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Abstract. We study Voronoi games on temporal graphs as introduced by Boehmer
et al. (IJCAI ’21) where two players each select a vertex in a temporal graph with the
goal of reaching the other vertices earlier than the other player. In this work, we consider
the reverse temporal Voronoi game, that is, a player wants to maximize the number of
vertices reaching her earlier than the other player. Since temporal distances in temporal
graphs are not symmetric in general, this yields a different game. We investigate the
difference between the two games with respect to the existence of Nash equilibria in
various temporal graph classes including temporal trees, cycles, grids, cliques and split
graphs. Our extensive results show that the two games indeed behave quite differently
depending on the considered temporal graph class.

1 Introduction

The Voronoi game on graphs is an influence maximization game where two or more competitive
players try to influence as many vertices as possible by choosing one initial vertex (or more) which
then propagates the information to other vertices. The Voronoi game on graphs was introduced by
Dürr and Thang [6] and is motivated by modeling the spread of information (e.g. viral marketing)
or diseases within social networks. Here, each player chooses an initial vertex and wins all vertices
with a shorter distance to her chosen vertex than to any other player. A central game-theoretic
question is the existence of a Nash equilibrium, that is, a stable strategy profile where no player
has an incentive to deviate, for a Voronoi game on a given graph. This question has been studied
for Voronoi games on various classes of graphs such as trees, cycles and grids [9, 7, 12].

Recently, Boehmer et al. [4] introduced the temporal Voronoi game which is played on temporal
graphs, that is, graphs where the edge set changes over discrete time steps [10]. Due to their
dynamic nature, temporal graphs are a more realistic model for social networks and are thus a
natural extension for the Voronoi game. Boehmer et al. [4] defined the payoff of a player to be
the number of vertices which she reaches earlier (that is, the temporal distance is smaller) than
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any other player and studied Nash equilibria on various forms of temporal paths, trees and cycles.
They posed the question how the temporal Voronoi game behaves for other temporal distance
notions. Note that the temporal distance between vertices in a temporal graph is not symmetric.
Hence, we study the reverse definition where a player gains the vertices that reach her before any
other player.

Related Work. The Voronoi game has originally been introduced as a competitive facility location
problem in continuous spaces by Ahn et al. [1]. For the discrete Voronoi game on graphs, also
complexity-theoretic questions about existence of Nash equilibria have been studied [6, 13, 3].
Another similar game on graphs is the competitive diffusion game which was introduced by Alon
et al. [2] and for which Nash equilibria have also been studied on various graph classes [11, 5, 8].
Boehmer et al. [4] also studied diffusion games on temporal graphs.

Our Contributions. We study the existence of Nash equilibria in reverse temporal Voronoi
games with two players on (among others) temporal trees, cycles, cliques, grids, and split graphs
(see Table 1 for an overview). Our results answer the question of guaranteed existence of Nash
equilibria for a wide range of temporal graph classes. For the sake of completeness, we also obtain
results for the “classic” temporal Voronoi game on the corresponding temporal graph classes. It
turns out that the two games indeed behave differently on temporal trees, cycles and split graphs.
For example, on temporally connected trees there is always a Nash equilibrium in the reverse
game but not in the classic game, while on monotonically growing cycles the opposite is true.
One of the key differences between the two games is that in the classic game the two players can
“catch up” each other while this effect does not exist for the reverse game. This seemingly renders
the reverse temporal Voronoi game easier to analyze than the temporal Voronoi game where the
catch-up dynamics can cause more complicated situations. An interesting side-observation is that
on temporally connected trees the reverse temporal Voronoi game behaves similar to the static
Voronoi game on static trees while on monotonically shrinking split graphs the classic temporal
Voronoi game behaves analogous to the static case.

Organization of the Paper. Our paper is organized as follows: Section 2 introduces basic
definitions of temporal graphs and the (reverse) temporal Voronoi game. The results for the
reverse temporal Voronoi game are then presented in Section 3 followed by the results for the
temporal Voronoi game in Section 4. We conclude with some open questions in Section 5.

2 Preliminaries

For a ≤ b ∈ N, let [a, b] := {a, a+ 1, . . . , b} and let [a] := [1, a].

Temporal Graphs. A temporal graph G = (V, (Et)
∞
t=1) consists of a finite set V of vertices and

an infinite sequence (Et)
∞
t=1 of edge sets Et ⊆

(
V
2

)
. If there is an integer i such that Et = Ei for all

t ≥ i, then we define the lifetime τ(G) of G to be the minimum such integer. For our considered
game, we can assume that all temporal graphs have finite lifetime τ . Hence, we do not specify
Ei for i > τ . The (static) graph Gt := (V,Et) is called the t-th layer of G and G↓ := (V,E↓)
with E↓ :=

⋃∞
t=1 Et is the underlying (static) graph of G.

A temporal path (resp. tree, cycle etc.) is a temporal graph whose underlying graph is a path
(resp. tree, cycle etc.). A (static) (n × m)-grid graph is a graph which is isomorphic to ([n] ×
[m], {{(i, j), (i′, j′)} | |i − i′| + |j − j′| = 1}). A split graph is a graph whose vertex set can be
partitioned into a clique and an independent set. A threshold graph is a split graph that can
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Table 1: Overview of results. The results in the top rows (marked with ∗) are by Boehmer et
al. [4]. A “✓” indicates guaranteed existence of a Nash equilibrium while an “✗” means that a
Nash equilibrium is not guaranteed to exist. Entries in parentheses are implied by other table cells.

Temporally Monotonically Monotonically

connected growing shrinking

Temporal Voronoi

Temporal Paths∗ ✗ (✓) ✗
Temporal Trees∗ (✗) ✓ (✗)

Temporal Cycles∗ ✗ ✓ ✗
Temporal Grids (✗) ✗ (Theorem 8) (✗)

Temporal Cliques (✗) ✗ (Corollary 3) (✓)

Temp. Complete k-partite (k ≥ 2) (✗) ✗ (Corollary 3) ✓ (Theorem 9)

Temporal Threshold (✗) (✗) (✓)

Temporal Split (✗) (✗) ✓ (Theorem 10)

Reverse Temporal Voronoi

Temporal Paths (✓) (✓) ✗ (Theorem 4)

Temporal Trees ✓ (Theorem 1) (✓) (✗)

Temporal Cycles (✗) ✗ (Theorem 2) ✗ (Theorem 5)

Temporal Grids (✗) ✗ (Theorem 3) (✗)

Temporal Cliques (✗) ✗ (Corollary 1) (✓)

Temp. Complete k-partite (k ≥ 2) (✗) ✗ (Corollary 2) ✓ (Theorem 7)

Temporal Threshold (✗) (✗) ✓ (Theorem 7)

Temporal Split (✗) (✗) ✗ (Theorem 6)

be constructed by iteratively adding isolated vertices or dominating vertices (hence, there always
exists a vertex which dominates all non-isolated vertices).

In a temporal graph G = (V, (Et)
∞
t=1), a temporal walk from a vertex u to a vertex v is a sequence

({v0 := u, v1}, t1), ({v1, v2}, t2), . . . , ({vd−1, vd := v}, td) such that ti < ti+1 for all i ∈ [d − 1] and
{vi−1, vi} ∈ Eti for all i ∈ [d]. We call td the arrival time of the temporal walk. A temporal
walk from u to v is called foremost if there is no temporal walk from u to v with earlier arrival
time. The temporal distance td(u, v) from u to v is the arrival time of a foremost walk from u to v
(we set td(u, v) := 0 if u = v). If there is no such walk, then td(u, v) := ∞. Note that temporal
distances are not symmetric, that is, td(u, v) ̸= td(v, u) is possible. We say that a vertex u reaches
a vertex v until (at) step t if td(u, v) ≤ t (= t). A temporal graph G is temporally connected if
td(u, v) < ∞ for all vertex pairs u, v. Further, G is monotonically growing (shrinking) if edges do
not disappear (appear) over time, that is, Et ⊆ Et+1 (Et+1 ⊆ Et) for all t. Note that, if G↓ is
connected, then monotonic growth of G implies temporal connectedness.

(Reverse) Temporal Voronoi Games. For a temporal graph G = (V, (Et)
∞
t=1) and a number k ∈

N of players, Boehmer et al. [4] introduced the k-player temporal Voronoi game Vor(G, k) on G.
The strategy space of each player i ∈ [k] is the vertex set V , that is, each player i selects a single
vertex pi ∈ V (also called position). A strategy profile is a tuple (p1, . . . , pk) ∈ V k containing the
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chosen vertices of all players. In Vor(G, k), the strategy profile (p1, . . . , pk) determines a vertex
subset Ui(p1, . . . , pk) := {v ∈ V | ∀j ̸= i : td(pi, v) < td(pj , v)} for each player i. The payoff of
player i is then ui(p1, . . . , pk) := |Ui(p1, . . . , pk)|. That is, each player “wins” those vertices which
she reaches earlier than all other players. In the reverse temporal Voronoi game rVor(G, k), we
define the set Ui(p1, . . . , pk) := {v ∈ V | ∀j ̸= i : td(v, pi) < td(v, pj)}, that is, each player “wins”
those vertices which reach her earlier than any other player.

In both games, the players aim to maximize their payoffs. Hence, player i plays a best response
to the other players in (p1, . . . , pk) if for all vertices p

′ ∈ V it holds that

ui(p1, . . . , pi−1, p
′, pi+1, . . . , pk) ≤ ui(p1, . . . , pk).

A strategy profile (p1, . . . , pk) is a Nash equilibrium if every player plays a best response to the
other players. In this paper, we only consider k = 2 players.

3 Reverse Temporal Voronoi Games (rVor)

In this section we prove the results for the reverse temporal Voronoi game shown in Table 1.

3.1 Temporally Connected Graphs

For temporally connected graphs, a Nash equilibrium is only guaranteed if the underlying graph is
a tree. In fact the Nash equilibrium is analogous to the Voronoi game on static graphs. Note that
for all other temporal graph classes considered in this paper, there are examples without a Nash
equilibrium already for monotonically growing graphs (as shown in Section 3.2).

Theorem 1 On every temporally connected tree T , there exists a Nash equilibrium in rVor(T , 2).

Proof: Let T := T↓ = (V,E) with |V | ≥ 2 (the case |V | = 1 is trivial). Let p1 be a centroid of T
(that is, a vertex v that minimizes the maximum size of any connected component in T − v) and
let p2 be a neighbor of p1 in a maximum-size component C = (V ′, E′) of T − p1. Then (p1, p2) is a
Nash equilibrium. Note that U1(p1, p2) = V \ V ′ since T is temporally connected and all vertices
in V \ V ′ reach p1 before p2. Analogously, it holds U2(p1, p2) = V ′. Since p1 is a centroid, we
have u1(p1, p2) ≥ |V |/2 and u2(p1, p2) ≤ |V |/2. Clearly, player 2 cannot improve since she could
only win vertices within a component of T − p1 and C is already maximal. Also player 1 cannot
improve since she could only win a subset of vertices of V \ V ′ or V ′. □

3.2 Monotonically Growing Graphs

In the following, we show that disallowing edges to disappear does not guarantee a Nash equilibrium
(except for trees). The following theorem is in contrast to the classic temporal Voronoi game where
a Nash equilibrium always exists for monotonically growing cycles as shown by Boehmer et al. [4].

Theorem 2 There is a monotonically growing cycle C such that there is no Nash equilibrium in
rVor(C, 2).

Proof: Consider the temporal cycle C := ([7], E1, E2) where E1 := {{i, i + 1} | i ∈ [6]} \ {{2, 3}}
and E2 := E1 ∪{{2, 3}, {7, 1}} (see Figure 1). To show that there is no Nash equilibrium, we show
that both players can always win at least 4 vertices regardless of the choice of the other player.
Since there are only 7 vertices in total, there cannot be a Nash equilibrium. To show the above
claim, we assume that p1 ∈ [2, 5] (by symmetry of C). The following cases are easily verified:
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Figure 1: A monotonically growing temporal cycle without a Nash equilibrium.

� If p1 = 2, then, for p2 = 5, it holds [4, 7] ⊆ U2(p1, p2).
� If p1 = 3, then, for p2 = 4, it holds [4, 7] ⊆ U2(p1, p2).
� If p1 = 4, then, for p2 = 7, it holds {1, 2, 6, 7} ⊆ U2(p1, p2).
� If p1 = 5, then, for p2 = 4, it holds [1, 4] ⊆ U2(p1, p2).

□

Recall that a Nash equilibrium is guaranteed for the temporal Voronoi game on monotonically
growing cycles. An example for a Nash equilibrium in the temporal Voronoi game Vor(C, 2) on the
cycle from the proof above, is (5, 4). Here, both players win three vertices.

From Theorem 2, we easily obtain an analogous result for monotonically growing cliques (and
with it also for split and threshold graphs.).

Corollary 1 There is a monotonically growing clique Q such that there is no Nash equilibrium in
rVor(Q, 2).

Proof: Consider the monotonically growing cycle C from Theorem 2 where no Nash equilibrium
exists. Since C is temporally connected, all pairwise temporal distances are finite, that is, td(u, v) ≤
d for all u, v ∈ [7] and some d ∈ N. Hence, any further edge appearing after time d is not changing
the temporal distance of any vertex pair. Therefore, Q := ([7], E′

1, . . . , E
′
d+1) with E′

t := Et for

all t ≤ d and E′
d+1 :=

(
[7]
2

)
is a monotonically growing clique without a Nash equilibrium. □

Next, we show that also on monotonically growing grids there is no guarantee for a Nash
equilibrium.

Theorem 3 There is a monotonically growing grid G such that there is no Nash equilibrium in
rVor(G, 2).

Proof: Consider the graph G := ([6], E1, E2) (depicted in Figure 2) with

E1 := {{1, 2}, {1, 4}, {3, 6}, {5, 6}} and

E2 := E1 ∪ {{2, 3}, {2, 5}, {4, 5}}.

By symmetry, assume that p1 ∈ {1, 2, 4}.
� If p1 = 1, then the best response by player 2 is p2 = 2, where U1(1, 2) = {1, 4} and U2(1, 2) =
{2, 3, 5, 6}. But p1 = 6 yields U1(6, 2) = {3, 5, 6}.

� If p1 = 2, then p2 = 6 is the best response with U1(2, 6) = {1, 2, 4} and U2(2, 6) = {3, 5, 6}.
But then p1 = 5 is the best response with U1(5, 6) = {1, 2, 4, 5}.
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Figure 2: A monotonically growing temporal grid without a Nash equilibrium.

� If p1 = 4, then a best response is p2 = 6 with U1(4, 6) = {1, 2, 4} and U2(4, 6) = {3, 5, 6}. But
then the best response is p1 = 5 again. Also p2 = 5 is a best response, where U1(4, 5) = {1, 4}
and U2(4, 5) = {3, 5, 6}. Then, p1 can improve with U1(1, 5) = {1, 2, 4}.

□

Interestingly, note that (1,6) is a Nash equilibrium for the classic temporal Voronoi game on the
above grid of Theorem 3. (However, this is not the case for all monotonically growing grids as
shown in Theorem 8.)

Again, from Theorem 3, we easily obtain the following corollary.

Corollary 2 For every k ≥ 2, there is a monotonically growing complete k-partite graph K such
that there is no Nash equilibrium in rVor(K, 2).

Proof: Consider the monotonically growing grid G from Theorem 3 (which is bipartite) where no
Nash equilibrium exists. Since all pairwise temporal vertex distances are finite (at most some d ∈
N), we can modify G as follows without introducing a Nash equilibrium: K := ([4+k], E′

1, . . . , E
′
d+1),

where E′
t := Et for all t ≤ d and

E′
d+1 := E′

d ∪ {{1, 6}, {3, 4}} ∪
4+k⋃
j=7

{{j, i} | i < j}.

Note that K is a monotonically growing complete k-partite graph where all temporal distances
between vertices in [6] are the same as in G. It remains to check that there is no Nash equilibrium.
If both players pick vertices in [6], then the outcome is exactly the same as in G (all newly introduced
vertices have equal temporal distance to both players and hence are not won by any player). Hence,
this is not a Nash equilibrium. If a player picks one of the new vertices, then this is never optimal,
since she only wins this single vertex, whereas she could win at least two vertices by choosing some
vertex in [6]. □

3.3 Monotonically Shrinking Graphs

We now consider temporal graphs where no edges are allowed to appear over time. It turns out
that among the graph classes we considered, a Nash equilibrium is only guaranteed if the game
is essentially “decided” in the first layer, that is, on temporal complete k-partite and threshold
graphs. We start with excluding Nash equilibria from all other considered temporal graph classes.

Theorem 4 There is a monotonically shrinking path P such that there is no Nash equilibrium in
rVor(P, 2).
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1 2 3 4 5 6 7 8 9t = 1

1 2 3 4 5 6 7 8 9t ≥ 2

Figure 3: A monotonically shrinking temporal path without a Nash equilibrium.

Proof: Let P := ([9], E1, E2) with E1 := {{i, i + 1} | i ∈ [8]} and E2 := E1 \ {{3, 4}} (Figure 3).
Clearly, if {p1, p2} ⊆ [3], then this is not optimal, since each player can win at most three vertices,
whereas choosing vertex 4 yields at least six vertices. If {p1, p2} ⊆ [4, 9], then we can assume
without loss of generality that 4 ≤ p1 < p2 = p1 + 1.

� If p1 = 4, then u1(p1, p2) = 2 and u1(6, p2) = 4.
� If p1 = 5, then u1(p1, p2) = 3 and u1(3, p2) = 4.
� If p1 ≥ 6, then u2(p1, p2) ≤ 3 and u2(p1, 3) ≥ 4.

Finally, let p1 ≤ 3 < p2 (wlog).
� If p2 ≤ 5, then u1(p1, p2) ≤ 3 and u1(6, p2) = 4.
� If p2 > 5 and 4 ∈ U1(p1, p2), then u2(p1, p2) ≤ 5 and u2(p1, 4) = 6.
� If p2 > 5 and 4 ̸∈ U1(p1, p2), then u1(p1, p2) ≤ 3 and u1(3, p2) = 4.

□

Theorem 5 There is a monotonically shrinking cycle C such that there is no Nash equilibrium in
rVor(C, 2).

Proof: Let C := ([10], E1, E2) with E1 := {{i, i + 1} | i ∈ [9]} ∪ {{10, 1}} and E2 := E1 \
{{3, 4}, {10, 1}} (see Figure 4). Clearly, if {p1, p2} ⊆ [3], then this is not a Nash equilibrium since
each player wins at most four vertices and choosing vertex 4 would yield at least six vertices. Now
consider the case if {p1, p2} ⊆ [4, 10]. Note that vertex 2 does not reach any of the players. Hence,
the remaining graph behaves like a path. Therefore, we can assume that p2 = p1 + 1.

� If p1 ≥ 8, then u2(p1, p2) ≤ 3 and u2(p1, 7) ≥ 5.
� If p1 ≤ 5, then u1(p1, p2) ≤ 3 and u1(7, p2) ≥ 5.
� If p1 = 6, then u1(6, 7) = 4 and u1(2, 7) = 5.
� If p1 = 7, then u2(7, 8) = 4 and u2(7, 2) = 5.

Finally, assume p1 ≤ 3 < p2 ≤ 7 (by symmetry of the cycle).
� If p2 ≤ 5, then u1(p1, p2) ≤ 4 and u1(6, p2) = 6.
� If p2 = 6, then U2(p1, 6) ⊆ [4, 9]. If 4 ̸∈ U2(p1, 6), then p1 ≥ 2 and thus player 2 can improve
with p2 = 4 giving U2(p1, 4) = [4, 9]. If 4 ∈ U2(p1, 6), then p1 = 1 and player 2 can improve
with p2 = 4 to U2(1, 4) = [3, 9].

� If p2 = 7, then u2(p1, 7) ≤ 5 and u2(p1, 4) ≥ 6.
□

Notably, for temporal paths already one disappearing edge is enough to exclude a Nash equilibrium
while the counterexample for cycles has two disappearing edges. In fact, one can show that for
cycles a Nash equilibrium always exists if at most one edge disappears.

It remains to exclude Nash equilibria for monotonically shrinking split graphs.

Theorem 6 There exists a monotonically shrinking split graph S such that there is no Nash equi-
librium in rVor(S, 2).
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Figure 4: A monotonically shrinking temporal cycle without a Nash equilibrium.

Proof: Let S := (V = C ∪ I, E1, E2) with C := [4, 7], I := {1, 2, 3, 8}, and

E1 :=

(
C

2

)
∪ {{1, 4}, {2, 4}, {2, 5}, {3, 5}, {6, 8}, {7, 8}},

E2 := {{2, 4}, {2, 5}, {4, 6}, {5, 7}}.

Figure 5 shows S. By symmetry of S, let p1 ∈ {1, 2, 4, 6, 8}.
� If p1 = 1, then clearly p2 = 4 is the best response. But player 1’s best response is then p1 = 7
which yields U1(7, 4) = {3, 7, 8}.

� If p1 = 2, then we can assume p2 ∈ {1, 4, 6, 8} by symmetry. The best response is p2 = 4,
where U1(2, 4) = {2, 3}. Again, player 1 can improve with p1 = 7.

� If p1 = 4, then p2 = 7 is the best response with U1(4, 7) = {1, 2, 4}. But then p1 = 5
yields U1(5, 7) = {1, 2, 3, 5}.

� If p1 = 6, then p2 = 4 is the best response with U1(6, 4) = {6, 8}. Again, player 1 improves
with p1 = 7.

� If p1 = 8, then p2 = 6 is the best response (up to symmetry). Player 1 can improve
with p1 = 5 which yields U1(5, 6) = {2, 3, 5}.

□
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Figure 5: A monotonically shrinking temporal split graph without a Nash equilibrium.

Note that the classic temporal Voronoi game always has a Nash equilibrium on monotonically
shrinking split graphs (as we show in Theorem 10). For example, (4,5) is a Nash equilibrium for
the temporal split graph in the proof of Theorem 6.

Contrasting Theorem 6, we finish this section with a positive result for threshold graphs (and
thus also cliques) and complete k-partite graphs.
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Theorem 7 There exists a Nash equilibrium in rVor(G, 2) if G is a monotonically shrinking
(1) complete k-partite graph with k ≥ 1 or
(2) threshold graph.

Proof: (1) Let G = (V1 ∪ · · · ∪ Vk, (Et)
∞
t=1) be a monotonically shrinking temporal complete k-

partite graph with k ≥ 2 (the case k = 1 is trivial). Let p1 ∈ V1 and p2 ∈ V2. Then, (p1, p2)
is a Nash equilibrium. Note that u1(p, p2) = |V2| for all p ∈ V \ V2 and u1(p, p2) ≤ 1 if p ∈ V2

(and symmetrically for u2(p1, p) = |V1| if p ∈ V \ V1 and u2(p1, p) ≤ 1 if p ∈ V1) since G1 is
complete k-partite. Hence, no player can improve.

(2) Let G = (V, (Et)
∞
t=1) be a monotonically shrinking temporal threshold graph with |V | ≥ 2

(the case |V | = 1 is trivial). If all vertices are isolated in G1, then a Nash equilibrium trivially
exists. Otherwise, there exists a vertex v which dominates all non-isolated vertices in G1. Then,
(v, w) with w ̸= v is a Nash equilibrium. Clearly, player 1 cannot improve since all non-isolated
vertices already reach v no later than time step 1. Hence, also player 2 cannot improve. □

4 Temporal Voronoi Games (Vor)

We complement the results for the reverse temporal Voronoi game from Section 3 with the missing
results for the remaining graph classes for the classic temporal Voronoi game.

4.1 Monotonically Growing Graphs

We first show that for grids a Nash equilibrium is also not guaranteed.

Theorem 8 There exists a monotonically growing grid G such that there is no Nash equilibrium
in Vor(G, 2).

Proof: Consider the (3×4)-grid G with vertex set [12] given in Figure 6 (left). To see that there is
no Nash equilibrium, we consider the best responses (Figure 6 (right)) which are straightforward
to verify.

� For p1 = 1, the best response is p2 = 6 with u2(1, 6) = 10.
� For p1 = 2, the best response is p2 = 6 with u2(2, 6) = 5.
� For p1 = 3, a best response is p2 ∈ {6, 7} with u2(3, p2) = 8.
� For p1 = 4, the best response is p2 = 3 with u2(4, 3) = 9.
� For p1 = 5, a best response is p2 ∈ {2, 6, 10} with u2(5, p2) = 9.
� For p1 = 6, the best response is p2 = 8 with u2(6, 8) = 3.
� For p1 = 7, a best response is p2 ∈ {2, 6, 10} with u2(7, p2) = 6.
� For p1 = 8, the best response is p2 = 7 with u2(8, 7) = 9.
� The case p1 ∈ {9, 10, 11, 12} is symmetric to p1 ∈ {1, 2, 3, 4}.

Note that the above best responses always run into a cycle 6 → 8 → 7 → 6 or 6 → 8 → 7 →
2(10) → 6. Hence, there exists no Nash equilibrium. □

For monotonically growing cliques (and also threshold and split graphs) and complete k-partite
graphs, the same arguments as in Corollaries 1 and 2 for the reverse Voronoi game apply. Hence,
from Theorem 8, we also obtain the following.

Corollary 3 There exists a monotonically growing clique C and a monotonically growing com-
plete k-partite graph K for each k ≥ 2 such that Vor(C, 2) and Vor(K, 2) have no Nash equilibrium.
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Figure 6: (Left) A monotonically growing temporal grid G without a Nash equilibrium in Vor(G, 2).
(Right) The best response graph of Vor(G, 2).

4.2 Monotonically Shrinking Graphs

For monotonically shrinking graphs, the following theorem is easily obtained from analogous ar-
guments as for Theorem 7. Hence, we omit a formal proof.

Theorem 9 For every monotonically shrinking complete k-partite graph K with k ≥ 1, there exists
a Nash equilibrium in Vor(K, 2).

Finally, for the temporal Voronoi game, a Nash equilibrium is guaranteed even for monotonically
shrinking split graphs (as opposed to the reverse Voronoi game). Notably, this case is analogous
to the Diffusion game on static split graphs [8].

Theorem 10 For every monotonically shrinking split graph S, there exists a Nash equilibrium
in Vor(S, 2).

Proof: Let S = (V, (Et)
∞
t=1) with V = C ∪ I, where C forms a clique in S1 = S↓ and I an

independent set. We assume for each vertex v ∈ I that it is not adjacent to all vertices in C,
since otherwise we could remove v from I and add it to C. Hence, we can also assume |C| ≥ 2,
since otherwise a Nash equilibrium trivially exists. We now show that there exists a Nash equi-
librium (p1, p2) with {p1, p2} ⊆ C and p1 ̸= p2. To this end, observe that in this case we
have U1(p1, p2) = {p1}∪NI(p1)\NI(p2) and U2(p1, p2) = {p2}∪NI(p2)\NI(p1), where NI(v) de-
notes the set of neighbors of v in I. Clearly, no player can improve by choosing a vertex in I since the
payoff then is 1. Next, we show that the players cannot improve arbitrarily often with vertices in C.
Assume towards a contradiction that there exists an infinite sequence (v1, w1), (v2, w1), (v2, w2), . . .
of profiles with u1(vi+1, wi) > u1(vi, wi) and u2(vi+1, wi+1) > u2(vi+1, wi) for all i ≥ 1. Note that
this is equivalent to

|NI(vi)| − |NI(vi) ∩NI(wi)| < |NI(vi+1)| − |NI(vi+1) ∩NI(wi)| and
|NI(wi)| − |NI(vi+1) ∩NI(wi)| < |NI(wi+1)| − |NI(vi+1) ∩NI(wi+1)|.

Since the number of different profiles is finite, there exists a subsequence (v1, w1), . . . , (vi, wj)
with (vi, wj) = (v1, w1) (wlog). But this yields the contradiction

|NI(v1)|+ |NI(w1)| − |NI(v1) ∩NI(w1)| < |NI(v2)|+ |NI(w1)| − |NI(v2) ∩NI(w1)|
< |NI(v2)|+ |NI(w2)| − |NI(v2) ∩NI(w2)|
< · · ·
< |NI(vi)|+ |NI(wj)| − |NI(vi) ∩NI(wj)|
= |NI(v1)|+ |NI(w1)| − |NI(v1) ∩NI(w1)|.

Hence, there exists a profile where both players cannot improve, that is, a Nash equilibrium. □
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5 Conclusion

We analyzed Nash equilibria for the classic and the reverse temporal Voronoi game and highlighted
some major differences depending on the considered temporal graph.

As regards open questions, note that the classes of temporal graphs we considered already
settle the question of guaranteed existence of a Nash equilibrium for most graph classes commonly
considered in the literature. A possible direction for future work would be to further restrict the
temporal behavior of the temporal graph to grow or shrink in a more specific way. For example, it
can be shown that on temporal cycles where at most one edge changes a Nash equilibrium always
exists. Another direction is to study other variants of the temporal Voronoi game. Here, a natural
question is whether Nash equilibria exist for more than two players. It is also interesting to study
the game when the players are allowed to choose more than one vertex initially or if the temporal
distance is defined differently (e.g. with faster arrival instead of earlier). Finally, it might also be
fruitful to investigate the existence of other forms of equilibria, e.g. when introducing a certain
cost for changing.
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