatly improves the time perfor-
mance and the memory requirements. After the addition of the last hyperedge,
Algorithm 2 outputs all minimal transversals of the input hypergraph.

Theorem 2 Algorithm 2 correctly generates all minimal transversals of any
simple hypergraph H.

Proof: It follows from Equation (9) and Lemma 1. 2

3.3 Depth-First Transversal Computation

Although Algorithm 2 is more efficient than Algorithm 1, one still may have to
wait for a long time for the first final minimal transversal to be output. This
happens because it is based on a sort of breadth-first computation: all minimal
transversals are computed after a new hyperedge is added and, after the addition
of the last one, all final minimal transversals follow almost with zero delay one
from the other.

Having in mind the rate of output and the memory requirements, we fur-
ther improve our algorithm by implementing a depth-first computation of the
minimal transversals: Suppose that at a certain level k we have computed a
minimal transversal T of Hg

k. We add the next hyperedge and determine the
generalized nodes, as described above. From T several minimal transversals
follow. However, instead of computing them all, we compute one, add the next
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procedure add next hyperedge(T , E) {
Update the set of generalized nodes
Express Tr(Hk) and E as sets of generalized nodes of level k + 1
while generate next transversal(T , T ′, l) do

{ T ′ is the l-th offspring of T }
if E is the last hyperedge then

output T ′

else

{ Let E ′ be the next hyperedge }
Call add next hyperedge(T ′, E ′)

l = l + 1
end if

end while

}

Procedure 4: A procedure for adding the next hyperedge

boolean function generate next transversal(T , T ′, l) {
if l ≤ |Min(T ∨ E)| then

generate next transversal = true

T ′ is the l-th element of the set Min(T ∨ E)
else

generate next transversal = false

end if

}

Function 5: A function for computing the next minimal transversal

hyperedge and continue until all hyperedges have been added; in this case we
output the final minimal transversal. We then backtrack to the previous level,
pick the next minimal transversal, etc.

The whole procedure is described by Algorithm 3. At some level k, procedure
add next hyperedge(T , E) (see Procedure 4) is called for adding the next hy-
peredge E to the current intermediate minimal transversal T , which, in turn, re-
peatedly calls the boolean function generate next transversal(T , T ′, l) (see
Function 5) that returns the l-th partial minimal transversal T ′ of the new hy-
pergraph that follows from T . generate next transversal(T , T ′, l) is called
until no more minimal transversals follow from T after the addition of E , in
which case generate next transversal() becomes false. After a new minimal
transversal T ′ is returned, add next hyperedge() is called recursively for T ′

and the next hyperedge.
The operation of Algorithm 3 resembles a preorder visit of a tree of transver-

sals with root the single (generalized) minimal transversal of the first hyperedge,
and internal nodes at some level, the minimal transversals of the partial gene-
ralized hypergraph at that level. The descendants of a minimal transversal are
the minimal transversals of the next hypergraph which include this transversal.
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Figure 1: Transversal tree of the hypergraph H = {{1, 2, 3}, {3, 4, 5}, {1, 5},
{2, 5}}. The tree is visited in preorder.

Finally, the leaves of the tree at level m are the minimal transversals of the
original hypergraph.

Example 2 Consider the hypergraph with 5 nodes and 4 hyperedges H = {{1, 2,
3}, {3, 4, 5}, {1, 5}, {2, 5}}. The tree of transversals which corresponds to the ad-
dition of the hyperedges according to the giver order (top to bottom) is shown
in Fig. 1. Generalized nodes are denoted by circles with thin lines. For in-
stance, a partial minimal transversal of the hypergraph consisting of the first
two hyperedges is {{1, 2}, {4, 5}}.

Remark. Notice that there is no need to calculate Min(T ∨ E) every time the
function generate next transversal() is called. Instead, in our implementa-
tion a more efficient approach was adopted which selects the split parts of the
generalized nodes according to the binary expansion of l.

4 Avoiding Regenerations

Depth-first computation further improves the efficiency of our algorithm since it
aims to produce the output in a uniform manner. However, regarding the space
efficiency, the problem of storing every generated minimal transversal until the
end of the algorithm still remains. This is because a newly generated minimal
transversal may have already been generated and thus it needs to be compared
with all previously generated ones. What is needed is a way of ruling out the
possibility that a new minimal transversal has already been generated, or will
be generated in some subsequent step, without storing all minimal transversals
for comparison.

To this end, we further improve Algorithm 3 by a selective way of producing
new minimal transversals. The improved algorithm assures that no regenera-
tion occurs at any intermediate level. The advantage of this approach is that
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search in some subtrees stops at higher levels instead of exhaustively generating
everything that would subsequently need to be compared to previous minimal
transversals and, possibly, discarded. We explain the method in the sequel.

4.1 Appropriate nodes

Definition 11 Let H = {E1, . . . , Em} be a hypergraph on V and T be a minimal
transversal of the partial hypergraph Hk of H. We say that a generalized node
v ∈ V \ T is an appropriate node for T if v is the only redundant node in the
hitting set T ∪{v} for Hk, i.e., no other node in T ∪{v} except v can be removed
and the remaining set still be a hitting set of Hk.

Notice that an appropriate node for a minimal transversal T can be easily
identified in polynomial time.

Let Hk be the partial hypergraph of the first k hyperedges defined on gene-
ralized nodes (the superscript is omitted for simplicity) and let T be a minimal
transversal of Hk. Suppose that T contains κα, κβ , and κγ generalized nodes
of type (α), (β), and (γ), respectively (defined in Subsection 3.2). As already
explained, after the addition of the next hyperedge Ek+1, the determination of
the new set of generalized nodes results in 2κγ minimal transversals for Hk.
Suppose that T ′ is such an offspring of T . One may see that if T ′ contains
at least one node of type (β) (that is, a generalized node that appears in both
T ′ and Ek+1), then T ′ is a hitting set of Hk+1. If it does not, then T ′ has to
be augmented by a node of Ek+1 to ensure that the resulting set of nodes is a
hitting set of Hk+1. This procedure would result in |Ek+1| hitting sets (from
T ′), not necessarily minimal ones, and has to be repeated for every offspring
of T (This is the Cartesian product in Berge’s scheme). All these potentially
minimal transversals have to be stored and the Min() operator must be applied
in a way that only the minimal ones remain and all duplicates are removed.

The above procedure can be very demanding regarding its time and space
requirements. Here is where the notion of appropriate node comes into play.
Using this notion, we may compute the Cartesian product of the offsprings of
T by Ek+1 in a way that excludes the possibility of regenerating a minimal
transversal of Hk+1. In addition, every resulting hitting set is always minimal
and, hence, neither the Min() operator needs to be applied, nor this hitting set
has to be stored to be compared with the next ones. Thus, the computational
effort and the space requirements are reduced and the algorithm becomes more
efficient. We explain the whole procedure by distinguishing two cases:

Case A There exist at least one generalized node of type (β) in T . In this case,
every offspring of T (that is, 2κγ in total) is a minimal transversal of Hk+1.
If Ti is one of these (i = 1, . . . , 2κγ ), then Ti hits all hyperedges of Hk (T is
a minimal transversal of Hk) and Ek+1 (due to the existence of at least one
generalized node of type (β)), too. Moreover, Ti is minimal since the removal
of any of its nodes would result in a set that does not hit Hk. This also holds
even for the offspring, say T0, that contains the κγ split parts of the generalized
nodes of type (γ) of T that are contained only in T and not in Ek+1.
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To sum up, the existence of at least one generalized node of type (β) in
T results in 2κγ minimal transversals for Hk+1. This holds even if κα = 0
(these nodes just participate so that each offspring hits Hk), or κγ = 0 (only 20

minimal transversals emerge, the one containing the generalized nodes of type
(β)). Thus, there always exists at least one descendant of T in the transversal
tree. These minimal transversals are pairwise different and no other offspring
of T that is minimal transversal of Hk+1 exists. We have, thus, proved the
following lemma:

Lemma 2 After the addition of Ek+1, if a minimal transversal T of Hk con-
tains at least one generalized node of type (β), then T gives exactly 2κγ pairwise
different minimal transversals for Hk+1, where κγ is the number of the gener-
alized nodes of type (γ) of T .

Case B No generalized node of type (β) is contained in T . In this case, every
offspring Ti of T is a minimal hitting set of Hk+1 except from T0 (the one that
contains the κγ split parts of the generalized nodes of type (γ) of T that are
contained only in T and not in Ek+1), since it does not hit Ek+1. Thus, 2κγ − 1
minimal transversals of Hk+1 emerge from T , while T0 may also result in a
hitting set of Hk+1, if it is augmented by a node of Ek+1. Instead, however, of
adding each node of Ek+1 in turn and outputting |Ek+1| hitting sets, we only
add each node of Ek+1 in turn that is appropriate for T (and, hence, for T0).
If v ∈ Ek+1 is an appropriate node for T , then the set T ∪ {v} is a minimal
transversal of Hk+1 (Notice that a new generalized node of Ek+1 that was not
included in any of the first k hyperedges, is also an appropriate node for T ).
By this way, |appr(T , Ek+1)| minimal transversals for Hk+1 also emerge from T ,
where appr(T , Ek+1) is the set of the appropriate nodes of T contained in Ek+1.
All these 2κγ − 1 + |appr(T , Ek+1)| in total minimal transversals are pairwise
different.

It is also possible a subset of T ∪ {v}, where v ∈ Ek+1 is a non appropriate
node for T , to be a minimal transversal of Hk+1. As the next lemma states, all
these minimal transversals are not lost (actually, they will be produced at the
same level of computation):

Lemma 3 Let T be a minimal transversal of Hk and v ∈ Ek+1 be a non appro-
priate node of T . Let also T0 be the offspring of T , after the addition of Ek+1,
that follows from the split parts of the generalized nodes of type (γ) of T that are
not contained in Ek+1. Then, each minimal transversal of Hk+1 that is subset
of T0 ∪ {v}, emerges from some other minimal transversal T ′ of Hk according
to Case A.

Proof: Since v is not appropriate for T , at least one node of T may be removed
and the resulting subset T ′ of T ∪ {v} still remains a hitting set of Hk. Since v
appears in both Ek+1 and T ′, all minimal transversals of Hk+1 that are offsprings
of T ′ will emerge, according to Case A. 2

Hence, the following lemma has been shown:
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boolean function generate next transversal(T , T ′, l) {
if κβ 6= 0 then

if l ≤ 2κγ then

generate next transversal = true

T ′ is the l-th offspring of T
else

generate next transversal = false

end if

else if κβ = 0 then

if l ≤ 2κγ − 1 then

generate next transversal = true

T ′ is the l-th offspring of T (except T0)
else if 2κγ ≤ l ≤ 2κγ − 1 + |appr(T , E)| then

generate next transversal = true

T ′ is the union of T0 by the (l − 2κγ + 1) node of T the set appr(T , E)
else

generate next transversal = false

end if

end if

}

Function 6: The enhanced function for computing the next minimal transversal

Lemma 4 After the addition of Ek+1, if a minimal transversal T of Hk contains
no generalized node of type (β), then T gives exactly 2κγ − 1 + |appr(T , Ek+1)|
pairwise different minimal transversals for Hk+1, where κγ is the number of the
generalized nodes of type (γ) of T and appr(T , Ek+1) is the set of the appropriate
nodes of T contained in Ek+1.

4.2 The Improved Algorithm

All ideas described in the previous section were implemented and were incor-
porated in Function 6. Algorithm 3 along with Procedure 4 and the enhanced
function generate next transversal() (see Function 6) constitute the final
version of our algorithm. Function 6 differs from Function 5 in that it adds to
T only the nodes of Ek+1 that are appropriate for T , leaving out any non ap-
propriate ones. The correctness of the algorithm is established by the following
theorem:

Theorem 3 The proposed algorithm correctly generates all minimal transver-
sals of a simple hypergraph H without regenerations, in space polynomially
bounded by the size of the input hypergraph.

Proof: The proof follows by induction: Assume that at the k-th level, all
minimal transversals of Hk have been correctly generated. We will show now
that after the addition of Ek+1, the algorithm correctly generates all minimal
transversals of Hk+1 without regenerations.
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It follows from Lemmata 2 and 4 that all minimal transversals of Hk+1 are
generated. It remains to be shown that are all distinct from each other.

Notice that all minimal transversals of Hk+1 that are offsprings of any mi-
nimal transversal of Hk are pairwise different, since each consists of a part from
every generalized node of its ancestor. Those that are offsprings of the same
ancestor are pairwise different as explained in Lemmata 2 and 4. Observe that
these minimal transversals of Hk+1 are also minimal for Hk, as well. This
establishes that they all also differ from any minimal transversal of Hk+1 that
is produced with the addition of an appropriate node, since the latter is not
minimal for Hk. Therefore, the only remaining case to be checked is between two
minimal transversals that were produced by the addition of an appropriate node
and have different ancestors (Those that have the same ancestor are different,
as explained in Lemma 4). Let t = T0 ∪ {v} and t′ = T ′

0 ∪ {v′} be two minimal
transversals of Hk+1 that were produced by the addition of the appropriate
nodes v and v′ of Ek+1, respectively. Assume to the contrary that t = t′. If
v = v′ then T0 = T ′

0 , which means that t and t′ are both descendants of the
same minimal transversal of Hk, a contradiction by Lemma 4. For the same
reason, T0 6= T ′

0 . Thus, v (respectively v′) must be a node of T ′

0 (respectively
T0). Hence, both T0 and T ′

0 are hitting sets of Hk+1 since each includes a node of
Ek+1, again a contradiction. Hence, all minimal transversals that the algorithm
produces at level (k + 1) are pairwise different.

Regarding the space complexity of the algorithm, as regeneration is not al-
lowed, no minimal transversal has to be stored at any level of the tree and, hence,
the space requirements are determined by the total size of the activation records
of the function add next hyperedge() in all its recursive calls. If m is the num-
ber of the hyperedges of the input hypergraph, then at most m activation records
are stored at any point of the computation (since the space of an activation
record is reused after the end of its call). In addition, add next hyperedge()

is called by the function generate next transversal() (see Function 6). The
formal parameters of generate next transversal() are the transversal T , its
l-th descendant T ′ at the computation tree, plus the number l itself. Since
the transversal hypergraph can have up to 2n hyperedges, l can be stored
using at most n bits. Also, determining whether a node is appropriate for
T requires polynomial space as well. It follows that the activation record
of generate next transversal() requires only polynomial space and, conse-
quently, the recursive calls of add next hyperedge() require polynomial space
as well. 2

5 Experimental Evaluation

Implementation and experimental evaluation of our algorithm were carried out
on a 2.8MHz Pentium V PC with 512MB RAM, running Linux (Mandrake 10).
The main part of the code consists of the subroutines add next hyperedge()

and generate next transversal() (see Procedure 4 and Function 6, respec-
tively). The main difference of the current implementation compared to the
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one in [29] is the more sophisticated way to search for appropriate nodes.
This required the redesign of some auxiliary data structures and resulted in
an increase of the size of the code by more than 50%. However this payed
off in the performance of the algorithm. A linux-executable is available in
http://lca.ceid.upatras.gr/∼estavrop/transversal.

Additional algorithms were also implemented to support our experiments,
to verify the correctness of our code and for comparison reasons. The algorithm
of Berge was firstly implemented, in order to evaluate our ideas and to compare
with in the sequel. As already discussed, the simple scheme of Berge is both time
and memory demanding and thus, it can by applied only for small instances.
To verify the correctness of the code for relatively large instances, we used
the duality property (see Corollary 1). The duality property also offers the
possibility to evaluate the algorithm on instances with specific properties (very
large number of hyperedges and very small number of transversals).

We have also implemented a simple scheme that computes the transversal
hypergraph exhaustively: it generates all possible hitting sets of the input hy-
pergraph (which are of the order of 2n) and subsequently checks whether each of
them is minimal. Naturally, both memory requirements and time performance
of this simple algorithm are unacceptable.

To compare with, we considered recently implemented algorithms for the
problem. Except our algorithm (KS), we are aware of only two implementations
of algorithms for this problem: the algorithm of Fredman and Khachiyan as
implemented by Boros at al. in [6]1 (BEGK) and the algorithm of Bailey et al.
given in [1]2 (BMR). For each algorithm, we tested total CPU time (in seconds)
and total memory (in megabytes) required for every test case.

All algorithms were first evaluated on certain test cases described in [6]:

• Matching graph (M(n)): a graph with n nodes (n is even) and n/2 edges
forming an induced matching. This graph type has a small number of
edges but a large number of minimal transversals (namely, 2n/2).

• Dual Matching graph (DM(n)): the dual graph of M(n). This graph type
has a large number of edges but a small number of minimal transversals.

• Threshold graph (T H(n)): a graph with n nodes (n is even) labelled from
1 to n, and edge set {{i, j} : 1 ≤ i < j ≤ n, j is even}. This graph type has
a small number of edges (namely, n2/4) and a small number of minimal
transversals (namely, n/2 + 1).

• Self-Dual Threshold graph (SDT H(n)): the self-dual hypergraph H with
n nodes obtained from T H(n) and DT H(n) as follows:

H = {{n−1, n}}∪{{n−1}∪E|E ∈ T H(n−2)}∪{{n}∪E|E ∈ DT H(n−2)}.

This hypergraph has a polynomially bounded number of hyperedges (and,
minimal transversals), namely, (n − 2)2/4 + n/2 + 1.

1An executable was downloaded from http://paul.rutgers.edu/~elbassio/dual.html.
2An executable was provided by the authors.
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Table 1: Experimental evaluation on Matching and Dual Matching graphs.

CPU time (seconds) Memory (MB)

M(n) BEGK BMR KS BEGK BMR KS

20 0.74 0.01 0.00 1 1 1
24 2.1 0.04 0.01 15 1 1
28 9.4 0.2 0.04 17 2 1
30 30 0.43 0.07 17 3 1
32 74 0.85 0.17 20 5 1
34 174 1.76 0.38 37 12 1
36 372 5.6 0.81 44 13 1
38 964 12 1.71 85 27 1
40 1196 14 3.66 94 75 1

DM(n) BEGK BMR KS BEGK BMR KS

20 0.29 0.66 0.02 13 1 1
24 2.09 3.9 0.33 15 1 1
28 21 53 1.4 18 3 6
30 72 210 4.5 19 6 11
32 252 860 16 26 13 22
34 911 2360 57 34 26 45
36 2188 12463 197 44 72 89
38 8756 36600 655 88 139 178
40 35171 201142 2167 189 464 357

• Self-Dual Fano-Plane graph (SDFP(n)): a graph with n nodes and (k −
2)2/4+k/2+1 hyperedges, where k = (n−2)/7. To construct it, we start
with the hypergraph H0 = {{1, 2, 3}, {1, 5, 6}, {1, 7, 4}, {2, 4, 5}, {2, 6, 7},
{3, 4, 6}, {3, 5, 7}} (that represents the set of lines in a Fano plane and is
self-dual) and we set H = H1 ∪ H2 ∪ . . . ∪ Hk, where H1,H2, . . . ,Hk are
k disjoint copies of H0. The dual graph of H is the hypergraph of all 7k

unions obtained by taking one hyperedge from each of the k copies of H0,.
We finally define SDFP(n) as the hypergraph obtained by self-dualizing
H, as we did for the threshold graphs.

Comparison results on these test cases are summarized in Tables 1 and 2.
Problem sizes are identified by the number of nodes, n. For each test case we
report the total CPU time, in seconds, and the total memory, in megabytes,
required for each algorithm to generate all minimal transversals of the specified
hypergraphs.

From these tables it is immediate that the KS algorithm outperforms, with
respect to time, the other two in all test cases, with the BMR algorithm being
the second fastest in most test cases. Regarding the memory requirements, the
KS algorithm uses almost zero memory in those cases where the size of the input
graph is much smaller than the output graph (matching graph). In cases where
the input graph has many edges, memory requirements of the KS algorithm
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Table 2: Experimental evaluation on Threshold, Self-Dual Threshold, and Self-
Dual Fano-Plane graphs.

CPU time (seconds) Memory (MB)

T H(n) BEGK BMR KS BEGK BMR KS

40 0.33 0.14 0.02 21 1 1
60 0.61 1.24 0.16 29 1 1
80 1.96 6.5 0.65 36 2 2

100 4.6 24 1.9 44 2 5
120 10 72 4.9 52 3 8
140 22 194 11 60 5 12
160 40 460 23 67 7 17
180 75 1000 44 77 8 24
200 289 1968 82 85 12 33

SDT H(n) BEGK BMR KS BEGK BMR KS

42 0.76 0.14 0.12 21 1 1
62 4.56 1.28 0.66 29 1 1
82 18 6.6 2.25 36 1 2

102 55 24 6.2 44 2 5
122 156 73 14 52 3 8
142 453 193 30 60 5 12
162 1125 458 56 69 7 18
182 1859 1004 101 77 11 26
202 3643 1976 178 89 11 34

SDFP(n) BEGK BMR KS BEGK BMR KS

16 0.11 0.01 0.00 11 1 1
23 2.05 0.26 0.06 15 1 1
30 62 12 1.54 16 1 1
37 2130 553 63 22 8 6

are comparable to the other two algorithms. This is because the KS algorithm
needs to build auxiliary data structures that store all intermediate transversals
from the root to a leaf of the transversal tree, that is, its memory requirements
are proportional to the size of the input hypergraph as proved in Theorem 3.
As a general characteristic, the proposed algorithm performs better in time and
space in problem instances where the input hypergraph has fewer hyperedges
than the output.

This last observation is also verified in Table 3, where the performance in
three test cases, especially unfavorable for our algorithm, is reported. These
test cases come from the area of data mining and specifically from discovering
emerging patterns in large datasets, a problem that reduces to the generation
of all minimal transversals of a hypergraph. These datasets were used in [1]
and provided to us by the authors. In Table 3, instance parameters indicate the
number of nodes, n, the number of hyperedges, m, and the number of minimal
transversals, t. For each test case we report the total CPU time, in seconds,
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Table 3: Experimental evaluation on large datasets.

Instance Parameters CPU time Memory

n m t BEGK BMR KS BEGK BMR KS

287 48226 97 1332 1241 1648 161 16 53
92699 99 4388 4280 6672 208 33 105

108721 99 5898 7238 9331 209 41 122

and the total memory, in megabytes, required for the algorithms to generate the
output. As shown in Table 3, input hypergraphs have many hyperedges and few
minimal transversals. In these runs the memory requirements of our algorithm
are greater than those of the BMR as the algorithm needs to maintain some
data structures that hold a whole path in the transversal tree. This path is very
long in these instances. Also, the time performance of the BEGK algorithm is
notable here.

Finally, we tested all algorithms on a common set of randomly generated
hypergraphs. A random hypergraph generator was implemented and used for
this task. Given the number of nodes, n, and the desired number of hyperedges,
m, the random hypergraph generator uniformly and independently generates m
sets of nodes, each of them corresponding to a hyperedge of the instance. The
cardinality of each set lies between 1 and n, while a node belongs to a hyperedge
with probability between pl and pu, 0 ≤ pl ≤ pu ≤ 1. Care was taken that the
produced hypergraph be simple, that is, that no hyperedge is fully included in
another one.

Very few, indicative results are shown in Table 4. Problem sizes were iden-
tified by the number of nodes, n, and the number of hyperedges, m, of the
hypergraph, while pl and pu are the lower and upper probability bounds, re-
spectively, for a node to participate to a hyperedge. The number of minimal
transversals, t, also characterizes the size of the problem. Reports are averages
over 30 different runs for each instance size.

Table 4: Experimental evaluation on random instances. Reports are averages
over 30 runs.

Instance Parameters CPU time (seconds) Memory (MB)

n m pl pu t BEGK BMR KS BEGK BMR KS

50 100 0.5 0.9 150000 616 3.7 6.7 27 7 1

50 100 0.5 0.7 300000 1478 7.3 11.8 87 12 1

50 100 0.4 0.6 1.8 × 106 – 73 84 – 90 1

60 500 0.5 0.9 6.7 × 106 4900 420 970 266 313 1

60 500 0.5 0.7 27 × 106 – – 4600 – – 1

60 500 0.4 0.6 330 × 106 – – 120000 – – 1
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For these instances the results vary greatly as for each one of the three
algorithms there are instances for which it is the fastest of the three. There
is large deviation even among the 30 runs with the same parameters which are
averaged. This is an indication that the problem has more complicated structure
that cannot be totally captured by the number of nodes and the number of
edges of the input graph. As a typical behavior however, we could say that
in these instances the BMR algorithm is the faster while our algorithm is the
most efficient in memory requirements. For some large instances, this advantage
makes it the only algorithm that can terminate within the available memory and
generate the whole transversal hypergraph. For these instances the BMR and
BEGK algorithms suffered from memory starvation (shown by a dash in Table 4)
while the KS algorithm produced the whole hypergraph using less than 1MB of
memory. For problem instances like this, care was taken to split the output into
several files as the system-restricted maximum file size was not enough to store
the whole output.

6 Conclusions

In this paper we presented an algorithm for solving the Transversal Hyper-

graph Generation problem. This problem may produce a large output and
therefore algorithms for solving it must be evaluated with respect to both their
running time and memory requirements. We prove that our algorithm produces
the output without regenerations in space that is proportional to the size of the
input hypergraph. We are not aware of any other algorithm that achieves input–
polynomial space bound. Our algorithm operates in a generate-and-forget mode
and no output bit is needed to be stored for further manipulation. This prop-
erty makes it suitable for solving efficiently instances with small input size and
large output. We have also presented experimental evaluation of the algorithm
and compare it with other known algorithms.

Further research includes a theoretical investigation of the time complexity
of the algorithm and specifically the delay between consecutive outputs. Future
work also includes fine-tuning of the code to further improve its performance.
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