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Abstract. Broadcasting is a fundamental process in network communication, modeled
as the dissemination of information across vertices in a graph. This paper investigates the
broadcast problem in hypercube graphs and revisits the dimensional broadcast schemes. We
propose a novel algorithm that generates all valid minimum-time broadcast schemes by using
the recursive structure of hypercubes. Additionally, we compute the total number of valid
minimum-time broadcast schemes in hypercubes, which is also the number of all spanning
binomial trees. We also give an enumeration of all valid minimum-time broadcast schemes.

1 Introduction

Broadcasting is a fundamental process for information dissemination in connected networks, which are
commonly modeled as undirected graphs G = (V,E), where V represents the vertex set and E represents
the edge set of the graph G. Classical broadcasting is organized in discrete time units, beginning with an
initial vertex, referred to as the originator, holding the message. During each time unit, every informed
vertex (sender) transmits the message to one of its uninformed neighbors (receiver). This process continues
until all vertices in the graph are informed. A broadcast scheme is a collection of all edges, each labeled
with the time unit during which it is used in the broadcast. The objective is to find a broadcast scheme
that achieves the minimum possible broadcast time.

The study of the minimum broadcast graphs (mbgs), graphs with the smallest possible broadcast time
unit and number of edges, has a rich history, originating with Farley et al. [11] in 1979. In their work,
they introduced the concept of mbgs and identified the first infinite family of such graphs, consisting of
hypercube graphs with n = 2k vertices, where k is a positive integer. Subsequently, Park and Chwa [6]
proposed another family of mbgs for graphs on 2k vertices. Knödel graphs are shown to be mbgs on n = 2k

[24] and n = 2k − 2 vertices by Khachatrian and Haroutunian [23] and Dinneen et al. [7], independently.
The reader is referred to foundational works [2, 4, 5, 8], as well as to subsequent developments and technical
insights [13–17, 23, 27]. In addition, we recommend surveys [12, 18, 19, 21, 22] for a complete overview of
the topic.

Determining the broadcast time b(u) for an arbitrary originator u in an arbitrary graph G has been
proved to be NP-complete in [28]. The problem remains NP-complete even for 3-regular planar graphs [25],
or when restricted to graphs with the feedback vertex set number one [29]. Recently, the problem was proved
to be NP-complete for cactus and graphs with pathwidth 2 [1]. Ravi [26] also investigated the minimum
broadcast time problem under the classical model to derive an O(log2 n/ log log n)-approximation algorithm
for the minimum broadcast time problem of a graph on n vertices. This approximation has improved to
O(log n) [3]. The current best approximation ratio of O(log n/ log log n) for broadcasting was introduced
by Elkin and Kortsarz [9, 10].
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In this paper, we consider broadcasting in the hypercube graphs. In [11], the authors demonstrated
the existence of specific broadcasting called dimensional broadcast schemes in the hypercube Hk. These
schemes require that if (α1, . . . , αk) is a permutation of dimensions (1, 2, . . . , k) of hypercube Hk, every
informed vertex at time unit i must inform its neighbor along dimension αi. In this work, we extend
these schemes and propose an algorithm that generates all possible minimum-time broadcast schemes for
hypercubes. We also, give an enumeration of all valid minimum-time broadcast schemes.

2 Notations

Definition 1. The hypercube of dimension k, denoted by Hk, is a simple graph with vertices representing
2k binary strings of length k ≥ 1 such that adjacent vertices have binary strings differing in exactly one-bit
position, called a dimension, numbered 1, . . . , k. An edge lies along dimension i if the differing bit is in
position i.
Also, Hk is defined recursively as follows (for any k ∈ N):

� H0 is a single vertex with no edges.

� Hk consists of two copies of Hk−1 with edges joining corresponding vertices with a new dimension k,
for any k ≥ 1.

We use both definitions in the proofs. Since hypercubes are vertex and edge transitive [20], with no
loss of generality, throughout this paper, vertex 00...00 is considered to be the originator. For simplicity,
we refer to it as 0 for the rest of the paper.

Definition 2. A binomial tree Bk of dimension k on 2k vertices is defined recursively as follows:
B0 is a single vertex with no edges.
Bk consists of two copies of Bk−1 connecting their roots by an edge and considering one of them as the
root of Bk (see Figure 1).

Bk−1

Bk−1

(a) (b)

Figure 1: a) Construction of Bk from two copies of Bk−1. b) An example of binomial tree B3.

Definition 3. Let G be a graph on n vertices and v be the broadcast originator in graph G. b(G, v) denotes
the minimum number of time units required to broadcast from originator v in graph G. The broadcast time
of graph G, b(G) = max{b(G, v) | v ∈ V (G)} indicates the maximum number of time units required from
any originator to broadcast in graph G.

Let u be the root of a binomial tree Bk. Then Bk has 2k vertices and b(Bk, u) = k. Note that if every
informed vertex is active (i.e., sends the message) during each time unit of the process, then the resulting
broadcast scheme after time unit t forms a binomial tree Bt.

Note that for every graph G on n vertices, we have b(G) ≥ ⌈log n⌉, since the number of informed
vertices can at most double during each time unit. If b(G) = ⌈log n⌉, then G is called a broadcast graph.
It means that for every vertex v, we have b(G, v) = ⌈log n⌉. For a hypercube Hk, if all informed vertices
use dimension t in time unit t, for 1 ≤ t ≤ k, then every vertex will be informed after time unit k. Hence,
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b(Hk) = k. A broadcast graph G on n vertices is called minimum broadcast graph (mbg) if there does not
exist any other broadcast graph G′ on n vertices such that |E(G′)| < |E(G)|. Since deg(v) ≥ k for any
broadcast graph on 2k vertices, Hk is an mbg.

The distance between two vertices u and v in a graph G is the shortest path length between them,
denoted by d(u, v).

3 Main Results

In this section, we provide our algorithm to generate valid minimum-time broadcast schemes in hypercubes.
Furthermore, we prove its correctness and enumerate all algorithm-generated broadcast schemes. Finally,
we show that the algorithm gives all valid minimum-time broadcast schemes in hypercubes.
We use the next two combinatorial lemmas to prove the main theorem.

Lemma 3.1. For integers t and k such that 2 ≤ k ≤ t the following holds:(
k − 2

k − 2

)
+

(
k − 1

k − 2

)
+

(
k

k − 2

)
+ · · ·+

(
t− 2

k − 2

)
=

(
t− 1

k − 1

)
.

Proof: We provide a combinatorial proof. RHS represents the total number of ways to select k−1 elements
from a set of t − 1 elements. We evaluate this by examining cases based on the choices involving specific
elements from the set:

� There are
(
t−2
k−2

)
ways to select the subset such that the last element is chosen.

� In
(
t−3
k−2

)
ways, the second-to-last element is selected while the last element is excluded.

� Similarly,
(
t−4
k−2

)
counts the cases where the third-to-last element is chosen, with the last two elements

excluded.

This process continues until only the first k − 1 elements are chosen which is exactly one way to choose
them. The summation of these terms (LHS) thus equates to the RHS. 2

Lemma 3.2. For positive integers n and k such that k < n the following holds:(
k − 1

k − 1

)
(n− k) +

(
k

k − 1

)
(n− k − 1) +

(
k + 1

k − 1

)
(n− k − 2) + · · ·+

(
n− 2

k − 1

)
=

(
n

k + 1

)
.

Proof: As a combinatorial proof, observe that the first term on the left-hand side counts the number of
ways to choose k + 1 elements from the set {1, . . . , n} such that the second-largest element is k. Similarly,
the second term counts the number of such subsets where the second-largest element is k+1, and so on, up
to the last term, which corresponds to the case where the second-largest element is n − 1. Summing over
all possible values of the second-largest element yields the total number of ways to choose k + 1 elements
from n, as given by the right-hand side. 2

We present our algorithm, whose core idea is based on the recursive definition of hypercubes. Let Hn

be a hypercube of dimension n. When the originator selects an arbitrary dimension i in the first time unit,
the hypercube Hn is effectively divided into two smaller hypercubes Hn−1 by deleting all i-th dimensional
edges, each containing an informed vertex. These informed vertices can then independently broadcast
within their respective Hn−1 subhypercubes. In the second time unit, the informed vertices in the two
Hn−1 subhypercubes are free to use different, arbitrary dimensions for broadcasting, with the restriction
that neither they nor their descendants can reuse dimension i in subsequent time units. This process
continues, utilizing the recursive structure of Hn−1 in each time unit to advance the broadcasting process.
The algorithm operates as follows: Initially, the originator has a set of all dimensions, referred to as the
allowed set. When an informed vertex u uses arbitrary dimension j from its own allowed set to inform a
neighbor v, vertex u removes dimension j from its own allowed set and transfers the remaining dimensions
to v. This ensures that each vertex broadcasts without violating the dimensional constraints dictated by
the structure of hypercube.
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Algorithm 1: Hypercube Graph Broadcasting with Allowed Dimensions

Input : Hypercube G = (V,E) of dimension n, originator o, message M
Result: All vertices in G receive message M

1 Initialize all vertices v ∈ V as uninformed;
2 Mark o as informed;
3 Initialize t← 1;
4 Initialize allowed dimensions for o: allowed(o)← {1, 2, . . . , n};
5 while t ≤ n do
6 t← t+ 1;
7 curr informed← {v ∈ V | vertex v is marked as informed};
8 foreach vertex v in curr informed do
9 Arbitrarily select a dimension i ∈ allowed(v);

10 Remove i from allowed(v);
11 Determine neighbor u of v along dimension i;
12 M(u)←M // Node u receives the message;
13 allowed(u)← allowed(v) // Pass remaining allowed dimensions;
14 Mark u as informed;

Since each call at time unit t uses a dimension, say i, it informs two vertices belonging to two different
smaller hypercubes. Moreover, none of the subsequent broadcasts initiated from these vertices reuse di-
mension i, ensuring that their descendants remain in two disjoint sub-hypercubes and do not overlap. As
a result, the broadcast processes are entirely separated, and the number of informed vertices before time
unit t is exactly 2t−1. Therefore, the for loop in line 8 iterates exactly 2t−1 times for each t. Consequently,

this results in a total of

n∑
i=1

2i−1 = 2n− 1 iterations. Hence, the time complexity of the algorithm is Θ(2n).

The recursive structure of hypercubes is instrumental in our approach. In the following theorem, we
utilize this structure to prove the correctness of the proposed algorithm.

Theorem 3.3. Let Hn be a hypercube of dimension n. Then any broadcast scheme generated by Algorithm
1 is a minimum time broadcast scheme in Hn.

Proof: We prove the validity by induction on n. The base case n = 1 is straightforward. Suppose that
n ≥ 1. Without loss of generality, assume that vertex 0 = (0, . . . , 0) uses the first dimension in time unit
1 to inform vertex u = (1, 0, . . . , 0). By the recursive structure of hypercubes, Hn consists of two copies,
H0

n−1 and H1
n−1, which contain vertices 0 and u, respectively. Thus, in each Hi

n−1 for i = 0, 1, there is an
initially informed vertex.
According to Algorithm 1, no vertex will use dimension 1 again. By the induction hypothesis, any broadcast
scheme in Algorithm 1 for H0

n−1 and H1
n−1 is valid and completes in n − 1 time units. Consequently,

combining any two schemes for H0
n−1 and H1

n−1 coming from Algorithm 1 with the use of the first dimension
in time unit 1 forms a valid minimum-time broadcast scheme for Hn. 2

Remark 3.1. After each time unit, when a vertex informs its neighbor of dimension i, all its descendant
vertices in this branch are prevented from using dimension i in next time units. Thus, it appears that by
following Algorithm 1, many possible valid minimum-time broadcast schemes are ignored.
To illustrate this with a simple observation, consider the following scenario. Without loss of general-
ity, suppose that the first dimension is used in time unit 1. Assume that two vertices, 0a2 · · · an−211
and 1a2 · · · an−210, are informed. Imagine that in one of the time units, instead of informing vertices
0a2 · · · an−210 and 1a2 · · · an−211, respectively, these vertices inform 1a2 · · · an−211 and 0a2 · · · an−210 by
using dimension 1, respectively, as shown in Figure 2. At first glance, it appears that this broadcast scheme
can be completed in the minimum number of time units, yet Algorithm 1 does not generate this broadcast
scheme. However, the next theorem, surprisingly, shows that not only can this scenario not occur, but also
that Algorithm 1 gives us all valid minimum-time broadcast schemes.
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v1 = 1a2 · · · an−211

v2 = 1a2 · · · an−210 v3 = 0a2 · · · an−210

v4 = 0a2 · · · an−211

10 · · · 000 00 · · · 000dim 1

dim 1

dim 1

Figure 2: Informed vertices v2 and v4 use dimension 1 and inform vertices v3 and v1, respectively, instead
of informing v1 and v3, respectively.

In the next theorem, we show that the previous remark is not correct, and Algorithm 1 gives us all valid
minimum-time broadcast schemes.

Theorem 3.4. Let Hn be a hypercube of dimension n. All n-time unit valid broadcast schemes of Hn are
generated by Algorithm 1.

Proof: Note that if Bn is a binomial spanning subtree of Hn rooted at vertex u, then starting the broadcast
from the originator u gives a valid minimum-time broadcast scheme. Conversely, since Hn has 2n vertices,
every informed vertex must be active in each time unit of any valid minimum-time broadcast scheme
(consisting of n time units). Hence, as discussed in Section 2, every valid minimum-time broadcast scheme
corresponds to a spanning binomial subtree of Hn of dimension n, and vice versa. Note that by Theorem
3.3, all broadcast schemes produced by Algorithm 1 are valid. We show that the number of binomial trees
of Hn is equal to the total number of broadcast schemes produced by Algorithm 1.
First, we analyze Algorithm 1. Since in each time unit, one dimension is removed from the allowed set
of each informed vertex, in time unit t, each informed vertex has n − t + 1 available dimensions to send
the message. Thus, because there are 2t−1 informed vertices before time unit t, the broadcast scheme of
Algorithm 1 has (n− t+ 1)2

t−1

ways to extend the scheme in time unit t. Consequently, the total number
of broadcast schemes produced by Algorithm 1 is

n(n− 1)2
1

(n− 2)2
2

· · · 32
n−3

22
n−2

=

n−1∏
i=0

(n− i)2
i

.

Now, we show that the number of binomial trees of Hn, denoted by f(n), also equals
∏n−1

i=0 (n − i)2
i

.
To compute the distances of all vertices from the originator 0, we employ a breadth-first search (BFS)
algorithm. It is worth mentioning that the distance between two vertices is equal to the number of different
bits in their binary representation. We classify vertices based on this distance, denoting all vertices at a
distance d from 0 as level d vertices.
We demonstrate, by using strong induction on d, that in every valid minimum-time broadcast scheme, all
level d+1 vertices must be informed just by level d vertices, 1 ≤ d ≤ n−1. This means that every broadcast
scheme of Hn is a shortest-path broadcast scheme. In other words, every vertex receives the message via
a shortest path from the originator. Note that every informed vertex cannot be idle in all time units. If
not, then the number of informed vertices after time unit n will be less than 2n. So, the originator, vertex
0, is responsible for informing all its neighbors which shows the correctness of induction’s base case for
d = 1. Now, assume as the inductive hypothesis that for 1 ≤ l ≤ d, all level l vertices are informed just by
level l − 1 vertices. We aim to show that this property holds for

(
n

d+1

)
vertices of level d + 1. It is worth

mentioning that once a level d vertex u is informed in time unit t, it is obligated to inform n − t of its
neighbors at the level d + 1 because there is no idle vertex as mentioned above and u cannot inform any
level d− 1 vertices by IH.
Next, we use a second induction on d to show that the number of level d vertices which become informed
during time unit t is

(
t−1
d−1

)
. This is because this count matches the number of informed vertices at level

d− 1 by the end of time unit t− 1, which by IH is
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(
d− 2

d− 2

)
+

(
d− 1

d− 2

)
+

(
d

d− 2

)
+ · · ·+

(
t− 2

d− 2

)
.

It is equal to
(
t−1
d−1

)
by Lemma 3.1. Hence, all level d vertices must be able to inform(

d− 1

d− 1

)
(n− d) +

(
d

d− 1

)
(n− d− 1) +

(
d+ 1

d− 1

)
(n− d− 2) + · · ·+

(
n− 2

d− 1

)
level d + 1 vertices by time n. But, by Lemma 3.2, this sum equals

(
n

d+1

)
which means that all level

d+ 1 vertices must be informed just by level d vertices.
Now, assume that without loss of generality, the originator vertex 0 = 00 · · · 0 informs vertex u = 100 · · · 0
by using dimension 1 in the first time unit. Let V0 = {0a2 · · · an | ai ∈ {0, 1}, 2 ≤ i ≤ n} and V1 =
{1a2 · · · an | ai ∈ {0, 1}, 2 ≤ i ≤ n}. We claim that no vertex can use dimension 1 in other time units.
If v ∈ V1 is a vertex such that d(u, v) = d and uses dimension 1 in time unit t > 1 to inform v′ ∈ V0,
then d(0, v) = d + 1 and d(0, v′) = d. This would mean a level d + 1 vertex informs a level d vertex, as
illustrated in Figure 3, a contradiction. If v ∈ V0 uses dimension 1 in time unit t > 1 to inform a vertex in
V1, then since no vertex of V1 can send back to V0, implying that vertex v cannot contribute to informing
the maximum number of vertices within V0, and hence the broadcast within V0 cannot be completed, a
contradiction. Therefore, the claim is proved.

0 = 00 · · · 0

u = 10 · · · 0

v

v′

dim 1

dim 1

d

d V0

V1

Figure 3: A vertex v ∈ V1, with d(u, v) = d, uses dimension 1 in time unit t > 1 to inform v′ ∈ V0.

Since there is a one-to-one correspondence between valid minimum-time broadcast schemes and binomial
trees, and the originator has n dimensions to use in the first time unit, one can see that f(n) = nf2(n− 1),
with f(1) = 1, where f(n) is the number of all spanning binomial trees of Hn. By induction on n, we show

that f(n) =
∏n−1

i=0 (n− i)2
i

. Assuming by IH that this holds for n− 1, we have

f(n) = n

(
n−2∏
i=0

(n− 1− i)2
i

)2

= n

n−2∏
i=0

(n− (i+ 1))2
i+1

=

n−1∏
j=0

(n− j)2
j

.

Therefore, the number of binomial trees of Hn is equal to the total number of broadcast schemes
produced by Algorithm 1. 2

As an immediate consequence of the previous proof, we have the following corollary.

Corollary 3.5. The number of binomial subtrees rooted from vertex 0 as well as all valid minimum-time
broadcast schemes of a hypercube Hn is

n(n− 1)2
1

(n− 2)2
2

· · · 32
n−3

22
n−2

=

n−1∏
i=0

(n− i)2
i

.
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As highlighted in Corollary 3.5, the number of valid minimum-time broadcast schemes for a hyper-
cube Hn is in Ω(22

n−2

). This exponential growth underscores the inherent difficulty of identifying all valid
minimum-time broadcast schemes, even for a highly structured graph such as a hypercube. When consid-
ering general graphs, which often lack the regularity and symmetry of hypercubes, the complexity of the
problem becomes even more pronounced.

4 Enumerating All Broadcast Schemes of Algorithm 1

Algorithm 1 not only provides a valid minimum-time broadcast scheme but also enables the generation of
all possible minimum-time broadcasting schemes (discussed in Theorem 3.4). Since Line 7 of the algorithm
selects an arbitrary number from the set of allowed vertices, we can systematically enumerate all broadcast
schemes generated by this algorithm. Furthermore, the algorithm facilitates iteration through these schemes
and allows unique identification by assigning a distinct number to each scheme. For instance, a hypercube of
dimension 3 has 12 possible broadcasting schemes. In this section, we discuss how to determine the details
of a scheme corresponding to a given broadcast number (ranging from 0 to number of possible schemes−1)
and vice versa.

For an informed vertex u, let Hu,t denote the largest sub-hypercube containing u as its only informed
vertex after time unit t. When u uses dimension i to send the message to vertex v at time unit t, Hu,t−1

is divided into two smaller hypercubes, Hu,t and Hv,t. Because dimension i is removed from the allowed
sets of both u and v, the hypercubes Hu,t and Hv,t become distinct and separated. We call Hu,t the first
hypercube containing u (the sender) and Hv,t the second hypercube containing v (the receiver).

Let Hn be a hypercube for n ≥ 3. Suppose that 0 ≤ s ≤ f(n) − 1 is an arbitrary number, where

f(n) =
∏n−1

i=0 (n− i)2
i

is the number of valid minimum-time broadcast schemes of Hn by Corollary 3.5. We
show that s uniquely corresponds to a specific broadcast scheme.

Define the cluster size c(n) = f(n)/n, which represents the total number of minimum-time broadcast
schemes after the first time unit, where the originator has sent the message to one of its neighbors. For
simplicity, we denote it by c. Now, consider the representation of s in base c, s = (a1, a2)c, which contains
at most two numbers denoted by a1 and a2 because a1 = ⌊ sc⌋ < n ≤ c for n ≥ 3. Obviously, a1 + 1 equals
the first dimension that the originator u uses in the first time unit to inform v. We show that remainder
a2 represents two broadcast schemes of the two smaller hypercubes Hn−1. It is worth mentioning that
c′ =

√
c equals the number of minimum-time broadcast schemes in Hn−1. Similarly, the representation of

the remainder a2 in base c′ has at most two numbers, denoted a2 = (b1, b2)c′ . Now, the (b1 +1)-th scheme
of the first hypercube and the (b2+1)-th scheme of the second hypercube, together with the edge uv, form
a binomial tree, which constitutes a broadcast scheme for Hn.

To prove its correctness, note that if s and s′ are two different numbers, then their representations in
the same base (c or c′) are different. Therefore, the resulting broadcast schemes are distinct.

For the inverse, suppose that B is a minimum-time broadcast scheme of Hn. Assume the originator u
uses dimension i to inform vertex v in the first time unit, and the broadcast scheme in Hu,1 is the b1-th
broadcast scheme, while the broadcast scheme in Hv,1 is the b2-th broadcast scheme. Then s = (i−1, a2)c,
where a2 = (b1 − 1, b2 − 1)c′ , is the enumeration of B in Algorithm 1. Again, it is easy to verify that two
different schemes yield two different numbers.

For instance, in Figure 4, let vertex A be the originator, and define the dimensions as follows: A→ B
corresponds to dimension 1, A→ D to dimension 2, and A→ E to dimension 3. After sending along A→ B
in dimension 1, this dimension is removed from the set of allowed dimensions, dividing the hypercube H3

into two separate smaller hypercubes H2. As discussed earlier, the first hypercube is designated as the
one containing the sender A. Thus, ADHE forms the first hypercube, and BCGF forms the second. The
broadcasting scheme used within these smaller hypercubes determines the final number corresponding to
the complete broadcasting scheme.

There are two possible schemes forH2. Using the same logic, if sending the message occurs along A→ D,
corresponding to the smaller-numbered dimension, this is designated as scheme1. Similarly, sending the
message along A→ E is assigned as scheme2.

Now, consider the scenario where the first hypercube follows scheme2 (A → E), and the second hy-
percube follows scheme1 (B → C). Combining these two schemes yields the binary number (10). The
binary (10) corresponds to decimal 2, which represents this particular broadcasting scheme for the smaller
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hypercubes. Finally, we incorporate the initial step, A→ B, which occurred along the first dimension. In
base 4, this corresponds to (02), resulting in the final scheme number being 2.

Thus, the following scheme corresponds to

t1 : A→ B,

t2 : A→ E, B → C,

t3 : A→ D, B → F, E → H, C → G.

(4.1)

A B

CD

E F

GH
After A → B

A B

CD

E F

GH

Figure 4: Transformation of the hypercube to two smaller hypercubes after the first transmission.

Conversely, if we are given scheme number 2 and need to determine the corresponding broadcast scheme,
we proceed as follows:

First, we express the number into base 4, which is equal to (02)4. The first digit (0) indicates the action
selected by the originator, meaning the originator chose its first dimension, A→ B.

Next, the numbers corresponding to the two hypercubes are represented as (10)2. This indicates that
the first hypercube has chosen its second broadcast scheme, A → E, because we defined the order of the
dimensions earlier. The second hypercube has selected its first broadcast scheme, B → C. Finally, the
remaining scheme leads us directly to Relations (4.1).

5 Conclusion

In this paper, we studied the minimum-time broadcast schemes in hypercube graphs. We introduced an
algorithm that generates all valid optimal broadcast schemes. Our analysis revealed the enumeration and
compact encoding/decoding of every possible scheme for minimum-time broadcasting in hypercubes. While
constructing a näıve minimum-time broadcast scheme is straightforward, our main contribution lies in the
complete characterization of all such schemes and the demonstration that no other variants exist beyond
those generated by our algorithm.
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